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Abstract: We attempt to study three significant tests of general relativity in higher dimensions, both
in commutative and non-commutative spaces. In the context of non-commutative geometry, we
will consider a solution of Einstein’s equation in higher dimensions, with a source given by a static,
spherically symmetric Gaussian distribution of mass. The resulting metric would describe a regular
or curvature singularity free black hole in higher dimensions. The metric should smoothly interpolate
between Schwarzschild geometry at large distance, and de-Sitter spacetime at short distance. We will
consider gravitational redshift, lensing, and time delay in each sector. It will be shown that, compared
to the four-dimensional spacetime, there can be significant modifications due to the presence of extra
dimensions and the non-commutative corrected black holes. Finally, we shall attempt to obtain a
lower bound on the size of the extra dimensions and on the mass needed to form a black hole in
different dimensions.

Keywords: gravitational measurements; regular black holes; higher dimensions; non-commutative
geometry

1. Introduction

Since Einstein proposed his general theory of relativity in 1915, a lot of research has
been devoted to unify general relativity (GR) and electromagnetism as two fundamental
interactions in nature. However, the early proposals date back to the 1920s, through Kaluza–
Klein theory to unify these interactions [1,2], that was a classical unified field theory built
in five-dimensional spacetime. Recently, motivated by string theory as a requirement
for describing a consistent theory of quantum gravity, extra dimensions have been the
subject of much attention. Besides string theory, there are some other theories proposing
the necessity of extra dimensions:

• Large extra dimensions, mostly motivated by the ADD model, by Arkani-Hamed,
Dimopoulos, and Dvali, together with Antoniadis in Refs. [3–5] to solve the hierarchy
problem in which the difference between the standard model interactions and GR
manifests itself, notably in their dissimilar coupling strengths. While the electromag-
netic, weak and strong forces differ by just six orders of magnitude, the gravitational
interaction falls apart by a further thirty-three orders.

• Warped extra dimensions, such as those proposed by the Randall–Sundrum (RS)
model [6], in which our observable universe is modeled as a four-dimensional hyper
surface, known as the 3-brane, embedded in a five dimensional space, are usually
called the bulk. The novel idea of the Brane world is that all the gauge interactions,
described by the Standard Model, are confined to live in the 3-brane while the gravita-
tional interaction can spread into the fifth dimension of the space.

• Universal extra dimensions, proposed and first studied in Ref. [7]; assume, at vari-
ance with the ADD and RS approaches, that all fields propagate universally in ex-
tra dimensions.

The size and the shape of extra dimensions should be related to the fundamental
energy scales of particle physics: the cosmological scale, the density of dark energy, the TeV
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electroweak scale, or the scale of ultimate unification. More likely, the extra dimensions
are microscopic; in this case, high-energy particle accelerators [8,9] and cosmic-ray experi-
ments [10,11] are the only means to detect their physical effects. The LHC experiments will
have direct sensitivity to probe extra dimensions, through the production of new particles
that move in the extra space. There is also a chance that, due to the existence of extra
dimensions, microscopic black holes may be detected at the LHC [12,13] or in the highest
energy cosmic rays [14,15].

On the other hand, Einstein’s work derived gravitation from the underlying spacetime
concept and was not provoked by observational facts but was motivated on a purely
theoretical basis, while this theory fundamentally has changed our understanding of
spacetime, mass, energy, and gravity. GR had some features and implications further than
Newton’s theory of gravitation; namely, light bending, time dilation, and gravitational
redshift [16]. These effects have been verified experimentally and, to this date, are being
tested to higher and higher accuracies. The gravitational waves which were recently
detected by LIGO and Virgo collaborations [17–19] are also another profound implication
of GR. The detected signals perfectly agree with predictions based on black holes in GR up
to 5σ [20].

