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Abstract: Surface roughness is considered as an important measuring parameter in the machining
industry that aids in ensuring the quality of the finished product. In turning operations, the tool and
workpiece contact develop friction and cause heat generation, which in turn affects the machined
surface. The use of cutting fluid in the machining zone helps to minimize the heat generation. In this
paper, minimum quantity lubrication is used in turning of AISI 304 steel for determining the surface
roughness. The cutting fluid is enriched with alumina nanoparticles of two different average particle
sizes of 30 and 40 nm. Among the input parameters chosen for investigation are cutting speed, depth
of cut, feed rate, and nanoparticle concentration. The response surface approach is used in the design
of the experiment (RSM). For the purpose of estimating the surface roughness and comparing the
experimental value to the predicted values, three machine learning-based models, including linear
regression (LR), random forest (RF), and support vector machine (SVM), are utilized in addition. For
the purpose of evaluating the accuracy of the predicted values, the coefficient of determination (R2),
mean absolute percentage error (MAPE), and mean square error (MSE) were all used. Random forest
outperformed the other two models in both the particle sizes of 30 and 40 nm, with R-squared of
0.8176 and 0.7231, respectively. Thus, this study provides a novel approach in predicting the surface
roughness by varying the particle size in the cutting fluid using machine learning, which can save
time and wastage of material and energy.

Keywords: turning; lubrication; machining; cutting fluid; nanofluid; machine learning; minimum
quantity lubrication; AISI 304 steel

1. Introduction

In turning operations, surface roughness plays a vital role in the product creation, and
has a significant effect on machining cost as it is measured as an index of quality [1]. The
surface finish of any product is primarily affected by tool geometry, cutting speed, material
of the workpiece, depth of cut, feed rate and other factors such as machine dynamics,
cutting temperature and tool wear. The small deviation in the above mentioned factors may
cause a considerable effect on the machined surface. Therefore, it becomes necessary to
select the optimal settings for ensuring a desired surface finish. In machining industry, the
operators generally employ the ‘hit and trial’ method for setting up of machining settings
to achieve favourable surface finish of the product. This approach of using ‘hit and trial’ is
not so efficient and is time consuming along with producing wastage of material in getting
the intended result [2]. The advent of machine learning models poses a solution to address
this issue, by altering the machining settings before the actual operation is performed. The
use of cutting fluid ensures minimization of cutting temperature and assists in proper
lubrication, resulting in improved surface finish.
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Elangovan et al. [3] attempted to predict surface roughness by acquiring the vibration
signals in turning. Their study revealed that feature reduction by applying principle com-
ponent analysis in a machine learning approach resulted in low computational effort and
higher predictability. Raza et al. [4] performed analysis on a 30NiCrMoV14 alloy for surface
evolution in turning operation. Feed rate proved to be the significant parameter and surface
quality of 0.137 µm was achieved at 0.19 mm/rev feed. Dubey et al. [5] performed turning
on steel using nanofluid-enriched cutting fluid and studied its effect on surface roughness
and cutting temperature. When compared to mono nanofluid, hybrid nanofluid resulted
in a reduction of 31% in surface roughness. Sharma et al. [6] reviewed the use of different
conventional and nanofluid-based cutting fluids using minimum quantity lubrication. The
effect of incorporating nanofluid in cutting fluid was explored in terms of reduction of
cutting force, surface finish and tool wear. Abbas et al. [7] investigated the sustainability as-
sessment of AISI 1045 stainless steel associated with power consumption and surface finish.
The turning was performed in dry, flood and minimum quantity lubrication environments,
among which MQL turning showed better characteristics with weighted sustainability
index of 0.7, providing lower power consumption and surface finish. Mia et al. [8] used the
Pugh matrix, an environmental technique for establishing sustainability model for turning
of hardened steel. The comparative study between compressed air enriched with solid
lubricant and MQL suggested that MQL assisted in cleaner production and proved to be
environmentally friendly. Sampaio et al. [9] analyzed the wear of PCBN tool, chip morphol-
ogy and surface roughness in hard turning of 1045 steel. The cooling effect produced by
MQL resulted in reduction of crater wear and cutting forces. Gupta et al. [10] investigated
2205 duplex steel and performed turning with dry and MQL environments and studied
the influence on machining tribological characteristics by varying the nozzle angle. The
application of dual-jet MQL resulted in lower power consumption along with tool wear.
Bonfa et al. [11] experimented on AISI D6 steel and analyzed the surface roughness by ap-
plying biodegradable cutting fluid in three directions. The results revealed that at the feed
rate of 0.05 mm/rev, the lowest surface roughness was achieved when MQL was applied at
the tool flank face. Khanna et al. [12] adopted eight different cutting fluid methodologies in
turning of precipitated hardened stainless steel to analyze the energy consumption. In the
analysis, nine different combinations of input parameters were used. In the comparative
study, the lowest energy consumption was encountered in hybrid nanoparticles immersed
in electrostatic minimum quantity lubrication, which can be attributed to the effective-
ness of penetration of the oil mist at the cutting zone. Dubey et al. [13] reviewed various
cooling methodologies for machining. The application of MQL for reduction in cutting
force, surface roughness and tool wear was suggested to be better in comparison to other
techniques. Sizemore et al. [14] applied machine learning techniques for predicting surface
roughness in diamond turning. The predictive capability of artificial neural network (ANN)
and four different machine learning (ML) models, namely decision trees, random forest,
AdaBoost and support vector machines (SVM) was assessed during diamond turning of
both copper and germanium. The ANN model gave better prediction in comparison to ML
models with minimum errors. Reddy et al. [15] performed turning on aluminium alloy
using a carbide tool. In order to judge the efficiency of the model for predicting surface
roughness, percentage deviation was used. The results revealed that the artificial neural
network predicted with higher accuracy compared to a multiple regression model.

