
����������
�������

Citation: Juettner, M.; Bartz, M.;

Tremmel, S.; Wartzack, S. On the

Transient Effects at the Beginning of

3D Elastic-Plastic Rolling Contacts

for a Circular Point Contact

Considering Isotropic Hardening.

Lubricants 2022, 10, 47. https://

doi.org/10.3390/lubricants10030047

Received: 22 January 2022

Accepted: 17 March 2022

Published: 19 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

lubricants

Article

On the Transient Effects at the Beginning of 3D Elastic-Plastic
Rolling Contacts for a Circular Point Contact Considering
Isotropic Hardening
Michael Juettner 1,* , Marcel Bartz 1 , Stephan Tremmel 2 and Sandro Wartzack 1

1 Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),
Engineering Design, Martensstraße 9, 91058 Erlangen, Germany; bartz@mfk.fau.de (M.B.);
wartzack@mfk.fau.de (S.W.)

2 Faculty of Engineering, Universität Bayreuth, Engineering Design and CAD, Universitätsstraße 30,
95447 Bayreuth, Germany; stephan.tremmel@uni-bayreuth.de

* Correspondence: juettner@mfk.fau.de

Abstract: In a three-dimensional transient simulation of the elastic–plastic rolling contact, transient
effects can be observed at the beginning of the rolling until a stationary state is reached after rolling
for a length of several times the contact radius. In most cases, the steady-state regime is in focus of
scientific investigations, whereas the transient effects are hardly considered. In the present work,
those transient effects at the beginning of a frictionless rolling contact of a rigid sphere on an elastic–
plastic plane are studied in detail. The analysis is limited to isotropic strain hardening. In particular,
the changes of the contact pressure during rolling, as well as the plastic strain state and plastic
deformations remaining after rolling are investigated. This is intended to get to the bottom of existing
explanatory approaches from literature, which are based on the change in conformity. Beyond that, a
more profound explanation of the transient effects is developed by identifying existing correlations.

Keywords: rolling contact; elastic-plastic; transient simulation; semi-analytical method; transient effects

1. Introduction

Rolling contact occurs in a variety of applications, such as between wheel and rail or
in rolling bearings. If the yield point of the materials is locally exceeded, plastic flow occurs
and, depending on the modeling of the material hardening, plastic strains and permanent
plastic deformations of the surface are build up [1]. In recent years, increasing computer
power had enabled the three-dimensional transient simulation of rolling contacts using the
semi-analytical method (SAM) [2–6] in the half space.

In rolling contact simulations, as well as in empirical scratch tests, a regime with
transient behavior at the beginning of the rolling can be observed [2,6–10], especially under
the assumption of isotropic strain hardening. Figure 1 shows the sectional view of the
plastic surface deformation of an elastic–plastic plane that was rolled over by a rigid sphere.
In the transient regime, a deep indentation was initially formed, which subsequently
flattened out and the depth of the indentation tended toward an asymptotic value. After
a sufficient rolling length a steady-state regime was established, which was present until
the end of the rolling path. This steady-state regime is usually in focus of investigations.
Especially with regard to the evaluation of fatigue under cyclic loading, various works
also aimed at the direct estimation of the steady-state regime [11–13], although this was
usually accompanied by restrictions to certain material models and boundary conditions.
The transient regime was completely avoided then.

From the point of view that, unlike in simulation, in reality every rolling motion
must have a starting point, the investigation of transient effects at the beginning of the
rolling path also seems relevant. However, these are hardly considered in the literature
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up to now. In articles covering transient rolling contact simulations, it is mostly only
mentioned that the steady-state is reached after a sufficient rolling length [2,3,6]. Further
explanation concerning the transient effects are either missing as they are not directly
relevant when investigating the steady-state regime or a very short explanatory approach is
given. For example, Chaise et al. [6] explain the transient effects by a change in conformity
at the beginning of the rolling path. A more detailed analysis and explanation of the
transient effects seems to be outstanding in literature, but would extend the understanding
of transient rolling contact simulations. This would be of benefit for the planning and
interpretation of such simulations as well as empirical studies.

