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Abstract: One of the pathophysiologies of post-stroke spasticity (PSS) is the imbalance of the reticu-
lospinal tract (RST) caused by injury to the corticoreticular pathway (CRP) after stroke. We investi-
gated the relationship between injuries of the CRP and PSS using MR diffusion tensor imaging (DTI).
The subjects were divided into spasticity and control groups. We measured the ipsilesional fractional
anisotropy (iFA) and contralesional fractional anisotropy (cFA) values on the reticular formation
(RF) of the CRP were on the DTI images. We carried out a retrospective analysis of 70 patients with
ischemic stroke. The cFA values of CRP in the spasticity group were lower than those in the control
group (p = 0.04). In the sub-ROI analysis of CRP, the iFA values of pontine RF were lower than the
cFA values in both groups (p < 0.05). The cFA values of medullary RF in the spasticity group were
lower than the iFA values within groups, and also lower than the cFA values in the control group
(p < 0.05). This results showed the CRP injury and that imbalance of RST caused by CRP injury was
associated with PSS. DTI analysis of CRP could provide imaging evidence for the pathophysiology
of PSS.

Keywords: corticoreticular pathway; diffusion tensor imaging; reticulospinal tract; spasticity; stroke

1. Introduction

Stroke is a leading cause of long-term disability [1]. More than two-thirds of patients
with stroke have various sequelae, of which motor impairment is the most common [2].
One of the common motor consequences of stroke is spasticity. Spasticity is a motor
disorder characterized by a velocity-dependent increase in the muscle tone, resulting from
hyperexcitability of the stretch reflexes as one component of the upper motor neuron
syndrome [3].

Post-stroke spasticity (PSS) has been reported in 4–46% of patients with stroke, and
the prevalence increases from the acute to chronic state after stroke [4]. The predictive
factors of PSS are severe paresis, hypoesthesia, lower initial stroke severity, lower activity
of living, and previous stroke [5]. However, the pathophysiologic mechanisms underlying
PSS remain poorly understood. Some previous studies have suggested the role of the
reticulospinal tract (RST) in PSS [6–8].

The RST consists of two components. The dorsal RST, which originates from the
reticular formation (RF) in the medulla, provides inhibitory inputs to spinal reflex circuits,
while the medial RST, which originates from the RF in the pons, provides excitatory inputs.
The CRP arises from the premotor cortex (PMC) and supplementary motor area (SMA) and
synapses with the neurons of the RST in RF [9]. The dorsal RST receives inputs primarily
from the contralateral motor cortex, which descends ipsilaterally to the spinal cord, while
the medial RST receives inputs primarily from the ipsilateral PMC/SMA, which descends
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ipsilaterally to the spinal cord [10]. If a stroke occurs in the cerebral hemisphere, the CRP
from ipsilesional PMC reduces the inputs of the contralesional medullar RF and resulting
in hypoactivity of the inhibitory effects of contralesional dorsal RST to the spinal stretch
reflex. In addition, CRP from contralesional PMC to the contralesional pontine RF becomes
unopposed and gradually hyperexcitable, which results in the hyperactivity of excitability
effects of contralesional medial RST [6,10]. In other words, one of the pathophysiologies of
PSS is the imbalance of dorsal RST and medial RST, and it is caused by injury to the CRP
after stroke.

Neuroimaging examinations, such as functional MRI, diffusion tensor imaging (DTI),
and functional near-infrared spectroscopy (fNIRS), are the main assessment tools to in-
vestigate post-stroke motor impairment, and the neurological biomarkers are correlated
with motor function after stroke. Most neuroimaging studies of the stroke-related motor
pathway assessed the corticospinal tract (CST) [11,12]. In particular, as the number of
DTI studies on CST after stroke has increased and the evidence has become stronger, DTI
biomarkers of CST have been suggested as predictors of motor recovery [13,14].

