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Abstract: In the past few decades, many studies have analyzed the data of gamma-rays, X-rays,
radio waves, electrons, positrons, anti-protons, and neutrinos to search for the signal of dark matter
annihilation. In particular, analyzing radio data has been one of the most important and effective
ways to constrain dark matter. In this article, we review the physics and the theoretical framework
of using radio data to constrain annihilating dark matter. We also review some important radio
constraints of annihilating dark matter and discuss the future perspectives of using radio detection
to reveal the nature of dark matter.
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1. Introduction

Many theoretical models predict that dark matter (e.g., weakly interacting massive
particles (WIMPs)) would self-annihilate to emit high-energy particles, such as gamma-rays,
electron-positron pairs, and neutrinos [1]. In the past decade, many detectors started to
collect observational data to constrain annihilating dark matter. For example, the gamma-
ray data collected by the Fermi-LAThave been used to investigate the possible signal of
dark matter [2–7]. Besides, the AMSand DAMPEdetectors were launched to detect any
cosmic-ray excess in our galaxy [8–11]. Some recent studies have claimed some possible
excess of gamma-rays or cosmic-rays originated from dark matter annihilation [2,4,9,10].
However, the claims are still controversial because the systematic uncertainties involved
are not negligible [12,13].

Apart from gamma-ray and cosmic-ray detections, radio detection is also a robust
way to examine the alleged signal of dark matter annihilation. The high-energy electrons
and positrons produced from dark matter annihilation would emit synchrotron radiation
in the radio bands when there is a strong magnetic field. Since many radio telescopes and
interferometers have very good sensitivity and resolution, any synchrotron signals due to
dark matter annihilation from extragalactic origins could still be detected. For example,
earlier studies have examined the radio signals of our galaxy and its satellite galaxies
to constrain dark matter [14–26]. Later, radio signals from other nearby galaxies such
as the M31 [27–29], M33 [30,31], NGC 1569 [32], and NGC 2976 [33] galaxies were also
investigated in constraining dark matter. Besides galactic radio signals, radio signals from
galaxy clusters have been investigated [34–39]. Some other related studies such as the
radio excess of extragalactic sources (e.g., ARCADEexcess) [40] have also been discussed
in constraining dark matter. The constraints obtained by these studies are complementary
to the gamma-ray, cosmic-ray, and neutrino constraints.

In this article, we first review the basic physics and the theoretical framework of the
dark matter annihilation model. Then, we review some important constraints of dark
matter annihilation based on radio detections and discuss their limitations. We also discuss
some intriguing results obtained recently, which suggest some possible signals of dark
matter. Lastly, we discuss some future perspectives in using radio telescopes to solve the
dark matter mystery.
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2. Radio Emissions Due to Dark Matter Annihilation

If dark matter can self-annihilate, it can produce a large number of high-energy
photons, electrons, positrons, and neutrinos via different possible annihilation channels.
The self-annihilation rate depends on the average annihilation cross-section 〈σv〉 and the
dark matter mass mDM. The energy spectrum dN/dE for each kind of high-energy particle
and each annihilation channel can be calculated numerically (i.e., the injected energy
spectrum) [41]. The electrons and positrons injected would cool down during diffusion,
which can be described by the cooling-diffusion equation [34,42]:

∂

∂t
dne

dE
= ∇

[
D(E, r)∇dne

dE

]
+

∂

∂E

[
b(E)

dne

dE

]
+ Q(E, r), (1)

where dne/dE is the equilibrium electron/positron density spectrum, D(E, r) is the spatial
diffusion coefficient, b(E) is the cooling rate, and Q(E, r) = (〈σv〉ρ2

DM/2m2
DM)(dN/dE) is

the dark matter annihilation source term. Some other terms like the convection term could
also be involved in the above cooling-diffusion equation. However, the convection effect is
important only if we consider the small region near the center of a galaxy. In the following,
we focus on discussing a large region of interest (e.g., R > 1 kpc) so that Equation (1) would
be sufficient to describe the diffusion and cooling processes. This equation can be generally
solved by public numerical codes like GALPROP [43], Dragon [44], PICARD [45], and
USINE [46] or the Green’s function method [34,42,47]. The equilibrium electron/positron
density spectrum can be written in terms of Green’s function [47]:
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where ri = (−1)ir + 2iR and ∆u =
∫ E′