10 -3

1.25
1.0
0.75
0.5
0.25
0

1816141210
x/a8

62 4

z/a

20y/a 0
-2-2

transient regime
steady-state regime

rollingloading

unloading

Figure 1. Sectional view of the plastic surface deformation of an elastic–plastic plane that was rolled
over by a rigid sphere. The red arrows indicate the loading, rolling and unloading directions and
positions. The contact radius given by Hertzian theory is denoted by a.

Therefore, within this work, the authors specifically analyze the transient effects at the
beginning of the rolling of a rigid sphere on an elastic–plastic plane. The model is limited
to an isotropic hardening law. The explanatory approach of the conformity change is to be
checked with the aim of the development of a more profound explanation by identifying
existing correlations between the characteristic permanent surface deformations as well as
the strain distributions and the contact pressure profile. Thereby, this paper is intended as
a supplement to the primary references, which present the rolling contact calculation with
SAM, but do not provide an explanation of the transient effects that occur.

2. Method and Numerical Modeling
2.1. Rolling Contact Simulation Using a Semi-Analytical Method

In order to obtain the results presented in this paper, a semi-analytical method (SAM)
was used for the simulation of the rolling contact. The validity of this approach is limited to
the assumption of small deformations and strains. In addition, the dimension of the contact
area must be small compared to the radii of the contact partners in order to be considered
as a half-space [1,2]. All those assumptions can be considered sufficiently fulfilled for
the present calculation, as the largest strains do not exceed 0.25% for the selected contact
parameters. Based on the first concept by Jacq et al. [2], the method has been optimized
and extended for different applications by various scientists [4,14–16]. In [2,3], Nélias and
co-workers present the structure and basic principles for the calculations of rolling contacts
in detail, so only a brief summary is presented in the following.

As mentioned above, SAM is based on the half-space assumptions, thus using semi-
infinite bodies. The computational domain Γ on the surface of the half-space is discretized
into k × l equal rectangular elements by an equidistant grid. For each surface element,
an averaged value is calculated for each of the quantities of the contact problem. To
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calculate the load balance (Equation (1)), the surface separation (Equation (2)) and the
contact conditions (Equations (3) and (4)), which determine the contact area, the following
coupled equations are solved in the contact solver using the conjugate gradient method
(CGM) [17]:

F =
∫

p(k, l)dΓ (1)

h(k, l) = h0(k, l) + δ + u(k, l) ≥ 0 (2)

h(k, l) = 0 , p(k, l) ≥ 0 if (k, l) ∈ Γc (3)

h(l, k) > 0 , p(l, k) = 0 if (l, k) /∈ Γc (4)

The total applied load F corresponds to the integral of the pressure p over the com-
putational domain Γ. The surface separation h is composed of the initial gap h0, the rigid
body displacement δ and the total surface deformation u. In the contact zone Γc, the surface
separation is zero. Outside the contact zone, the surface separation is positive and the
pressure is zero. Traction forces and deformations parallel to the surface are not considered
in this work.

In the plastic loop, the 2D surface grid of the contact solver is extended perpendicular
to the surface into a 3D computational domain which is meshed into constant-sized cuboids.
For the cuboid elements, an average value is calculated for each of the stress and strain
quantities. The elastic stresses are calculated directly from the pressure distribution on the
surface [18]. The residual stresses can be calculated from the plastic strains that may be
present [19,20]. Assuming small deformations and strains, the elastic and residual stresses
can be superimposed. From the total stress state, a return-mapping algorithm [21] is used
to calculate the change in plastic strains. Since a change in the plastic strain state results in a
change in the underlying residual stresses, an iterative calculation is performed, as indicates
the name plastic loop. The plastic deformation of the surface can then be calculated from
the converged strain state [2]. For the fast calculation of convolution products in the
determination of residual stresses and plastic deformations, the discrete-convolution fast
Fourier transformation (DC-FFT) [22] is applied.

Since the plastic deformations locally change the contact geometry, the overall problem
is solved iteratively in an outer loop between contact solver and plastic solver. The
iterative calculation is completed when the plastic deformation converges. This is the case
when, for each point on the surface grid, the plastic deformation changes by less than a
threshold value.

The simulation of the frictionless rolling contact can be performed using a force-driven
approach [4] as a sequential calculation of several calculation increments, while each
increment followed the previously described elastic–plastic contact calculation. Figure 2
shows the flowchart of the rolling contact algorithm. A vertical initial indentation is
performed by applying the load in several increments. During the subsequent rolling, the
load remains constant, but the plastic strains, plastic deformations and residual stresses are
shifted between each calculation increment in the rolling direction. At the end of the rolling
path, the contact is unloaded vertically. This sequence of loading, rolling and unloading is
indicated by the red arrows in Figure 1.