Eser et al. [16] experimented on aluminium alloy in dry condition. The predicted
models using RSM and ANN were developed and compared in terms of R2, MEP and
RMSE. The estimated data from the developed models were close to the data obtained
through experimental results. The R2 obtained through RSM was of higher value than that
of ANN, which proved the stability of the RSM model over ANN.

Manjunath et al. [17] reviewed the prediction and monitoring of surface roughness in
the case of ultraprecision machining. The different sensors which are used for collecting the
data were discussed, such as accelerometer, strain gauge sensor, piezoelectric transducer
and acoustic emission. The pros and cons of different machine learning models were
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demonstrated. Ross et al. [18] used MQL and cryogenic cooling and compared the result
with hybrid cryo-MQL cooling in milling of Nimonic 80A alloy for analysing the surface
roughness. The application of a hybrid lubrication approach on the workpiece resulted
in decrease of the grain size due to lowering of the friction at the cutting zone and hence
producing a chilling effect. Alajmi and Almeshal [19] utilized the ANFIS-QPSO method
in prediction of surface roughness of AISI 304 stainless steel. A comparison between dry
turning and cryogenic turning was performed. The accuracy of prediction was judged by
indicators such as R2, RMSE and MAPE. In the case of dry turning, the MAPE between the
predicted and experimented value was recorded as 4.95%, while in the case of cryogenic
turning 5.15% was reported. Pimenov et al. [20] reviewed the use of artificial intelligence in
tool condition monitoring. ANN was suggested as the widely used prediction technique
for wear evaluation owing to the non-linear behaviour of the tool’s wear. Pandey et al. [21]
studied the tribological behaviour of cutting fluid enriched with nanofluid. The characteri-
zation and validation of the wear characteristic of cutting tool was discussed using pin on
disk tribometer. The use of nanofluid in machining led to decrease in surface roughness
and tool wear. Abbas et al. [22] used three different modes of lubrication i.e., dry, flood and
MQL, for turning of 1045 steel. In order to optimize the cutting parameters, three multi
objective optimization models were incorporated. Among the three, MQL provided better
result and the optimal parameters achieved were 147 m/min cutting speed, 0.28 mm depth
of cut and feed rate of 0.06 mm/rev. Khanna et al. [23] performed a comparative study
on machining performance and life cycle assessment in turning of Ti-6Al-4V ELI. In the
case of cutting force, cryogenic machining outperformed the MQL and flood machining,
while in the case of tool life, MQL gave enhanced results. MQL machining led to lower
impact on ecology in respect to flood lubrication. Dubey et al. [24] experimented on AISI
304 steel using a tungsten carbide tool and applied machine learning models to predict
the cutting forces. Linear regression and random forest gave better prediction of cutting
force than support vector machines in case of predicting the cutting forces. Sap et al. [25]
carried out experiments on milling in dry, MQL and cryogenic cooling environments on
a copper-based composite. The study revealed that cryogenic machining resulted in im-
provement of tribological properties by reducing cutting temperature and MQL resulted in
enhanced surface characteristics. Pereira et al. [26] used CO2 as internal tool coolant for
cryogenic cooling in the case of milling operation. The study is in line with the effective
utilization of CO2 for minimizing its effect on ecology. CFD modelling was done to simulate
the process using CO2 as internal and external coolant and the results were compared
with experimental studies. The application with internal tool coolant resulted in decrease
of cutting temperature by 40% in comparison to external coolant. Magalhaes et al. [27]
examined the flank wear and surface integrity in turning of 1045 steel for uncoated cermets.
As per the finite element analysis, the temperature of 860 ◦C was attained at highest feed
and cutting speed. Abrasive wear contributed significantly in the case of tool wear. The
use of uncoated cermet in dry turning of AISI 1045 proved to be viable while taking into
consideration surface quality, tool life and microstructure. Abrao et al. [28] evaluated the
performance of adding graphene nano platelets in the cutting fluid and applying it on SAE
52100 hardened steel using MQL in grinding operation. The use of graphene multilayers
yielded smaller value of surface roughness and micro hardness when compared with MQL
with solid particles in the cutting fluid. Baldin et al. [29] investigated tool life and wear