E [D(Ẽ)/b(Ẽ)]dẼ.
Nevertheless, if diffusion is not very significant (the diffusion timescale τd = R2/D0

is much larger than the cooling timescale τc = E/b(E), and D0 is the diffusion coefficient),
Equation (1) can be analytically simplified to give an equilibrium energy spectrum [34,35]:
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DM
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∫ mDM

E
dE′

dNe

dE′
. (4)

This would be a good assumption if the cooling rate is sufficiently high (e.g., average
magnetic field strength B ≥ 5 µG) and the size of the structure is large (e.g., R ≥ 10 kpc)
so that we have τd � τc. In general, this is a very good approximation for galaxy clusters.
However, such an assumption might be critical to a normal galaxy (quite bad for dwarf
galaxies). The results could significantly depend on the functional form of D(E, r) and
the value of the diffusion coefficient D0, which are not easy to determine. Therefore,
for simplifying the discussions and getting a more analytic picture, we omit the effect of
diffusion in the following.

For the injected high-energy electrons and positrons (E ∼ 1 GeV), the major cooling
mechanisms are synchrotron cooling, inverse Compton scattering (ICS), Bremsstrahlung
cooling, and Coulomb loss [34]. Generally speaking, the cooling rate is dominated by syn-
chrotron and ICS cooling in galaxies and galaxy clusters. The cooling rate (in 10−16 GeV/s)
can be explicitly given by [27]:
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[
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)](
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, (5)
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where Uph is the photon energy density. Note that, in general, the magnetic field strength
B and the energy density Uph are position-dependent so that the cooling function b(E)
should also be a function of r as well. The typical magnetic field strength of a galaxy or a
galaxy cluster is B ∼ 1–10 µG.

The radio flux density contributed by dark matter annihilation originates from the cool-
ing of high-energy electrons and positrons due to synchrotron emission. The synchrotron
power at radio frequency ν is given by [48,49]:

PDM(E, ν,~r) =
√

3e3

mec2 B(~r)F(ν/νc), (6)

where νc is the critical synchrotron frequency and F(x) = x
∫ ∞

x K5/3(y)dy ≈ 1.25x1/3e−x

(648 + x2)1/12 is the synchrotron kernel function. Since the radio emissivity is mainly
determined by the peak radio frequency (monochromatic approximation), the kernel
function can be approximated by F(x) ≈ 8πδ(x − 1/3)/9

√
3, and the total radio flux

density contributed by dark matter annihilation at frequency ν is given by [48,49]:

SDM ≈
1

4πνD2
L

[
9
√

3〈σv〉
2m2(1 + C)

E(ν)Y(ν, mDM)
∫

ρ2
DMdV

]
, (7)

where C is the ICS correction factor (ratio of the ICS cooling rate to the synchrotron cooling
rate), DL is the distance to the structure, E(ν) = 14.6(ν/GHz)1/2(B/µG)−1/2 GeV, and
Y(ν, mDM) =

∫ mDM
E (dN/dE′)dE′. Here, a point-source approximation has been adopted

in the calculation of the total radio flux density (not in radio observations). This is true if
the angular size of the structure is less than 1◦ [50].

If dark matter particles were produced thermally in the early universe, the simplest
model in standard cosmology predicts that the annihilation cross-section is
〈σv〉 ≈ 2.2× 10−26 cm3/s for mDM ≥ 10 GeV [51]. Therefore, testing this specific scenario
is extremely important. However, some models suggest that the annihilation cross-section
of thermal dark matter could depend on other factors like the velocity dispersion of dark
matter particles [52,53]. Moreover, if dark matter particles are not thermal relic particles,
some hypothetical models or scenarios have predicted other values of the non-thermal
annihilation cross-section [54–56]. Therefore, in view of these models, the annihilation
cross-section would become an extra parameter to constrain. Placing a constraint on the
annihilation cross-section would be useful to test for these hypothetical models and scenar-
ios. To model the dark matter density profile, the Navarro–Frenk–White (NFW) density
profile is usually assumed [57]:

ρDM =
ρsr3

s
r(r + rs)2 , (8)

where ρs and rs are the scale density and scale radius, respectively. Besides the NFW profile,
some other profiles may also be used for specific galaxies, such as the Burkert profile or the
pseudo-isothermal profile [41]. For galaxy clusters, the hydrostatic density profile would
be used as well [37,58]. The hydrostatic density profile depends on the thermal properties
of the hot gas, which can be obtained easily from X-ray observations [58].