All the simulation results presented within this paper were generated using the soft-
ware TELOS from Schaeffler Technologies AG & Co. KG. While TELOS is not publicly
available, similar results can be obtained with other SAM-based tools or the finite ele-
ment analysis.
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Figure 2. Flowchart of the rolling contact algorithm.

2.2. Model Setup

A sphere—assumed rigid here for the sake of simplicity—with a radius of R = 10 mm
was rolling frictionless on a plane of AISI 52100 bearing steel considering elastic–plastic
material behavior. Young’s modulus and Poisson’s ratio were E = 210 GPa and ν = 0.3,
respectively. The yield surface was modeled by isotropic strain hardening using Swifts’s
law [23] according to Equation (5) in conjunction with the Von Mises criterion. Consistent
with [3,6], the hardening parameters were B = 945, C = 20, and n = 0.121 with ε

p
eff

corresponding to the effective plastic strain. The hardening curve is depicted in Figure 3.

σVM = B(C + 106 × ε
p
eff )

n (5)

For a normal load of F = 820 N, a maximum pressure of pH = 4.39 GPa with a contact-
radius a = 0.299 mm is to be given by the Hertzian theory. These reference values are used
for normalization throughout the paper. According to Hertz, in the elastic case, the chosen
load F leads to a maximum von Mises equivalent stress of 200% of the yield point of the
material. At the beginning of the rolling path, the load was applied vertically—the initial
indentation. The load remained constant while the sphere was rolling for a length of 18a.
Afterwards, the sphere was unloaded vertically. The discretization of the half-space was
chosen equidistant as ∆ = 0.1a in all spatial directions. According to a study carried out,
the estimated calculation error can be assumed to be small. Throughout the paper, the
coordinate system is positioned at the undeformed surface of the plane in the center of the
initial indentation. The positive x-axis corresponds to the rolling direction. The positive
z-axis points perpendicular to the surface into the plane.
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Figure 3. Hardening curve of AISI 52100 bearing steel for the isotropic swift law, normalized by the
maximum contact pressure pH = 4.39 GPa given by Hertzian theory.

3. Results and Discussion

Figure 4 shows the longitudinal profile of the plastic surface deformation ur in the
x–z plane for the vertical initial indentation (dashed red line) and for a rolled length of 18a
(solid black line).
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Figure 4. Longitudinal profile of the plastic surface deformation ur in the x–z plane for the vertical
indentation (dashed red line) and for a rolled length of 18a (solid black line).

The transient effects at the beginning of the rolling path are clearly visible: Starting
from the initial indentation at x/a = 0, the depth of the permanent indentation increased
to a maximum value shortly after the beginning of rolling at about x/a = 0.3. From there,
the depth decreased towards an asymptotic value after rolling a sufficient length—the
steady-state regime was reached. For the presented model, the steady-state regime began
at about x/a = 4. From now on, the region, from the beginning of the rolling until the
steady-state was reached, will be called a transient regime.

It should be noted that the initial indentation was a bit deeper than the deformation in
the steady-state regime. A small shoulder was formed at the start of the rolling path, which
almost corresponded to that of the initial indentation. During rolling, the shoulder at the
leading contact edge was increasing slightly and remained at the unloading position. The
effects of load and ellipticity ratio on the described characteristic longitudinal profile of the
permanent surface deformation was discussed by Chaise et al. in [6].

Coupled to the change in the contact geometry due to the plastic deformations, a
change in the pressure distribution was to be expected. Figure 5a shows the history of
the maximum pressure pmax in the transient regime during rolling. Figure 5b shows the
pressure distributions for three discrete moments marked in Figure 5a, i.e., the initial
indentation, as well as a rolled length of 0.6a and 1.3a. For better comparability, the contact
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centers are shifted to x/a = 0 in each case. Since the changes in the pressure distributions
were very small, only the upper part of the curves is shown in enlargement.
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Figure 5. (a) History of the maximum pressure pmax during rolling in the transient regime; (b) pres-
sure distributions for the initial indentation and for a rolled length of 0.6a and 1.3a, centered at
x/a = 0.