Recently, studies on identification of CRP in the healthy brain using DTI have been
reported [15,16]. Since then, studies on CRP injury after stroke and traumatic brain injury
have also been conducted using DTI. However, there have been few DTI studies of CRP
after stroke. The DTI studies on CRP after stroke only referred to the relationship between
CRP and gait function [17–20].

In this study, we attempted to investigate the relationship between CRP injury and
spasticity in stroke patients by using DTI. Also, we analyzed CRP at the level of the RF in
the brainstem, where CRP and each RST are contiguous; we want to confirm that the that
PSS is caused by an imbalance between the dorsal RST and the medial RST due to CRP
injury after stroke.

2. Materials and Methods
2.1. Study Design and Population

This study was a retrospective, single-center study. The study protocol was approved
by the Institutional Review Board of Pusan National University of Yangsan Hospital. The
requirement of informed consent was waived because the data were analyzed anonymously
and retrospectively.

2.2. Study Population

Ischemic stroke patients admitted to our hospital between January 2015 and De-
cember 2019 were included. We identified ischemic stroke by brain MR. Subjects were
recruited according to the following inclusion criteria: (1) first-ever stroke, (2) age between
18 and 80 years, (3) ischemic stroke confined to the supratentorial level, (4) hemiplegic
stroke, (5) DTI performed at three to six weeks after the onset of stroke. Exclusion criteria
were as follows: (1) transient ischemic attack or hemorrhagic stroke, (2) bi-hemispheric
or brain stem lesions, (3) hemorrhagic transformation or cerebral/cerebellar edema after
cerebral infarction, (4) coma state or no neurologic symptom after stroke, (5) any previous
brain lesion such as previous stroke, traumatic brain injury, brain tumor, etc. (6) any previ-
ous anatomical or muscular abnormality of hemiplegic limbs. Patients enrolled through
inclusion and exclusion criteria were divided into two groups according to the presence of
spasticity. All subjects underwent conventional inpatient rehabilitation including physical
therapy and occupational therapy after stroke in our center.

2.3. Data Collection and Variables

The data were obtained from the electronic chart review. The following data were
retrieved: age, sex, side and lesion of stroke, severity of the stroke, interval between onset
and MR DTI, modified Ashworth scale (MAS) score at discharge.
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2.4. Assessment of Spasticity

Spasticity was assessed based on the MAS score of the elbow flexor of the affected
upper extremity at discharge. The MAS grades the resistance of a relaxed limb to rapid
passive stretch through the range of motion by determining the score with 6-point scales
while providing reliable and reproducible results [21,22]. An MAS score of 0 indicates no
increase in muscle tone, and a score of 4 indicates a state in which passive movement of the
affected limb is impossible. In this study, any spasticity was defined as an MAS score ≥1
for the elbow flexor that performed the passive movements.

2.5. MR Data Acquisition

All subjects underwent 3.0T MRI scanner (Skyra, Siemens Healthneers, Germany)
equipped with a 16-channel head & neck coil to acquire 3D T1-weighted and DTI images.
The 3D T1-weighted images were obtained using magnetization prepared rapid acquisition
gradient recalled echo (MPRAGE) pulse sequence with the following parameters: repetition
time (TR)/echo time (TE)/inversion time (TI) = 1900/2.2/900 ms, Flip angle (FA) = 9◦,
1 mm3 isotropic voxel size. DTI data were acquired at an average of 32.1 ± 7.0 days after
stroke onset by conventional brain MRI protocols using the echo-planar imaging sequence.

DTI was applied in diffusion-weighted gradients along 60 non-collinear directions
and two volumes without diffusion weighting. The imaging parameters were matrix
size = 128 × 128, field of view = 230 × 230 mm2, repetition time (TR) = 5800 ms, echo
time = 71 ms, flip angle = 180◦, number of averages = 1, b value = 1000 s/mm2, slice
thickness = 4 mm, and voxel size = 1.7 × 1.7 × 4 mm3. To accelerate data acquisition,
parallel imaging with an acceleration factor of two was applied.