Gravitational redshift is a very useful tool in astrophysics. This phenomenon was
confirmed by the Pound–Rebka experiment in 1959 [21]. It helps us to test our knowledge
about the structure of those stars whose internal structures are different from the Sun
and other normal stars. Gravitational lensing occurs when light rays pass close to a
massive body and it was confirmed by Eddington for the first time in 1919 [22]. About one
century after the first measurement, gravitational lensing is still one of the major tools of
cosmology [23,24], astrophysics [25,26] and astronomy [27–29].

Time dilation measures the amount of time elapsed between two events by observers
situated at different distances from a gravitational mass. The light travel time delay is
sometimes called the fourth classical test of GR and was first introduced by Shapiro in
1964 [30]. A significant improvement was reported in [31] from Doppler tracking the
Cassini spacecraft on its way to Saturn. In addition to the above theoretical motivation(s),
there are advances in technologies concerning the high precision measurement of time
and frequency, namely, optical lattice clocks [32] and auto-second laser technologies [33].
Time delay corrections are also very important in global positioning systems (GPS) [34].
The clocks on GPS satellites tick faster than the clocks on Earth’s surface, so we have to
make a correction in the satellite measurements.

In addition to the idea of extra dimensions, the other important implication motivated
by string theory is the non-commutativity of space [35–37]. It has drawn a lot of interest in a
wide range of areas, from condensed matter physics to cosmology, high energy physics, and
astrophysics [38–40]. The simplest non-commutativity that one can postulate is the commu-
tation relation [xi, xj] = iθij, where θij is an antisymmetric (constant) tensor of dimension
(length)2. The parameter θ measures the amount of coordinate non-commutativity in
the coordinate coherent states (CCS) approach [41,42] in which the concept of point-like
particle becomes physically meaningless and must be replaced with its best approximation,
i.e., a minimal width Gaussian distribution of mass.

In fact, the CCS approach to non-commutative effects can cure the singularity problems
at the final stage of the black hole evaporation. This effective approach may be considered
as an improvement to semi-classical gravity and a way to understand the non-commutative
effects. Motivated by this idea, the Schwarzschild black holes inspired by non-commutative
geometry studied in [43] were extended to the Reisnner–Nordstrom model in [44,45], and
have been generalized to higher dimensions in [46], and charged black holes in higher
dimensions [47–49]. Furthermore, in recent years, we have witnessed a significant interest
in this non-commutative approach from cosmology [50,51], holography [52–54] and black
hole physics [55–63].

On the other hand, studying the effects predicted by GR is important in the vicinity
of compact objects, such as neutron stars and black holes. The first light detected from
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regions close to the black holes was discovered by the ASCA satellite [64,65]. In the case
of astrophysical effects in the vicinity of higher dimensional black holes, one can see [66]
and references therein. The effects of such black hole parameters as charge and rotation on
the gravitational lensing have been studied in [67] for Kerr metric and in [68] for charged
solutions (from free charges like RN black holes to geometrical charges like Kaluza–Klein
black holes coming from compactification of extra dimensions). It has also been investigated
to determine how the detection of lensed images of black holes determine the form of the
black hole metric in [69], but the calculations in [67–69] are in the strong-field regime of GR.
The authors in [70] have shown that the Virgo and LIGO results for GW170817 data [17–19]
have the best consistency with GR, but their results do not hold for extra dimensional
theories with compact extra dimensions in strong energy limit [3–6], and for theories with
larger extra dimensions, typically cosmological distances [71] in the weak-field regime.

The purpose of the current work is to obtain explicit expressions for the three afore-
mentioned GR effects in the gravitational field of a black hole in commutative and non-
commutative spaces with extra dimensions. Inspired by this idea, we do investigate
deviations from GR predictions due to the gravitational leakage into the extra dimensions,
and we are more interested in some possible observational or experimental consequences
of extra dimensions in such gravitational systems. This issue deserves further research
along the lines that we have already proposed in [72].