The maximum pressure pmax increased by about 2.55% of the initial value to the
global maximum at a rolled length of approximately 1.3a. The pressure distribution tilted
slightly towards the leading edge, which is in accordance with the results of [6]. The
maximum pressure then slowly dropped minimally to its asymptotic value in the steady-
state regime that was still about 2.5% higher than the initial value. Since the elastic Hertzian
pressure pH is used for normalization, the normalized pressures were smaller than one due
to plastification.

Comparing the profile of the plastic surface deformation in Figure 4 with the history
of the maximum pressure in Figure 5a, it is noticeable that the maximum depth of the
indentation was reached at about x/a = 0.3 and decreased again, while the pressure
reached its maximum at about x/a = 1.3 and only then fell very slightly. These spacial
differences suggest that the change in the pressure is obviously not solely responsible for
the modification of the surface deformation and thus the conformity. An explanation of the
transient effects in terms of the change of the coupled conformity and pressure distribution
thus seems insufficient.

3.1. Change of the Pressure Distribution Due to a Change in Conformity

In Figure 6a–c, the pressure distribution and the plastic surface deformation ur are
shown in combination for the moment of the initial indentation and rolled lengths of 1.3a
and of 4a.
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Figure 6. Pressure distribution p (solid black line) and plastic surface deformation ur (dashed red
line) for the moments of (a) the initial indentation, (b) a rolled length of 1.3a and (c) a rolled length
of 4a.
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During the initial indentation, see Figure 6a, initial plastic strains and resulting plastic
deformations were build up. The pressure profile was symmetrical centrally over the
indentation. Immediately after the beginning of rolling, the contact geometry became
visibly asymmetrical due to the existing plastic deformations. In areas that had already
been rolled over the indentation was deeper than it was at the leading edge. Additionally,
a shoulder formed in front of the leading edge. The pressure increased until the maximum
was reached as soon as the trailing edge of the contact zone had reached approximately
the lowest point of the plastic deformation, see Figure 6b. The asymmetry resulted in
the well-known tilting of the pressure distribution towards the leading edge. As the
steady-state regime was approached, the indentation increasingly flattened out, causing
the pressure to drop again minimally. In the steady-state regime, see Figure 6c, the contact
geometry and the pressure distribution were constant for the entire further rolling path. The
previously described change of plastic deformation and pressure is compatible with each
other assuming that the pressure profile is determined by the conformity. The conformality,
in turn, is determined by the plastic deformation, in particular by the deep indentation in
the transient regime. The development of the plastic deformation is hardly a consequence
of the change of the pressure distribution, but is determined by the plastic strains that will
be discussed in the following.

3.2. Plastic Strains and Associated Plastic Deformations

The plastic deformation is calculated on the basis of the plastic strains εp. To find an
explanation for the deep indentation in the transient regime, the plastic strains εp were
therefore investigated in more detail. In Figure 7, the components of the plastic strain
tensor ε

p
ij in the x–z plane at depth z/a = 0.5 are plotted. At this depth, the effective plastic

strain ε
p
eff and the von Mises stress had its maximum. In classical contact calculation, this

point of maximum von Mises stress is called Bielayev point.
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Figure 7. Plastic strains εp

ij in the x–z plane at depth z = 0.48a for the initial indentation (dotted lines),
a rolled length of 18a (solid lines) and a synthesized strain state (dashed lines, see end of Section 3.2).
The plastic strains εp

xy and εp
yz are zero in the x–z plane and are not shown for a clear view.

In the area of the initial indentation around x/a = 0, the component ε
p
zz showed

the highest magnitude of all strain tensor components. The magnitudes of ε
p
xx, ε

p
yy were

equal. ε
p
xz showed a change of sign equivalent to the known stress state in the point contact,

whereby the maxima did not lie in the center of the contact. Starting from the initial
indentation, the strains showed a transient behavior until they reached a stationary value
in the steady-state regime. The magnitudes of the strains ε

p
zz and ε

p
xx decreased slightly,

while ε
p
yy increased. It is interesting to note that the magnitude of ε

p
xz increased significantly.