2.6. DTI Data Processing

All DTI data was spatially normalized to the Montreal Neurological Institute (MNI)
template using parameters derived from 3D T1WI processing. DTI analysis was per-
formed with FMRIB’s Diffusion Toolbox and TBSS (Tract-Based Spatial Statistics) in the
FMRIB Software Library 6.0 (FSL, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL, accessed
on: 2 June 2021) package. For registration, was performed with FMRIB Software Library
6.0 and get the transformation matrix with FMRIB’s linear registration tool (FLIRT) and
FMRIB’s nonlinear registration tool(FNIRT). Next, the eddy current distortions were cor-
rected in the DTI datasets. After this, raw diffusion-weighted images for each subject
were linearly aligned to non-diffusion weighted image (b0), followed by removal of the
non-brain tissues using a brain extraction tool (BET). Third, the extracted brain was used
for local fitting of diffusion tensors. The diffusion tensor was calculated at each voxel to
generate the fractional anisotropy (FA) images.

TBSS can be considered as the standard approach for voxel-based analysis (VBA) of
diffusion tensor imaging (DTI) data. All individual FA images were linearly and nonlinearly
aligned to a 1-mm isotropic FA template in standard MNI space using FNIRT. To create
the mean FA skeleton that served as a study-specific template, all aligned FA images
were averaged and thinned by local-perpendicular non-maximum suppression with FA
thresholds of 0.2 to exclude the voxels in GM and cerebrospinal fluid (CSF). The resulting
skeleton represented the center of common WM tracts. Fiber tracking was performed using
a probabilistic tractography method.

QFA values were obtained by manually placing ROIs on the entire CRP and CST areas
at the level of the lower pons to upper medulla on axial sections (left and right sides) on
the basis of the T2-weighted image and anatomic knowledge, by using our image FSL eyes
software, the atlas of 3T MR brain and a previous report of CRP of DTI study [15,23]. Two
radiologists specializing in neuroimaging determined the ROI by referring to this, and the
final ROI was agreed upon (Figure 1).

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
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of interest; CST, corticospinal tract; CRP, corticoreticular pathway. 

The FA values for each ROI were obtained by averaging all voxels within the ROI on 
the ipsilesional or contralesional sides with reference to the infarct. In each patient, FA of 
the CRP and CST was derived from the mean value of 15 contiguous sections. Addition-
ally, the FA of CRP was reanalyzed by dividing it into three parts—lower pons, pontome-
dullary junction, and upper medulla—according to the anatomical levels on RF ROI of the 
brainstem. The FA values were obtained as the average of three contiguous sections per 
level, and the interval between levels were three contiguous sections. (Figure 2) Addition-
ally, the ratio of the FA (rFA) between the ipsilesional and contralesional sides was calcu-
lated (rFA = FA ipsilesional side/FA contralesional side). 

 
Figure 2. Sub-ROIs of the left and right CRP at RF on the brain stem (Yellow color; pontine RF, 
Green color; pontomedullary junction RF, Red color; medullar RF). ROI, region of interest; CRP, 
corticoreticular pathway; RF, reticular formation. 

2.7. Statistical Analysis 
All values were presented as the mean ± standard deviation. Ipsilesional values and 

contralesional values were compared using the paired t-test. Group comparisons were 
made using the independent t-test. All data from the complete set of assessments were 

Figure 1. (A) ROIs of the left and right CRP and CST at the level of the lower pons to the upper medulla based on the
T2-weighted image (Red color, CRP; Blue color, CST). (B) ROIs of the left and right CRP and CST at the medulla. ROI,
region of interest; CST, corticospinal tract; CRP, corticoreticular pathway.