Furthermore, dark matter substructures in galaxies and galaxy clusters can signifi-
cantly boost the annihilation signals because the annihilation rate is directly proportional
to ρ2

DM. Numerical simulations have provided some empirical relations for galaxies [59]
and galaxy clusters [60] to quantify the effects of the annihilation boost. These relations
can be applied directly to predict the enhanced dark matter annihilation signal. However,
the empirical relations are somewhat model dependent, and they depend on the virial
mass of a structure, which may have a large uncertainty in the value (e.g., virial mass of
the M31 galaxy = (7− 24)× 1011M� [61]). For example, the empirical relation for galaxies
in [59] assumed the NFW dark matter density profile, while the relation for galaxy clusters
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in [60] followed a parametrized form of the mass-concentration relation. Furthermore,
both relations depend on the values of the slope of the halo mass function [59,60]. The typ-
ical values of the boost factors for galaxies and galaxy clusters are ∼1–10 and ∼30–70,
respectively [59].

3. Results

The total radio flux density contributed by dark matter annihilation SDM depends on
the annihilation cross-section 〈σv〉, dark matter density profile ρDM, magnetic field strength
B, and dark matter mass mDM. The dark matter density profile and the magnetic field
strength could be modeled independently by other observations. For example, the dark
matter density profile can be probed from galactic rotation curves or hot gas distribution in
galaxy clusters. For the magnetic field strength, it could be obtained by Faraday rotation
measures (see [62]) or empirical relations based on numerical simulations [63,64]. Therefore,
by setting SDM smaller than the observed total radio flux density of a structure, we can
obtain some constraints of 〈σv〉 and mDM. In the following, we review some previous
constraints obtained by using the radio data of some nearby galaxies and galaxy clusters.

3.1. Galaxies

Early studies have used the data of our Milky Way galaxy to constrain dark matter
annihilation. For example, the studies in [14,15] used the Milky Way radio data to constrain
the annihilation of WIMPs or neutralinos with mass ∼100 GeV. Later, the radio data of
the Milky Way satellite galaxies such as the Large Magellanic Cloud were also investi-
gated [16,17,19]. These studies provided some good constraints for mDM ∼ 50 GeV [16,19].
Generally speaking, the thermal dark matter scenario is allowed by the constraints for
masses above ∼50–100 GeV. On the other hand, the measurements from the Wilkinson
Microwave Anisotropy Probe (WMAP) and the Planck detector have revealed some excess
of microwave emission from the region around the center of our galaxy (the WMAP-Planck
haze), which may originate from dark matter annihilation [65,66]. The best-fit dark matter
mass could be of the order ∼100 GeV or larger [65]. However, using Milky Way radio data
to constrain dark matter suffers from some difficulties. First of all, the diffusion is quite
important outside the galactic center region. There are many sets of diffusion models and
diffusion parameters suggested to model the diffusion process [41,67]. The uncertainties of
the parameters can be a factor of 10 or larger. Some studies have discussed the impact of
these uncertainties based on large-scale observations of the Milky Way [68]. If we focus
on the galactic center region instead, the effect of advection would be important, and
the uncertainty of the magnetic field profile would be very large [21]. Besides, a dark
matter density spike might be formed due to the supermassive black hole, so that the dark
matter annihilation rate would be significantly enhanced [69,70]. This uncertainty could be
quite significant. Similar problems are also encountered for analyzing the WMAP-Planck
haze [71]. On the other hand, using the radio data of Milky Way dwarf galaxies to constrain
annihilating dark matter is also not very good. This is because these dwarf galaxies are too
small, so the diffusion effect is very important, which would largely suppress the radio
flux emitted. Although using radio data of some local dwarf galaxies may be able to give
stringent constraints based on some average or canonical values of the parameters (e.g.,
see [22]), the uncertainties associated with the involved parameters are usually very large
(more than a factor of 10 in uncertainties). Therefore, the resultant constraints obtained
would be less certain. Generally speaking, the constraints obtained by using the gamma-ray
data of Milky Way dwarf galaxies have less uncertainties and thus are more robust [3].