The structure of the paper is as follows: Section 2 introduces the Schwarzschild black
hole in higher dimensions, in some detail. Similarities and differences of GR measurements
in four and extra dimensions are illustrated in Section 3. In particular, there are three
figures which make the comparison easier and clearer. As our results show, if spacetime
is truly a higher dimensional space, then its implications should appear in gravitational
measurements around black holes.

The goal of Section 4 is to study the effects of the non-commutativity of space on
higher dimensional GR measurements. We first present some preliminaries of black holes
in non-commutative higher dimensional spaces. Then, we obtain a minimum mass to form
a black hole in each extra dimension and investigate the gravitational measurements in
non-commutative higher dimensional spaces. Although theories with extra dimensions
have received much attention in recent years, unfortunately, the size of extra dimensions
has not been investigated properly. To tackle this problem, we finally obtain a lower bound
on the size of extra dimensions using the bound obtained for the non-commutative length
scale in our previous work [72].

2. Schwarzschild Black Hole in Higher Dimensions

Amongst the various types of black hole solutions of Einstein field equations, a
natural higher dimensional generalization of the Schwarzschild metric, also known as
the Schwarzschild–Tangherlini metric [73], has been assumed to be stable, like its four-
dimensional counterpart. The spacetime around such an uncharged, stationary, spherically
symmetric black hole in (d + 1) dimensions is described by

ds2 = B(r)dt2 − B−1(r)dr2 − r2dΩ2
d−1 , (1)

where dΩ2
d−1 denotes the element of unit (d− 1)-sphere with area Ad−1 = 2πd/2

Γ(d/2) and B(r)
is given by

B(r) = 1− µ0

rd−2 . (2)

The constant parameter µ0 is related to the mass of the black hole by [74]

M =
(d− 1)Ad−1µ0

16πGd+1
, (3)
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where Gd+1 = G4Ld−3 is the (d + 1)-dimensional gravitational constant and L is the size of
the extra dimensions, so

B(r) = 1−
8MG4Ld−3 Γ[ d

2 ]

(d− 1)π
d
2−1 rd−2

. (4)

For later convenience, we use G4 = 1 and define dimensionless variables x = r
`p

,

η = M
`p

, and α = L
`p

, where `p is the Planck’s length.
It is worth mentioning that, if a gravitational radius of a black hole is much smaller

than the characteristic length of the extra dimensions, then the black hole can be very well
described by asymptotically flat solutions like those in [73,75–77], for higher dimensional
static and rotating black holes (a review on higher dimensional black holes can be found
in [78], see also references therein). Thus, from this point of view, one might conclude that
there should not be any practical difference between these kinds of black holes and the
small black holes in the ADD and RS models given in the introduction.

We have plotted the g00 component of the higher dimensional Schwarzschild metric (1)
as a function of x for different spatial dimensions in Figure 1. The location of the event
horizon is determined by the equation B(r) = 0, so as seen in Figure 1, this occurs in
smaller distances in higher dimensions which asserts that gravity in four-dimensional
spacetime is stronger than higher dimensions. This fact can also be checked by noting that,
in higher dimensions, the gtt curves tend more rapidly to the gtt of flat spacetime.

2 4 6 8 10
x

-3

-2

-1

1

gtt

BH3L

BH4L

BH5L

BH6L

Figure 1. The gtt component for α = 1.5 and η = 2.5. The number in parentheses is the spatial
dimension d, with this extra explanation that in units where c = G = h̄ = 1, these values for α and η

are satisfactory.

3. Gravitational Effects in Higher Dimensions

In this section, we are going to obtain expressions for the three aforementioned effects
of GR in the case of an extra dimensional Schwarzschild black hole as the gravitational
system. In order to compare the behaviour of extra dimensions with GR, we perform a
numerical analysis by plotting the quantities. A general remark is in order here. The details
of the calculations in this section for four dimensions could be found in Ref. [16], and the
calculations for extra dimensions could be carried out along the same lines.