The FA values for each ROI were obtained by averaging all voxels within the ROI
on the ipsilesional or contralesional sides with reference to the infarct. In each patient,
FA of the CRP and CST was derived from the mean value of 15 contiguous sections.
Additionally, the FA of CRP was reanalyzed by dividing it into three parts—lower pons,
pontomedullary junction, and upper medulla—according to the anatomical levels on RF
ROI of the brainstem. The FA values were obtained as the average of three contiguous
sections per level, and the interval between levels were three contiguous sections. (Figure 2)
Additionally, the ratio of the FA (rFA) between the ipsilesional and contralesional sides
was calculated (rFA = FA ipsilesional side/FA contralesional side).
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Figure 2. Sub-ROIs of the left and right CRP at RF on the brain stem (Yellow color; pontine RF,
Green color; pontomedullary junction RF, Red color; medullar RF). ROI, region of interest; CRP,
corticoreticular pathway; RF, reticular formation.

2.7. Statistical Analysis

All values were presented as the mean ± standard deviation. Ipsilesional values and
contralesional values were compared using the paired t-test. Group comparisons were
made using the independent t-test. All data from the complete set of assessments were
analyzed using SPSS software version 25.0 (SPSS, Inc.; Chicago, IL, USA). A p value of 0.05
was used to indicate statistically significant differences.
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3. Results
3.1. General Characteristics

In total, 70 patients were included in this study. Of these, 43 (61.4%) were men, and
the mean age was 61.5 ± 11.5 years. Left lesions were noted in 31 (44.3%) patients. The
middle cerebral artery was the most common lesion location, and the average score on
the initial National Institute of Health Stroke Scale (NIHSS) was 6.8 ± 5.6. The patients
underwent MR imaging at 27.1 ± 7.0 days after stroke. The two groups were divided
according to the presence of spasticity. The control group contained 41 patients, and the
spasticity group contained 29 patients. There were no significant intergroup differences
in age, sex, infarction side, lesion, or interval between onset and MR DTI (p > 0.05). The
NIHSS score was lower in the spasticity group (p = 0.03). The general characteristics of the
subjects and each subgroup are shown in Table 1.

Table 1. Demographic and clinical data of participants.

Total (n = 70) Control (n = 41) Spasticity (n = 29) p

Age, mean ± SD (years) 61.6 ± 11.5 61.7 ± 12.3 61.5 ± 10.3 0.934

Sex 0.932

Male, n (%) 43 (61.4%) 25 (61.0%) 18 (62.1%)

Female, n (%) 27 (38.6%) 16 (39.0%) 11 (37.9%)

Infarction side 0.939

Lt., n (%) 31 (44.3%) 18 (43.9%) 13 (44.8%)

Rt., n (%) 39 (55.7%) 23 (56.1%) 16 (55.2%)

Lesion, n 0.530

MCA 52 (74.3%) 29 (70.7%) 23 (79.3%)

LSA 10 (14.3%) 7 (17.1%) 3 (10.3%)

Multiple infarction 8 (11.4%) 5 (12.2%) 3 (10.3%)

NIHSS score, mean 6.8 ± 5.6 5.9 ± 4.9 8.6 ± 6.1 0.032 *

MR DTI after onset,
mean ± SD (days) 27.1 ± 7.0 26.8 ± 7.9 27.6 ± 5.7 0.679

MAS, n (%) <0.001 *

0 41 (58.6%) 41 (100%) -

1 10 (14.3%) - 10 (34.5%)

1+ 12 (17.1%) - 12 (41.4%)

2 5 (7.1%) - 5 (17.2%)

3 2 (2.9%) - 2 (6.9%)

4 0 (0.0%) - 0 (0.0%)
* p < 0.05; SD, Standard deviation; MCA, Middle cerebral artery; LSA, Lenticulostriate artery; NIHSS, National
Institute of Health Stroke Scale; DTI, diffusion tensor image; MAS, modified Ashworth scale.

3.2. TBSS

TBSS revealed a significant decrease in FA values in several brain regions in the
spasticity group in comparison with the control group for both lesions (pFWE < 0.05).
These regions included the ipsilesional sensorimotor cortex, subcortical white matter,
including the internal capsule and thalamic radiation, and brainstem in left ischemic stroke,
and the ipsilesional brain stem in right ischemic stroke (Figure 3).