Besides the Milky Way galaxy and its satellite galaxies, many studies have focused
on the nearby galaxies M31 and M33 to constrain dark matter annihilation. For the M31
galaxy, Egorov and Pierpaoli [27] performed a comprehensive analysis of the radio survey
data of the central region. Including possible uncertainties, the allowed dark matter mass
could range from mDM ∼ 20 GeV to 200 GeV [27]. Later, the study in [28] considered
the radio data of a larger region (≈17 kpc) of the M31 galaxy obtained by the Westerbork
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Synthesis Radio Telescope (WSRT) in [72]. The upper limits of 〈σv〉 for six annihilation
channels were obtained for mDM = 10–1000 GeV (see Figure 1) [28]. Recently, by observing
the data of the M31 galaxy using the Nanshan Radio Telescope (NSRT) at C-band frequency
(ν = 4.6–5.0 GHz), much more stringent constraints were obtained for mDM ≥ 100 GeV [29].
Similar analyses have been performed for the M33 galaxy as well [30,31]. Note that
the constraints in [28,29,31] were obtained without considering the effect of diffusion.
The actual lower limits of mDM should be somewhat smaller and depend on the actual
diffusion parameters for the M31 and M33 galaxies.
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Figure 1. The black solid lines represent the upper limits of the annihilation cross-sections for six popular annihilation
channels based on our previous radio analysis [28]. The red dashed lines are the corresponding upper limits based on
the gamma-ray analysis of the Milky Way dwarf spheroidal galaxies [3]. The green dotted lines indicate the thermal relic
annihilation cross-section 〈σv〉 = 2.2× 10−26 cm3 s−1.

There are some nearby galaxies that are also suitable for constraining annihilating
dark matter. For example, the study in [33] used the radio data of the NGC 2976 galaxy
at ν = 1.43 GHz, 4.85 GHz, and 8.35 GHz to constrain dark matter. The constraints
are generally tighter than the gamma-ray constraints for mDM ≥ 100 GeV. Furthermore,
a recent study using the radio data of the NGC 4214 galaxy provided stringent constraints
for mDM ≥ 200 GeV [73]. Therefore, many extragalactic targets are suitable for performing
radio analyses to constrain annihilating dark matter.

Besides focusing on individual extragalactic targets, some studies have analyzed the
alleged extragalactic radio excess to constrain dark matter. For example, the study in [40]
discussed the possibility of the dark matter interpretation of the radio excess detected by the
ARCADE observations. However, such a possibility has been challenged by other recent
proposals such as cluster mergers [74] and fast radio transients [75]. Furthermore, the pa-
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rameters obtained in [40] are in tension with the AMS data [76]. Therefore, fewer studies
are now focusing on the effect of annihilating dark matter on extragalactic radio excess.

Note that using the galactic radio data may involve some systematic uncertainties.
First of all, the magnetic field strength profile is one of the major systematic uncertainties.
Some studies assume an exponential profile [27], while some studies assume a constant
profile (average values) [28,29,31]. Furthermore, as mentioned above, the diffusion effect
of the high-energy electrons and positrons is difficult to model precisely. Even if we fully
follow the benchmark diffusion scenario by taking the diffusion coefficient D0 and the
diffusion index into account, the actual values of these parameters are not quite certain. It
is also not very clear whether we can adopt a simple parametrized form of diffusion model
to mimic the actual diffusion effect. Theoretical studies have proposed different possible
versions of diffusion models (e.g., Kolmogorov model, Boehm model), which might be
applicable to different regions [67]. Although it is true that we should consider the diffu-
sion effect, the resultant constraints would significantly depend on the diffusion models
considered and the model-dependent diffusion parameters. The diffusion parameters
for any particular diffusion model are usually determined by cosmic-ray data. Further-
more, determining the size of the diffusive halo is also important. For example, recent
studies in [77,78] constrained the relevant diffusion parameters and their uncertainties by
cosmic-ray data. However, for other galaxies, these propagation parameters are difficult to
measure and determine.