Redshift: When the light passes in the opposite direction of a gravitational field, some
of its energy is wasted and it is transmitted to redshift wavelength. The gravitational
redshift is denoted by z = ∆λ/λ, where ∆λ is the difference between the observed and
emitted wavelengths and λ is the wavelength of the source. However, for radiation emitted
in a strong gravitational field, as that coming from the surface of a neutron star or close to
the event horizon of a black hole, the gravitational redshift can be very large. Hence, there
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is a shift in the spectral lines of light around a Schwarzschild metric (1), which is given by
the following maximum value

z =
ω1

ω2

∣∣∣
max
− 1 =

√
B(r2)

B(r1)
− 1 , (5)

where ω2 and ω1 are the frequencies received by the observer and emitted by the source,
respectively (for more details, see § 14.3 in Ref. [16]). When the light is emitted from radius
r1 and received at r2 → ∞, then the redshift measured by an asymptotic observer turns out
to be

z =

[
1−

8MLd−3 Γ[ d
2 ]

(d− 1)π
d
2−1 rd−2

1

]−1/2

− 1. (6)

We have plotted the redshift factor (6) for different spatial dimensions in Figure 2.
Comparing the graphs confirms the statement that in higher dimensions the spacetime
foam has lower curvature than GR or the gravity is diluted in extra dimensions. In other
words, it can be inferred from the figure that the rate of increase in redshift occurs at higher
dimensions closer to the black hole event horizon.

zH3L

zH4L

zH5L

zH6L

0 2 4 6 8 10
x

1

2

3

4

5

Z

Figure 2. Redshift for different values of d in terms of x for α = 1.5 and η = 2.5. The vertical line
shows the location of event horizon in each dimension and x = r1/`p.

Deflection of light: When the light passes close to a massive object such as a supernova
or a black hole, it is deflected from its straight path by the value

∆φ = 2
∫ ∞

r◦

1
r
√

B(r)

(
r2

r2◦

B(r◦)
B(r)

− 1
)− 1

2

dr− π , (7)

where r◦ is the closest distance to the massive object depicted in Figure 3. The details of
the calculation can be found in § 8.5 of Ref. [16]. The bending and delay of photons by
the curvature of spacetime produced by a mass are proportional to γ + 1 ( γ is called the
parameterized post-Newtonian parameter), where γ is one in GR but zero in the Newtonian
theory [16]. Henceforth, we consider γ = 1 and ignore the modification of the Heisenberg
uncertainty principle to a generalized uncertainty principle (GUP) given in [79,80].
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Figure 3. Gravitational deflection of light around a massive object.

The integration yields the following expression for bending of light in the vicinity of a
Schwarzschild metric (1),

∆φ =
4MLd−3 Γ[ d−1

2 ]

π
d−3

2 rd−2
◦

. (8)

The behaviour of this quantity has been plotted versus r◦ for different d in Figure 4. We
have used the dimensionless convention introduced in the previous section. The figures are
plotted from the event horizon in each dimension. By comparing the figures, it is observed
that, as the dimension of spacetime increases, the deflection occurs at closer distances to the
event horizon, or equivalently, the suppression takes place in short distances. Moreover,
the maximum value of ∆φ, which happens in the horizon, increases by d. However, the
general behaviour of the plots is the same for all dimensions. Thus, the results show that
the deflection of light in higher dimensions is weaker than GR.