3.3. ROI Analysis of FA of the CST in the Brain Stem

The iFA values of the CST in the brain stem were significantly lower than the cFA
values in both control and spasticity groups (p < 0.01). In comparison to the FA value
of the control group, the FA value of the spasticity group was significantly lower in the
ROIs of the CST in the ipsilesional brain stem (p < 0.01). There was no difference in the FA
value in the ROIs of the CST in the contralesional brain stem. The rFA of the CST showed
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a statistically significant decrease in the spasticity group compared to the control group
(p <0.01). (Table 2).
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Figure 3. TBSS analysis between control and spasticity groups. (A) TBSS of the left hemispheric
stroke, (B) TBSS of the right hemispheric stroke. There was a significant decrease in fractional
anisotropy values in the ipsilesional brain stem in the spasticity group, compared with the control
group in both lesions (p < 0.05). TBSS, Tract-based spatial statistics.

Table 2. Comparison of the FA values of CRP and CST in the brainstem between the control and
spasticity groups.

ROIs of FA Control Spasticity p

CST

iFA 0.371 ± 0.547 0.308 ± 0.529 <0.01 *
cFA 0.396 ± 0.514 0.390 ± 0.689 0.91

p <0.01 * <0.01 *
rFA 0.952 ± 0.106 0.802 ± 0.147 <0.01 *

CRP

iFA 0.403 ± 0.026 0.394 ± 0.036 0.27
cFA 0.412 ± 0.035 0.395 ± 0.032 0.04 *

p 0.02 * 0.92
rFA 0.981 ± 0.056 1.000 ± 0.053 0.18

* p < 0.05, All values are presented as the mean ± standard deviation. CST, corticospinal tract; CRP, corticoreticular
pathway; ROI, region of interest; iFA, ipsilesional fractional anisotropy; cFA, contralesional fractional anisotropy;
rFA, ratio between ipsilesional/contralesional fractional anisotropy.

3.4. ROI Analysis of FA of the CRP in the Brain Stem

The iFAs of the CRP in the brain stem, which were the means of values recorded from
the lower pontine RF to upper medullary RF, were significantly lower than the cFAs in the
control group (p = 0.02). There was no difference between iFAs and cFAs in the spasticity
group (p = 0.92). Compared to the control group, the iFA value in the spasticity group
was not significantly different (p = 0.27), but the cFA value in the spasticity group was
significantly lower (p = 0.04). There was no statistically significant difference in the rFA
values of the CRP between the two groups (p < 0.01) (Table 2).
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3.5. ROI Analysis of FA of the CRP in the Pons, Pontomedullary Junction, and Medulla

Table 3 shows the FA values obtained with sub-ROI analysis according to the anatom-
ical structures in the CRP. In the ROIs of pontine RF, the iFA values of the CRP were
significantly lower than the cFA values in both control and spasticity groups (p < 0.01).
There were no differences in the iFA, cFA, or rFA values of the ROIs of the CRP in the pontine
RF between the control and spasticity groups (p = 0.39, p = 0.42, and p = 0.84, respectively).

Table 3. Comparison of the FA values on sub-ROIs of CRP in the control and spasticity groups.

ROIs of FA Control Spasticity p

Pontine RF

iFA 0.512 ± 0.046 0.501 ± 0.057 0.39
cFA 0.526 ± 0.057 0.515 ± 0.052 0.42

p 0.01 * 0.03 *
rFA 0.978 ± 0.062 0.975 ± 0.063 0.84

Pontomedullar
junction RF

iFA 0.364 ± 0.031 0.354 ± 0.037 0.24
cFA 0.372 ± 0.036 0.354 ± 0.036 0.05

p 0.17 0.98
rFA 0.985 ± 0.089 1.003 ± 0.084 0.39

Medullar RF

iFA 0.346 ± 0.029 0.343 ± 0.045 0.69
cFA 0.350 ± 0.035 0.330 ± 0.039 0.03 *

p 0.33 0.02 *
rFA 0.992 ± 0.073 1.040 ± 0.085 0.02 *

* p < 0.05, All values were presented are the mean ± standard deviation. ROI, region of interest; RF, reticular
formation; iFA, ipsilesional fractional anisotropy; cFA, contralesional fractional anisotropy; rFA, ratio between
ipsilesional/contralesional fractional anisotropy.