Some studies assume that the diffusion is not important and apply Equation (7) to
estimate the synchrotron fluxes for some galaxies with a large magnetic field strength
(e.g., the results in Figure 1) [28,29,31]. This assumption is good if the magnetic field
strength is sufficiently large so that the synchrotron cooling is efficient enough to suppress
the diffusion effect. The final constraints would not depend on any unjustified diffusion
scenarios or diffusion parameters. However, generally speaking, the lower limits obtained
from these studies are overestimated as suggested in [79]. Based on the available galactic
radio data, a large parameter space is still allowed for the specific thermal dark matter
scenario, especially for the popular bb̄ channel and mDM < 100 GeV [79]. Overall speaking,
using the radio data of galaxies may suffer from large systematic uncertainties, which may
give less robust constraints on dark matter mass and the annihilation cross-section.

3.2. Galaxy Clusters

Galaxy clusters are also very good targets for analyses. Most of them are dark matter
rich, and the effect of substructures may greatly enhance the radio signals due to dark
matter annihilation [60,80]. Furthermore, the diffusion coefficient in a typical galaxy
cluster is ∼1030 cm2/s [67], which gives a very long diffusion timescale. In other words,
the diffusion is insignificant in galaxy clusters so that the synchrotron radiation would
not be suppressed and the results would not depend on the uncertain diffusion scenario.
Besides, numerical simulations show that the magnetic field profile in a galaxy cluster
traces the thermal electron density profile (B(r) ∝ [n(r)]η , with η = 0.5–1.0) [63,81], where
the thermal electron density profile can be best modeled by the observed X-ray surface
brightness profile (the β model) [58]. The central magnetic field strength B0 ∼ 10 µG
can also be estimated by the thermal properties of the hot gas [63,64]. Therefore, fewer
uncertainties would be involved compared with using the galactic radio data. Moreover,
the radio contribution of the hot gas is insignificant (less than 1%) [37]. Hence, the major
radio emissions in a galaxy cluster originate from two components only: dark matter
annihilation and the background cosmic-ray contribution.

Many earlier studies focused on large galaxy clusters such as the Coma cluster to con-
strain dark matter annihilation [34–36]. However, the resultant constraints of annihilating
dark matter are not very stringent. It is because the distance to a nearby galaxy cluster
is usually very large (DL ≥ 10 Mpc). This gives a very small total radio flux reaching
radio telescopes. Such a problem can only be tackled if we have radio telescopes with very
high sensitivity.
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Recently, some studies have started to model the background cosmic-ray contribu-
tions [37–39]. If we could eliminate the background cosmic-ray contributions from the
total radio emission, we could get much tighter constraints for annihilating dark mat-
ter. The cosmic-ray models in galaxy clusters have been developed for a few decades,
which include the primary emission model [82–84], secondary emission model [85,86],
first-order Fermi acceleration model (Fermi-I) [87,88], second-order Fermi acceleration
model (Fermi-II) [89–91], and adiabatic compression model [92,93]. These models can
predict the functional forms of the possible frequency spectra of the background cosmic-ray
emission in galaxy clusters. For example, the secondary emission model predicts a power-
law frequency spectrum (S(ν) ∝ ν−α), while the Fermi-II model predicts a power-law with
a high-frequency cutoff (S(ν) ∝ ν−αe−βν) in the spectral shape [90]. In particular, previous
studies have shown that the Fermi-II model and the adiabatic compression model can best
describe the radio cosmic-ray frequency spectra of the Coma cluster [90] and the Abell 4038
cluster [94].