Time delay: According to GR, massive objects curve the spacetime geometry, so the
motion of different particles, such as photons, is affected by this curvature. Bending the
spacetime causes the light path become longer than the straight path, therefore it takes
more times to travel, and consequently generates a time delay. The maximum round-trip
excess time delay around the black hole described by (1) is given by [16]

(∆t)max = 2
[

t(r0, r1) + t(r0, r2)−
√

r2
1 − r2

0 −
√

r2
2 − r2

0

]
, (9)

where the time required for light to go from r0 to r is

t(r0, r) =
∫ r

r0

1
B(r)

(
1− B(r)

B(r0)

r2
0

r2

) 1
2

dr. (10)

The reader can see the details in § 8.7 of Ref. [16].
In order to calculate the excess (9), we first use the Robertson expansion for the

integrand in (10). The leading terms in the expansion, i.e.,
√

r2
1 − r2

0 and
√

r2
2 − r2

0, which
are what we should expect if light traveled in straight lines at unit velocity, are canceled
and only remain the dominant terms given by

∆t ' 4η

π
d
2−1αd−3

[
(d− 2)π

3
2 i csc[πd

2 ]

xd−3Γ
(

5−d
2

) − 4
(d− 3)(d− 1)(

(
δ3

δd +
σ3

σd )Γ
(

d
2

)
+

6(d− 3)− 4(d− 4)
(d− 1)xd−3 (

i
2
)d−1Γ

(
4− d

2

)
Γ(d)

)]
, (11)

where we have used the previous dimensionless variables α, η, and x. In fact, these terms
evidently produce a GR delay in the time it takes a radar signal to travel to a planet and
back. This excess delay is a maximum when planet is at superior conjunction and the
radar signal just grazes the black hole; in this case, r0 is almost equal to the event horizon
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radius, and is much smaller than the distances r1 and r2 of the black hole from the earth
and the planet, respectively (see Figure 5). For d = 3, the excess time delay (11) gives the
known result

(∆t)max ' 4η

{
1 + ln [

4δσ

x2 ]

}
. (12)

The dimensionless parameters δ = r1
`p

and σ = r2
`p

are the orbital radius of the earth
and of the reflecting planet around the center of the black hole illustrated in Figure 5.

In order to better understand the implication of this excess delay, we have plotted (11)
as a function of different distances from the event horizon for d = 3, 4, 5, and 6 in Figure 6.
It is observed from the figures that it takes shorter time for a radar signal to travel to the
planet and back in higher dimensional spaces compared to GR, which again approves that
gravity is weaker in higher dimensions than GR. The diagrams are plotted from the event
horizon in each dimension, however, their behaviour is the same, and a maximum of time
delay occurs when the signal passes close to the horizon.

HaL d=3, xh=5

50 100 150 200
x

0.5

1.0

1.5

2.0

DΦ

HbL d=4, xh=1.784

5 10 15 20
x

0.5

1.0

1.5

2.0

DΦ

HcL d=5, xh=1.390

2 4 6 8 10
x

0.5

1.0

1.5

2.0

2.5

DΦ

HdL d=6, xh=1.286

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x

0.5

1.0

1.5

2.0

2.5

3.0

DΦ

Figure 4. Deflection of light around a Schwarzschild black hole for α = 1.5 and η = 2.5 in diffenet spacetime dimensions.

Figure 5. The actual path of the radar reflection of photons from the earth to a planet and back.
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HaL d=3, xh=5.

0 50 100 150 200 250 300
x

20

40

60

80

Dt

HbL d=4, xh=1.784

10 20 30 40 50
x

5

10

15

Dt

HcL d=5, xh=1.390

2 4 6 8 10
x

2

4

6

8

10

Dt

HdL d=6, xh=1.286

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x

2

4

6

8

10

Dt

Figure 6. Excess time delay for a higher dimensional Schwarzschild black hole with α = 1.5, η = 2.5, δ = 100 and σ = 100.
In the case of maximum excess time delay, the distances δ and σ are very greater than the location of horizon.