In the ROIs of the pontomedullary junction of RF, the iFA values and the cFA values
of the CRP showed no differences in control and spasticity groups (p = 0.17 and p = 0.98).
There were no differences in the iFA, cFA, or rFA values of the ROIs in the pontomedullary
junction between control and spasticity groups (p = 0.24, p = 0.05, and p = 0.39, respectively).

In the ROIs of medullary RF, there was no difference between the iFA value and the
cFA value in the control group (p = 0.33). However, the cFA value was lower than the iFA
values of the CRP in the spasticity group (p < 0.01). There was no difference in the iFA
between control and spasticity groups (p = 0.69). The cFA value of medullary RF in the
spasticity group was significantly lower than that in the control group (p = 0.03). The rFA
showed a significant difference between the control and spasticity groups (p = 0.02).

4. Discussion

We evaluated the relationship of CRP to PSS using DTI. In this study, we first used
TBSS to confirm that secondary degeneration occurs in the brainstem in the subacute phase
of supratentorial stroke. On the basis of these findings, we analyzed iFA and cFA values
of ROIs of CST and CRP in the brainstem after supratentorial stroke and compared them
within groups and between the control and spasticity groups.

In the DTI analysis of CST, the iFA values were lower than cFA values in both groups,
and the iFA and rFA values in the spasticity group were lower than those in the control
group. The total ROI analysis of the CRP from the lower pons to the upper medulla
showed inconsistent results. In the control group, the iFA value of CRP was lower than
the cFA value, and rFA values indicated ipsilesional/contralesional asymmetry. However,
the spasticity group showed no asymmetry of FA values. Unlike the CST, CRP showed
a significant difference in the cFA values between control and spasticity groups. In sub-
ROI analysis of CRP, the cFA value in the spasticity group was lower than that in the
control group at the medullary RF. Sub-ROI analysis of CRP suggested that injuries of
ipsilesional CRP in supratentorial stroke caused degeneration of contralesional medullary
RF, contributing to PSS.

The pathophysiology of PSS after stroke is still unclear. One of the pathophysiologies
of PSS is the imbalance of dorsal RST and medial RST, and it is caused by injury to the
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CRP after stroke [6,8,10]. In our study, we analyzed the sub-ROIs of CRP by dividing
it into the pons, pontomedullary junction, and medulla levels. This was based on the
origination of the dorsal and medial RST, tracts that are mentioned to be important to the
pathophysiology of PSS. Our results prove the hypotheses for the laterality dominance of
CRP and the role of CRP in PSS. The iFA value was lower at the pontine RF, and the cFA
value was lower at medullary RF. In other words, the injured CRP projected dominantly
to the ipsilateral pontine RF, the origin of medial RST, and it also projected dominantly to
contralesional medullary RF, the origin of dorsal RST. These results support the laterality
dominance of CRP. Also, the FA values of the medullary RF showed a significant difference
between the control and spasticity groups. It is assumed that the CRP injury causing
downregulation of contralesional dorsal RST is related to PSS.

Among the major descending pathways of the human motor system, isolated CST
lesions only produce weakness, loss of dexterity, hypotonia, and hyporeflexia [24–26].
Injuries of the CST are known to be not directly related to spasticity [27]. However, severe
motor weakness is a risk factor for PSS [5]. In our study, ipsilesional CST injury was
confirmed using DTI after hemispheric stroke with motor weakness, and it was more
severe on the spastic side after stroke. Worse CST injury is found in stroke patients with
spasticity; this only explains the motor weakness of patients with spasticity. In other words,
the motor weakness with spasticity in stroke patients is caused by having a projection
adjacent between CST and CRP.