The development of the effective plastic strain ε
p
eff is largely due to this change in shear

strain, as the changes in the normal strain components cancel out in the calculation of ε
p
eff .
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Although the plastic strains showed transient effects at the beginning of the rolling
path, it is not directly obvious why the deep indentation was formed. By using SAM,
it is possible to calculate the resulting plastic surface deformations ur

ij for each strain ε
p
ij.

Super-positioning all plastic surface deformations ur
ij results in the permanent deformation

of the surface ur shown in Figure 4. In Figure 8 the plastic surface deformations ur
ij in the

longitudinal profile in the x–z plane are shown as solid lines.

-2 0 2 4 6 8 10 12 14 16 18 20
x/a

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

ur ij / 
a

10 -3

xx
yy
zz
xz
xy
yz

ij

Figure 8. Longditudinal profile of the plastic deformations of the surface ur
ij in the x–z plane for each

plastic strain εp

ij for a rolled length of 18a (solid lines) and for the synthesized stress state (dashed line,
see end of Section 3.2).

It can be seen that the strain components ε
p
zz, ε

p
yz and ε

p
yy made the most significant

contributions to the indentation in the steady-state regime, but beyond that they hardly
contributed to the deep indentation in the transient regime. The components ε

p
xy, ε

p
xx and

ε
p
xz, on the other hand, hardly contributed at all in the steady-state regime. Most important,

the shear strain ε
p
xz, in particular, was decisive for the shoulders in front of and behind the

rolling path as well as for the deep indentation.
Figure 9 schematically shows the resulting plastic deformation ur

xz for a near-surface
region of plastic shear strain ε

p
xz. In the chosen representation, a local region of negative

plastic strain ε
p
xz led to a shoulder at the surface to the right of the strained region and to a

dent to the left of it. For positive strains of ε
p
xz the opposite effect occurred. This is indicated

by the gray arrows .

x

u
r x

z

p
xz > 0

p
xz < 0

Figure 9. Schematic representation of the relationship between plastic strain εp
xz and the resulting

plastic deformation of the surface ur
xz.

In Figure 10, the plastic strain ε
p
xz and the corresponding plastic deformation ur

xz from
Figure 8 are shown separately. In addition, the gray arrows introduced in Figure 9 for
schematic representation of the surface deformation are added corresponding to the profile
of the plastic strain.
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Figure 10. Longitudinal profile of the plastic strain εp
xz and the corresponding plastic deformation of

the surface ur
xz in the x–z plane for a rolled length of 18a (solid lines) and the synthesized strain state

(dashed line, see end of Section 3.2). The gray arrow pairs schematically show the direction of plastic
surface deformation for the locally present plastic strain.

In the steady-state regime, there was a constant strain state along the rolling direction,
which is why the deformations caused by the strains of adjacent areas almost completely
cancel each other out: The adjacent opposite gray arrow pairs and thus deformations
compensate each other. This is different on the leading edge where there was no strain
in the area that was not rolled over. The rolled-over area with negative strain thus leads
to the shoulder, as there is no counter formation: The rightmost arrow does not have an
opposing arrow to its right, see Figure 10. At the beginning of the rolling path, the same
effect leads to the indentation. In front of the rolling path, there is an additional area of
strain of a lower positive magnitude. This leads to the small shoulder and to an increase in
the depth of the indentation: The grey arrows at about x/a = 0 point in the same direction,
the plastic deformation does not cancel out but adds up. If there were no positive strains,
the depth of the indentation at the beginning of the rolling path would be approximately
equal to the height of the shoulder at the end.

The characteristic of the plastic surface deformation of a plane that is rolled over is
thus decisively determined by the border area between strained and not-strained material.
To show this more clearly, a synthetic strain state was generated. All strain components
were assumed to be constant in the rolling direction, starting from the strain state of the first
indentation. This excluded the influence of a changing strain state due to other effects. The
synthetic strain state and the resulting plastic surface deformations are shown as dashed
lines in Figures 7, 8 and 10, respectively.

A closer look shows that the synthetic strains as well as the corresponding deforma-
tions for the tensor components xx, yy, zz and yz were symmetrical, i.e., the same at the
beginning and end of the rolling path. The component xz in Figure 10 shows the already
discussed profile of the corresponding plastic deformation. Due to the smaller magnitude of
synthetic strain ε

p
xz in the steady-state regime, the deep indentation in the transient regime

as well as the shoulder at the leading edge were less pronounced. Comparing the profiles
of the summed deformation resulting of the original and the synthetic strain state, only
minor differences can be seen, refer to Figure 8. These differences in plastic deformation are
due to the transient change in pressure and plastic strains. Since the transient changes of
pressure and plastic deformation are quite small compared to their overall magnitude, only
the minor changes mentioned above result. However, it is obvious that the characteristic
profile of the plastic deformation with the deep indentation is primarily due to the spatial
distribution of the plastic strains, but not by its transient change.