Based on our understanding of the cosmic-ray emission frequency spectrum, we can
theoretically eliminate the cosmic-ray contribution from the total radio frequency spectrum.
If there is some “radio excess” after subtracting the best-fit cosmic-ray contribution from
the total radio frequency spectrum, then we can test for the dark matter annihilation model
and get a best-fit dark matter contribution. In general, the spectrum of the cosmic-ray
contribution would give an almost constant spectral index in the low frequency regime.
The dark matter contribution would steepen the spectral index at low frequencies so that
a smooth “spectral break” exists in the radio frequency spectrum. Moreover, at high
frequencies, some cosmic-ray models (e.g., Fermi-II) would show an exponential decline
in the spectrum. The dark matter contribution would suppress the decline in the high-
frequency regime (an inflection point exists) and reveal a possible signature of dark matter
annihilation signal.

This method can give more stringent constraints for dark matter mass and annihila-
tion cross-section. More importantly, it can reveal some possible signals of dark matter
annihilation if there exists a “radio excess” in the frequency spectrum. It can provide an
indirect way to search for the signal of dark matter annihilation. Recent studies using
the total radio flux density spectra of the Ophiuchus cluster (the central region only) [95],
the Abell 697 cluster [96], and the Abell 4038 cluster [97] revealed some possible signals
of dark matter annihilation (see Figures 2–4) [37–39]. Assuming the thermal annihilation
cross-section, the best-fit dark matter mass is mDM ∼ 30–150 GeV for four representative
annihilation channels (e+e−, µ+µ−, τ+τ−, and bb̄). This range is consistent with the results
in many recent gamma-ray studies (e.g., mDM ≈ 30–35 GeV via bb̄ [98]; mDM ≈ 30–40 GeV
via bb̄ [4]; mDM ∼80 GeV via µ+µ− [2]) and anti-proton studies (mDM = 48–67 GeV via
bb̄) [99]. Note that for the Abell 4038 cluster, the cosmic-ray model can give a good fit for
the radio relic (the major cosmic-ray source) only, while the two-component model (dark
matter plus cosmic-ray contribution) can give a better fit for the total radio flux density
spectrum (see the discussion in [39]).

Overall, in comparison, it seems that using the radio data of galaxy clusters is better
than using the radio data of galaxies to constrain annihilating dark matter. This is because
the systematic uncertainties of the diffusion effect would not be encountered in galaxy
clusters. Nevertheless, the distances to galaxy clusters are usually larger so that the
resultant radio density fluxes observed would be much smaller. Therefore, to get a more
precise analysis using galaxy clusters, radio telescopes with very high sensitivity (e.g., radio
interferometer) are required to perform the task for constraining annihilating dark matter.
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Figure 2. The best-fit dark matter scenario for the central Ophiuchus cluster radio data (mDM = 50 GeV via the bb̄
channel) [37]. The red solid line, green dotted line, and blue dashed line represent the total predicted radio flux S(ν), the
cosmic-ray contribution (power-law form), and the dark matter contribution, respectively. The data with error bars were
extracted from [95].
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Figure 3. The best-fit dark matter scenario for the Abell 697 cluster radio data (mDM = 60 GeV via the e+e− channel) [38].
The red solid line, green dotted line, and blue dashed line represent the total predicted radio flux S(ν), the cosmic-ray
contribution (Fermi-II model), and the dark matter contribution, respectively. The data with error bars were extracted
from [96].
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Figure 4. The best-fit dark matter scenario for the Abell 4038 cluster radio data [39]. The red solid line, green dotted line,
and blue dashed line represent the total predicted radio flux S(ν), the cosmic-ray contribution (adiabatic compression
model), and the dark matter contribution, respectively. The data with error bars were extracted from [97].

4. Future Perspectives

As mentioned above, recent studies have shown that using the frequency spectra of
galaxy clusters would be good to constrain and search for the signal of dark matter annihi-
lation. However, the archival data used in those studies mainly contain low-frequency data
(e.g., 0.1–1.4 GHz) [37–39]. Generally speaking, a radio frequency spectrum with a wide
range of frequencies (e.g., 0.1–10 GHz) is more likely to manifest a clearer signal of dark
matter annihilation. Nevertheless, this requires new observations using radio telescopes
with very high sensitivity and high observing frequencies (e.g., ν ≥ 5 GHz). Some new
and planned radio telescopes (e.g., FAST) or interferometers (e.g., SKA) may be able to
fulfill the task [47,100].