4. Gravitational Effects in Higher Dimensional Non-Commutative Spaces

In a noncommutative geometry, point-like objects cannot exist, because there is no
physical distance smaller than a minimal position uncertainty of the order of

√
θ. This effect

is implemented in spacetime through the de-localization of matter which results in a regular
or curvature singularity free, metric. This is exactly what is expected from the existence of
a minimal length. The effects of this spreading over space is mathematically implemented
by replacing position Dirac-delta function everywhere with a Gaussian distribution of
minimal width

√
θ [46,48]. Motivated by this result, we choose the mass density of a

smeared, static, spherically symmetric source as

ρM(r) =
M

(4πθ)d/2 exp
(
− r2

4θ

)
, (13)

i.e., the particle mass M is diffused throughout a region of linear size
√

θ. It is generally
assumed that

√
θ is close to Planck length. However, one can define the line element and

Einstein’s equation with de-localized matter sources which give regular metrics [43,46].
The particle-like (d + 1)-dimensional solution of Einstein’s equation with this source

is described by the metric (1) [46,48] with

BNC(r) = 1− µ(d)[
√

θ]d−2

rd−2 γ

(
d
2

,
r2

4θ

)
, (14)

where NC refers to the non-commutative space and the dimensionless parameter µ(d) is
defined as follows

µ(d) =
8MLd−3

(d− 1)[πθ](d−2)/2
. (15)
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The Euler lower Gamma function γ(a/b, z) is defined by

γ(a/b, x) ≡
∫ x

0
e−t ta/b dt

t
, (16)

and the physical mass of the solution is given by integrating the minimal spread Gaussian
profile (13)

Mθ = A(d−1)

∫
r2ρM(r)dr . (17)

For an observer at large distances, r√
θ
→ ∞ or

√
θ

r → 0, this smeared density looks like

a small sphere of matter with radius about
√

θ, so it assures that the metric is Schwarzschild.
In contradiction to the usual Schwarzschild black hole in GR, which has a single horizon, in
(3+1)-dimensional non-commutative space, we have different possibilities. An important
and interesting question in a non-commutative background is: what is the condition to
have a black hole with one (extremal) or two horizons? For a Schwarzschild metric in
(3+1)-dimensional space, it is shown in [43] that:

• For η = M√
θ
< 1.9, there is no horizon for (14), with d = 3 shown by the red curve in

Figure 7.
• For η = M√

θ
= 1.9, there is a degenerate horizon (extremal black hole) in x =

r√
θ
= 3 shown by the blue curve in Figure 7. This mass is called the minimal mass ,

M = M0 = 1.9
√

θ [43], which represents the final state of a black hole at the end of
Hawking evaporation process.

• For η = M√
θ
> 1.9, there are two distinct horizons shown by the green curve in

Figure 7. By increasing M, i.e., for M >> M0, the inner horizon shrinks to zero, while
the outer horizon approaches the Schwarzschild value r = 2M.

In fact, the location of the event of the horizon for a Schwarzschild-like black hole
is determined by the equation B(r) = 0 in our convention, but one cannot exactly solve
this equation for rh in non-commutative geometry. So, we should solve it numerically for
different values of mass parameter M, as illustrated in Figure 7 for d = 3 dimensions. This
is also true for the parameter µ(d) in non-commutative extra dimensions, where one can
say that it has the same role as the black hole mass M for Schwarzschild black hole in metric
function (14). It is natural to ask the same question in the context of non-commutative extra
dimensions as at what values of µ(d) can a black hole exist (having at least one degenerate
horizon). We denote this value of µ(d) by µ0(d), and the relevant values are calculated and
summarized in Table 1.

1 2 3 4 5 6 7
x

-2.5

-2.0

-1.5

-1.0

-0.5

0.5

1.0

gtt

Η<1.9

Η=1.9

Η>1.9

Figure 7. gtt in terms of x for various values of M√
θ

. Intercepts on the horizontal axis give radii of the
event horizon(s). The dashed curves show the commutative case for different values of mass M.
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Table 1. Values for µ0(d)(Minimum of µ(d) to form a black hole) in different dimensions.

d 3 4 5 6 7 8 9

µ0(d) 4.29714 13.40368 36.813 94.11858 229.84576 543.7545 1256.8274

To check the existence of horizons and their radii, we have plotted (14) as a function of
r√
θ
, using the values shown in Table 1, which is depicted in Figure 8. As expected, the black

holes do exist in all dimensions, i.e., there is one degenerate horizon in each dimension.