Lubricants 2022, 10, 47 10 of 13

3.3. Development of the Strain Components

In the transient regime, the pressure pmax was increasing as shown in Figure 5a. As a
result, increasing stresses and plastic strains could have been expected too. However, as
shown in Figure 7, the components ε

p
zz and ε

p
xx decreased slightly, while the component ε

p
yy

increased slightly. The shear strain ε
p
xz increased more clearly in its magnitude.

The flow of the material and the build-up of the plastic strains is mainly determined
by the deviatoric stress state:

sij = σij −
1
3
(σxx + σyy + σzz). (6)

In Figure 11, the deviatoric stress state sij is shown in the x–z plane at a depth of 0.48a
for the moment of the initial indentation and for a rolled length of 4a. Again, for ease of
comparison, the contact center is shifted to x/a = 0. It can be seen that the stress state
changed only to a very small extent. Thus, the largest difference was caused by the residual
stresses that remained on the left side in the region that was already rolled over. This leads
to the conclusion that the change of the stress state cannot be solely responsible for the
development of the strains in the transient regime.

-2 -1 0 1 2
x/a

-0.4

-0.2

0

0.2

0.4

0.6

s ij / 
p H

eff
xx
yy
zz
xz

ij

Figure 11. Deviatoric stresses sij in the x–z plane for a depth of 0.48a for the moment of the initial
indentation (solid lines) and a rolled length of 4a (dashed lines). The contact centers are shifted to
x/a = 0.

Rather, the explanation can be found in the difference between the vertical initial
indentation and the subsequent horizontal rolling. Starting the initial indentation (purely
vertical), there are initially no strains or residual stresses, i.e., no strain hardening. By
increasing the load successively, the material starts to yields and plastic strains build up
defined by the hardening curve. Consistent with the stress state, the strongest straining
occurs in the contact center with decreasing intensity towards the contact edge. The
resulting strain state at full loading is very similar to the deviatoric stress state. The typical
sign change of the xz strain component is formed. During subsequent rolling, the strains
and residual stresses that were build up during the initial indentation remain and the
material is already locally hardened.

Since the load remains constant and due to isotropic hardening, during rolling, further
yielding only occurs between the contact center and the leading edge. Maximum yielding
and thus the largest increments of strain change occur in the region of half the contact radius
0.5a. The intensity decreases towards the contact center due to the already present strain
hardening and towards the leading edge due to the present stress gradient. Since the strain
increment is defined by the locally present deviatoric stress state, the plastic strains ε

p
xz

and ε
p
yy experience larger increments than the other components of the strain tensor. Thus,
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higher strains of the xz and yy components and lower strains of the xx and zz components
build up during the horizontal rolling compared to the vertical initial indentation.

At the beginning of the rolling path, the strain state is determined by the vertical initial
indentation. In the steady-state regime, on the other hand, the strain state is determined
by the horizontal rolling, more precisely the successive plastification at the leading edge.
In the transient regime, the transition between the two states occurs. The strains ε

p
xx and

ε
p
zz decrease slightly, while the other strains increase. The increase of the pressure and

subsequently of the stresses and to a small extent also of the strains due to the change in
conformity is lost in this effect, respectively, leads to a further increase of ε

p
xz compared to

the initial indentation.

4. Conclusions

In this paper, the transient effects at the beginning of a rigid sphere rolling on an
elastic–plastic plane are analyzed. As a result of observing and explaining correlations
between the plastic strains and plastic deformations as well as the pressure distributions
during rolling, the existing explanatory approach (for example [6]) to those transient effects
stating a change in conformity seems solely not to be sufficient. Aiming for more profound
explanation, several different effects can be distinguished:

• The strain state at the very beginning of the rolling path is characterized by the vertical
initial indentation. In contrast, during rolling, plastification occurs significantly at the
leading edge due to the isotropic hardening behavior. The result is a different strain
state in the steady-state regime. The transition between the two strain states takes
place due to the decaying influence of the initial indentation as the distance from the
start of rolling increases.