MR imaging studies of stroke have been actively conducted. Previous studies reported
significant correlations between DTI biomarkers such as FA and motor impairments, and
the DTI biomarkers measured after stroke have emerged as potential predictors of motor
recovery [11]. Most studies on motor impairment after stroke focused on motor weakness
with CST injury. However, MR imaging of PSS is limited to studies of stroke volume and
lesions. They reported that extensive lesion involvement of more than one cerebral lobe
was frequent in patients with PSS and injury to PMC, putamen, internal capsule posterior
limb, external capsule, thalamus, and insula were correlated with PSS [28–31]. Among
these, a recent study reported that PMC was related to PSS, and it was attributed to the
origin of CRP [29]. Moreover, most of the above-mentioned subcortical lesions were related
to the projections of the CRP in the subcortical white matter as well as the CST, and it
reflected that the CRP contributed to the pathophysiology of PSS.

With the development of MR image analysis, DTI analyses of pathways other than
CST are also being attempted. Jang and colleagues have implemented diffusion tensor
tractography of CRP in the human brain and published several studies related to the func-
tional neuroanatomy of the CRP [9,15,16]. They showed that the first cortical origin area of
the CRP was the PMC, and the CRP was located close anteromedially to the CST in sub-
cortical white matter. They also reported many studies on the role and recovery of CRP in
walking ability in relation to posture and locomotion, the major roles of RST [17–20,32–34].
Although the DTI studies of CRP related to walking ability or balance after stroke and the
reports on the role of CRP in the pathophysiology of PSS have increased, there were no
studies on DTI of CRP in PSS.

This is the first study to evaluate the relationship between the CRP and PSS by
using DTI. This study revealed that CRP injury was related to the spasticity caused by
hemispheric stroke. It also suggested that injury to the CRP caused degeneration in the
contralesional medullar RF, which is the origin of the dorsal RST, resulting in an imbalance
of RST, one of the pathophysiologies of PSS. Additionally, the results suggest that CRP
injury could lead to secondary degeneration in the brain stem in subacute strokes as well
as CST injuries.

This study did have some limitations. First, it was a retrospective study, so selection
bias could have occurred. Second, when acquiring MR images for DTI analysis, the
voxel size should be isotopic, but our images are not, so there is a possibility of the
inclusion of minor errors. Also, the patients with lesions in the ROIs, with cerebral
edema, or with hemorrhagic transformation which had possible structural displacements
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of brain tissue were excluded from the study; however, the effect of the structural lesion
by stroke cannot be completely ruled out. Third, our subject was an elderly patient, and
it is highly likely that they have small vascular lesions, so the effect of small vascular
lesions could not be excluded. Fourth, due to the limitations of MR DTI techniques, among
the imbalance of inhibitory and excitatory effects to spinal reflex circuits, which is the
strongest pathophysiology of spasticity, our results only showed an inhibitory input of the
dorsal RST. The upregulation of medial RST, an excitatory input, could not be estimated.
Further imaging studies performed with advanced imaging techniques using fMRI and/or
electrophysiological evaluation using transcranial magnetic stimulation may provide direct
evidence of the pathogenesis of PSS in the future.

5. Conclusions

We investigated whether CRP injuries through supratentorial lesions were associated
with PSS using DTI. The decreased FA values in the contralesional medullary RF of CRP
seems to be related to the degeneration of dorsal RST, which is the dominant inhibitory
effect of the spinal stretch reflex, in PSS. Therefore, these findings could provide imaging
evidence of the pathophysiology of PSS, which is the imbalance between descending
inhibitory and facilitatory regulation of spinal stretch reflexes after stroke.
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