0 2 4 6 8 10
x

0.2

0.4

0.6

0.8

1.0

gtt

d=3

d=4

d=5

d=6

d=7

d=8

d=9

Figure 8. Time component of the extremal Schwarzschild metric in different dimensions vs. x = r√
θ

.

4.1. Gravitational Measurements

Now, we are ready to study the redshift and deflection of light around a higher-
dimensional non-commutative Schwarzschild-like geometry.

Redshift: In the context of non-commutative geometry in the CCS approach, the red-
shift function is obtained by inserting (14) in (5) and doing necessary calculation, so the
maximum redshift measured by an asymptotic observer, r2 → ∞, is given by

zNC =

[
1− µ(d)[

√
θ]d−2

rd−2
1

γ

(
d
2

,
r2

1
4θ

)]−1/2

−1, (18)

where, in the limit
√

θ
r1
→ 0, it leads to (6) for the higher dimensional commutative

Schwarzschild solution. Using (15) and Table 1, we have plotted the redshift function
calculated by (18) for different spatial dimensions in Figure 9 in terms of dimensionless ra-
dial coordinate x = r1√

θ
. As expected, far away from the gravitational system, all the curves

tend to zero and there is no shift in the light wavelength, just as in the commutative spaces.
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2 4 6 8 10
x

0.1

0.2

0.3

0.4

0.5

z

d=3

d=4

d=7

d=9

Figure 9. Redshift of a higher dimensional NC Schwarzschild black hole.

We can also see from Figure 9 that in contrast to the commutative space, there is a
maximum of redshift (peak) in each dimension. However, the values of the peaks are the
same for all dimensions, i.e., it does not depend on the dimension, and by increasing the
dimension of spacetime, the peak occurs in smaller x. For instance, there is a regular peak
at x = 3 for extremal limit η = 1.9 in four dimensions [72]. It has been shown in [43] that
there exists a similar finite maximum temperature at rh = 3

√
θ that the black hole can reach

before cooling down to absolute zero, which states that there is no curvature singularity
at the origin and the geometry is regular there. It is also observed for higher dimensions
that by increasing x = r1√

θ
, the redshift decreases more rapidly than four-dimensional

spacetime, which shows that gravity becomes weaker in higher dimensions.
Deflection of light: The amount of deflection of light when passing close to a higher di-

mensional Schwarzschild black hole in a non-commutative space is calculated by inserting
the metric (14) in the relation (7), so we have

∆φ = −π + 2
∫ ∞

r◦
dr
[ 1

r
√

r2

r2
◦
− 1

+
4Mr Ld−3

(d− 1)π
d−2

2 rd◦
(

r2

r2
◦
− 1
)

3/2
γ

(
d
2

,
r2

4θ

)

− 4Mr3−dLd−3

(d− 1)π
d−2

2 r2◦
(

r2

r2
◦
− 1
)

3/2
γ

(
d
2

,
r2

4θ

)
+

4Mr1−dLd−3

(d− 1)π
d−2

2

(
r2

r2
◦
− 1
)

1/2
γ

(
d
2

,
r2

4θ

)]
, (19)

and after integration the result is as follows

∆φNC =
8MLd−3

(d− 1)π
d−3

2 rd−2
◦

γ

(
d + 1

2
,

r2
◦

4θ

)
, (20)

where, in the limit
√

θ
r → 0, it gives the predicted deflection as denoted by (8). There

are again two points that can be inferred from Figure 10; (i). There is a regular peak for
the value of deflection in each spacetime dimension at the degenerate horizon. (ii) The
maximum value reduces by decreasing the spacetime dimensions and the peak of the
deflection takes place in a smaller x as we increase the number of dimensions. (iii) As
we get away from the horizon, the value of deflection goes faster to zero by increasing
spacetime dimensions, and it is because there are more channels available for gravity to
decay in them.
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Figure 10. Gravitational deflection close to a non-commutative Schwarzschild black hole for η = 1.9
and α = 3.