• The profile of the plastic deformation is only influenced to a minor extend by transient
effects. The deep indentation at the beginning, as well as the shoulders at the beginning
and end of the rolling path, are rather determined by the spacial distribution of the
plastic strains, especially the shear strain ε

p
xz with a change of sign at the beginning of

the rolling path.
• The history of the pressure distribution is mainly a result of the previously described

shape of the plastic deformation of the surface, and therefore the conformity of the
contact. Certainly, an increase in pressure is coupled with a change in stresses and
strains, and thus in plastic deformation, but for the model considered here, these
influences on the transient behavior seem to be very small.

It becomes obvious that different mechanisms underlie the changes of pressure, plastic
strains and permanent deformations of the surface at the beginning of a rolling contact.
Since these continuum mechanical quantities are nonlinearly dependent on each other, a
generally valid explanation is hardly possible. It is noted that the presented results are valid
in the context of the presented model of a point contact considering isotropic hardening
and a rigid sphere. Further research could deal with the investigation of the influence
of different contact parameters, materials and hardening behaviors. This would extend
and generalize the results presented here. Improving the understanding of observable
transient initial effects of rolling contacts also provides the basis to assess the advantages
and disadvantages of transient simulations over steady-state approaches.
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Nomenclature

a contact radius given by Hertzian theory
B, C, n swift isotropic hardening law parameters
E Youngs’s modulus
F applied load
h, h0 surface separation, initial gap
i, j tensor indices
k, l indices of the surface grid
p contact pressure
pH maximum contact pressure given by Hertzian theory
pmax maximum contact pressure
R radius of the sphere
s deviatoric stress tensor
u total surface deformation
ur plastic surface deformation
x, y, z space coordinates
Γ, Γc computational domain, contact area
∆ mesh size
δ rigid body displacement
εp plastic strain tensor
εp

eff effective plastic strain
ν Poisson’s ratio
σVM yield stress

References
1. Johnson, K. L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 2012.
2. Jacq, C.; Nélias, D.; Lormand, G.; Girodin, D. Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code.

J. Tribol. 2002, 124, 653–667. [CrossRef]
3. Nélias, D.; Antaluca, E.; Boucly, V. Rolling of an Elastic Ellipsoid Upon an Elastic-Plastic Flat. J. Tribol. 2007, 129, 791–800.

[CrossRef]
4. Boucly, V.; Nélias, D.; Green, I. Modeling of the Rolling and Sliding Contact Between Two Asperities. J. Tribol. 2007, 129, 235–245.

[CrossRef]
5. Chen, W.W.; Wang, Q.J.; Wang, F.; Keer, L.M.; Cao, J. Three-Dimensional Repeated Elasto-Plastic Point Contacts, Rolling, and

Sliding. J. Appl. Mech. 2008, 75, 021021. [CrossRef]
6. Chaise, T.; Nélias, D. Contact Pressure and Residual Strain in 3D Elasto-Plastic Rolling Contact for a Circular or Elliptical Point

Contact. J. Tribol. 2011, 133, 041402. [CrossRef]
7. Flores, S.E.; Pontin, M.G.; Zok, F.W. Scratching of Elastic/Plastic Materials with Hard Spherical Indenters. J. Appl. Mech. 2008, 75,

061021. [CrossRef]
8. van Breemen, L.C.A.; Govaert, L.E.; Meijer, H.E.H. Scratching polycarbonate: A quantitative model. Wear 2012, 274–275, 238–247.

[CrossRef]
9. Pletz, M.; Meyer, K.A.; Künstner, D.; Scheriau, S.; Daves, W. Cyclic plastic deformation of rails in rolling/sliding contact—Quasistatic

FE calculations using different plasticity models. Wear 2019, 436–437, 202992. [CrossRef]
10. Bhargava, V.; Hahn, G.T.; Rubin, C.A. An Elastic-Plastic Finite Element Model of Rolling Contact, Part 1: Analysis of Single