On the other hand, the radio emission in a galaxy or galaxy cluster depends on both
frequency and position. Besides the frequency spectrum, the radial emission profile can
also be used to constrain dark matter. Since the dark matter distribution is spherically
symmetric, the dark matter radio emission profile would depend on the radial distance
from the center only. If we can consider some specific regions (e.g., central bulge region
of a galaxy) in which the background astrophysical radio emission (e.g., pulsar emission)
is also close to spherically symmetric, then we can use the radial emission profile to
constrain dark matter. By using the observed radio map of a central region, we can take
the azimuthal averaging of the radio flux density in concentric bins for different angular
radii from the center to get the radial emission profile. Then, by assuming the background
astrophysical emission traces the stellar distribution (only has radial dependence), we
can model the radial emission profile of the background emission. By subtracting the
background emission from the total radial emission profile, the excess remaining would be
the possible contribution by dark matter annihilation.

In fact, the radial emission profile of gamma-ray emission in our galaxy has also
been considered previously [2,4]. However, it is now controversial to conclude whether
the gamma-ray emission profile in our galaxy traces the dark matter density profile or
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not [101]. A recent study used the radio map of the central region of the M31 galaxy
obtained in [62] to constrain dark matter [102]. Although the dark matter signal is not very
significant, adding the dark matter contribution would give a better fit for the radio flux
emission profile data (see Figure 5) [102]. The best-fit dark matter mass mDM ∼30 GeV
with thermal annihilation cross-section is also consistent with the results obtained from
previous studies [102]. This method can also be used to analyze the radial emission profile
of a galaxy cluster. However, this requires radio data obtained from a radio telescope
with a very high-resolution power (e.g., the Very-Large-Array or future SKA) because the
distance of a galaxy cluster is very large.
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Figure 5. The best-fit thermal dark matter scenario for the radio emission profile of the M31 galaxy (assumed
mDM = 30 GeV) [102]. The red solid line, green dotted line, and blue dashed line represent the total predicted radio
flux profile S(θ), the stellar flux contribution, and the dark matter contribution, respectively (upper: 8.35 GHz; lower:
4.85 GHz). The radio data were extracted from [62].

In fact, most of our previous discussion focused on the WIMP dark matter, which
has the mass ranging from ∼GeV–TeV. It is also possible that dark matter consists of
very light particles such as axions. The recent misalignment production model of axions
predicts that the axion mass should be mDM = 19–23 µeV if axions are all cold dark
matter [103]. Theoretically, axions could decay into photons spontaneously with a specific
energy E = mDMc2/2. The spontaneous decay of axions in the above-predicted mass range
gives the emission frequency ν = mDMc2/2h ≈ 2.3–2.8 GHz (spontaneous emission, not
synchrotron emission), which coincides with most of the observing frequencies of radio
telescopes. However, the signal of axions is not easy to detect because the interaction
between axions and the standard model particles is very small. The coupling constant
between axion and photon interaction can be as small as 10−11 GeV−1 [104], which gives the
decay time of an axion to be more than 1040 s [103]. Fortunately, the spontaneous decay of
axions could be greatly enhanced by the stimulated emission mechanism if the background
contains a large amount of photons with the same emission frequency [103,105]. Therefore,
detecting the decay signal of axion dark matter is still possible if we have a radio telescope
with very high sensitivity. Future radio observations will be one of the crucial ways to
verify the axion dark matter model.
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5. Conclusions

Radio observations have a very long tradition in astrophysical and cosmological
research. It is still a developing field, and many state-of-the-art radio telescopes are
providing service or being built. It has a great potential for radio observations to contribute
to some great advances in the knowledge of our universe and breakthroughs in our
understanding of physics. In this article, we focused on and reviewed a particular area,
which uses radio observational data to constrain dark matter properties. Self-annihilation of
WIMP dark matter or spontaneous decay of axion dark matter can produce radio emissions
so that we can perform analyses based on the radio signals received. The theoretical
framework of the dark matter annihilation model is well developed. Using radio data will
be one of the major ways to constrain dark matter properties or search for dark matter
signals, which is complementary to the gamma-ray, cosmic-ray, and neutrino analyses.
We anticipate that this field of research will be a long-lasting and intriguing field in dark
matter astrophysics.
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