4.2. Determination of Lower Bounds

Lower bound on the size of extra dimensions (L): One can impose the condition L > r◦
( L√

θ
> r◦√

θ
) to ensure that L is larger than the event horizon radius and so is an observable

quantity; see also [76]. The values of r◦√
θ

are extractable from Figure 8. Moreover, using the

fact that the length of
√

θ is less than 7× 10−19 [72], one can obtain a lower bound on the
length of extra dimensions L, as provided in Table 2.

Table 2. Lower bound on length of extra dimensions.

d r◦/
√

θ L(m)

4 2.68 1.87× 10−18

5 2.51 1.1× 10−18

6 2.41 9.38× 10−19

7 2.34 8.65× 10−19

8 2.29 8.26× 10−19

9 2.26 8.01× 10−19

Lower bound on the mass of the black hole (M): As mentioned earlier, the metric (14)
for special values of µ(d), which are listed in Table 1, corresponds to extremal black holes
in different extra dimensions. So, the condition

µ(d) ≥ µ0(d) , (21)

ensures that we have black holes with two distinct horizons (the greater sign) or with one
degenerate horizon (the equal sign). Using (21) and the results of Table 2, one can provide a
lower bound on the mass to form a black hole in higher dimensional spacetime, the results
of which are summarized in Table 3. These values are close to the order of the mass of the
primordial micro black holes created in the early universe, which may have survived (have
not evaporated) until the current epoch [81,82].
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Table 3. Lower bound on the mass of the black hole (M).

d M(kg)

3 1.79× 109

4 5.54× 109

5 3.83× 1010

6 2.26× 1011

7 1.21× 1012

8 6.07× 1012

9 2.86× 1013

5. Conclusions

In this paper, we studied the well-known tests of GR for higher dimensional commu-
tative and non-commutative Schwarzschild black holes. We obtained expressions for the
gravitational redshift, deflection, and time delay around black holes. The results show that
the amounts of these quantities will diminish when we study higher dimensional black
holes. In this regard, as depicted in Figures 2, 4 and 6, by increasing the dimensions of
spacetime in the commutative case, the effects of gravity become weaker than GR, which is
consistent with the fact that the gravitational effects propagate into the extra dimensions,
or that gravity becomes diluted in the large volume of the extra dimensions [3,4].

On the other hand, in a non-commutative geometry which is based on CCS formalism,
we observed that the existence of a Schwarzschild black hole with a degenerate horizon
(extremal black hole) tightly depends on M, L and

√
θ, i.e., the mass of the black hole, the

size of the extra dimensions and the non-commutative length scale, respectively. It has been
shown in Figure 8 and Table 1 that, for a definite higher dimensional non-commutative
geometry, i.e., for given values of L and

√
θ, by increasing the number of dimensions, we

need more mass to generate extremal Schwarzschild black holes. In spite of GR, where the
redshift factor does not have a finite value, in the non-commutative case, there is a finite
extremum value, in which light might shift to the red wavelength.

Very interesting and important in higher dimensional research, we have also obtained
a minimum mass needed to form a black hole in each dimension and a lower bound on
the size of the extra dimensions. Our results also confirm that the previous studies that
hold gravity become weaker in extra dimensions. Moreover, it would be of interest to
investigate the effects of the charged solutions in each sector, that is, for both commutative
(higher dimensional RN black holes) and non-commutative spaces [48]. In conclusion, if
there exist extra dimensions of space in nature, as it seems to emerge from different theories
and arguments, then the implications should appear in GR gravitational measurements,
such as those treated in this work.
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