Contacts. J. Appl. Mech. 1985, 52, 67–74. [CrossRef]
11. Dang Van, K.; Maitournam, M.H. Steady-state flow in classical elastoplasticity: Applications to repeated rolling and sliding

contact. J. Mech. Phys. Solids 1993, 41, 1691–1710. [CrossRef]

http://doi.org/10.1115/1.1467920
http://dx.doi.org/10.1115/1.2768078
http://dx.doi.org/10.1115/1.2464137
http://dx.doi.org/10.1115/1.2755171
http://dx.doi.org/10.1115/1.4004878
http://dx.doi.org/10.1115/1.2966268
http://dx.doi.org/10.1016/j.wear.2011.09.002
http://dx.doi.org/10.1016/j.wear.2019.202992
http://dx.doi.org/10.1115/1.3169028
http://dx.doi.org/10.10.1016/0022-5096(93)90027-D


Lubricants 2022, 10, 47 13 of 13

12. Dang Van, K.; Maitournam, M.H. Rolling contact in railways: Modelling, simulation and damage prediction. Fatigue Fract. Eng.
Mater. Struct. 2003, 26, 939–948. [CrossRef]

13. Meyer, K.A.; Skrypnyk, R.; Pletz, M. Efficient 3d finite element modeling of cyclic elasto-plastic rolling contact. Tribol. Int. 2021,
161, 107053. [CrossRef]

14. Boucly, V.; Nélias, D.; Liu, S.; Wang, Q.J.; Keer, L.M. Contact Analyses for Bodies With Frictional Heating and Plastic Behavior.
J. Tribol. 2005, 127, 335–364. [CrossRef]

15. Nélias, D.; Boucly, V.; Brunet, M. Elastic-Plastic Contact Between Rough Surfaces: Proposal for a Wear or Running-In Model.
J. Tribol. 2006, 128, 236–244. [CrossRef]

16. Gallego, L.; Nélias, D.; Deyber, S. A fast and efficient contact algorithm for fretting problems applied to fretting modes I, II and III.
Wear 2010, 268, 208–222. [CrossRef]

17. Polonsky, I.A.; Keer, L.M. A numerical method for solving rough contact problems based on the multi-level multi-summation
and conjugate gradient techniques. Wear 1999, 231, 206–219. [CrossRef]

18. Love, A.E.H. IX. The stress produced in a semi-infinite solid by pressure on part of the boundary. Philos. Trans. R. Soc. A 1929 ,
228, 377–420. [CrossRef]

19. Chiu, Y.P. On the Stress Field Due to Initial Strains in a Cuboid Surrounded by an Infinite Elastic Space. J. Appl. Mech. 1977, 44,
587–590. [CrossRef]

20. Chiu, Y.P. On the Stress Field and Surface Deformation in a Half Space With a Cuboidal Zone in Which Initial Strains Are Uniform.
J. Appl. Mech. 1977, 45, 302–306. [CrossRef]

21. Fotiu, P.A.; Nemat-Nasser, S. A universal integration algorithm for rate-dependent elastoplasticity. Comput. Struct. 1996, 59,
1173–1184. [CrossRef]

22. Liu, S.; Wang, Q.; Liu, G. A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses. Wear 2000, 243,
101–111. [CrossRef]

23. Swift, H.W. Plastic instability under plane stress. J. Mech. Phys. Solids 1952, 1, 1–18. [CrossRef]

http://dx.doi.org/10.10.1046/j.1460-2695.2003.00698.x
http://dx.doi.org/10.1016/j.triboint.2021.107053
http://dx.doi.org/10.1115/1.1843851
http://dx.doi.org/10.1115/1.2163360
http://dx.doi.org/10.1016/j.wear.2009.07.019
http://dx.doi.org/10.1016/S0043-1648(99)00113-1
http://dx.doi.org/10.10.1098/rsta.1929.0009
http://dx.doi.org/10.1115/1.3424140
http://dx.doi.org/10.1115/1.3424292
http://dx.doi.org/10.1016/0045-7949(95)00240-5
http://dx.doi.org/10.1016/S0043-1648(00)00427-0
http://dx.doi.org/10.1016/0022-5096(52)90002-1

	Introduction
	Method and Numerical Modeling
	Rolling Contact Simulation Using a Semi-Analytical Method
	Model Setup

	Results and Discussion
	Change of the Pressure Distribution Due to a Change in Conformity
	Plastic Strains and Associated Plastic Deformations
	Development of the Strain Components

	Conclusions
	References