mechanism on a titanium-coated carbide tool in end milling of AISI 1045 steel by applying
vegetable oil, mineral oil and a cutting fluid enriched with graphene nanoplatelets. The
removal of coating cutting insert was observed in all cutting conditions due to the action of
temperature and predominance of adhesive wear. The addition of graphene sheets aided in
enhancing the lubrication properties. Pereira et al. [30] analyzed the technical and economic
viability of different lubricants in turning of AISI 304 steel. The combination of cryogenic
and MQL is proposed as best among the other different techniques, as Cryo-MQL CO2
resulted in exceeding the tool life by 30%. In another study, Pereira et al. [31] performed
rheological as well as tribological tests for characterizing four biodegradable oils: castor
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oil, sunflower oil, high oleic sunflower oil and ECO-350 oil were analyzed and compared
to commercial available canola oil. As per the characterization and life cycle assessment
analysis, high oleic sunflower oil is feasible for eco-friendly machining when compared
with other oils. Camli et al. [32] experimented on ER7 steel used in train wheel applications
using dry, MQL and nanofluid-assisted MQL environments. The optimal parameters for
performing experiments were cutting speed of 300 m/min and feed rate of 0.15 mm/rev.
The application of MQL and nano-MQL cooling resulted in lowering of surface roughness
by 24% and 34%, respectively. Korkmaz et al. [33] investigated on Nimonic 80A by varying
the nozzle orientation under dry, flood and MQL environments. The improvement in tool
wear was 60% in comparison to dry turning and major mechanisms responsible for the
wear were abrasion and adhesion. Danish et al. [34] incorporated a hybrid approach of
using cryogenic lubrication and minimum quantity lubrication in turning of Inconel 718
and analyzed tool wear, surface roughness and chip morphology. The improvement in
surface topology and reduced surface finish was obtained at medium setting of cutting
speed. The lubrication at machining zone using MQL and cryogenic technique was em-
ployed. The surface roughness achieved in the case of MQL was lower, as MQL developed
a protective film over the machined workpiece. Tasdemir et al. [35] investigated the effect of
tool geometry on the surface roughness in dry turning of AISI 1040 steel. The experimented
results were compared with ANN with the statistical t test having no significant difference.
Cica et al. [36] used three machine learning algorithms, namely polynomial regression
(PR), SVR and Gaussian process regression (GPR) for predicting cutting force and cutting
power in turning of AISI 1045 under minimum quantity lubrication and high pressure
coolant cutting environments. The optimal process parameters in both the lubrication
environments were 210 m/min cutting speed, 1.5 for depth of cut and 0.224 mm/rev feed
rate. Lin et al. [37] used a deep learning approach for determining the surface roughness
by recording the signals of vibrations. Three predictive models, namely FFT-DNN, 1-D
CNN, FFT-LSTM, were utilized for training and predicting he performance. The combina-
tion of vibration signals along with the 1D CNN and FFT-LSTM model is recommended
in order to predict surface roughness. Dubey et al. [38] discussed different temperature
measuring techniques at the machining zone in different cutting environments. The use of
both direct and indirect methods of temperature measurement were reviewed. Among the
different techniques, use of thermocouple in determining the temperature gave efficient
results. Aggogeri et al. [39] reviewed the various advancements in application of machine
learning in different machining processes. It was revealed that usage of smart equipment,
various sensors that aid in connecting the machines, acting as boosters, drives machine
learning applications. Gupta et al. [40] performed finite element modelling and compared
results with experimental findings, for calculating cutting force and cutting temperature in
turning of AA2024-T351 alloy in a dry environment and using liquid nitrogen and CO2
lubrication. The predicted results are in close agreement with those of experimental results.
The cryogenic cooling led to reduced cutting forces as built up edges were minimized.
Chen et al. [41] proposed a back propagation neural network (BPNN) for the prediction of
surface roughness in end milling of aluminium. The smaller feed rate along with smaller
depth of cut with higher spindle speed yielded a better surface finish. A comparative study
between BPNN and linear regression was performed, in which the accuracies achieved
for prediction were 99.17% and 97.88%, respectively. As per the accuracy, BPNN model
predicted surface roughness effectively. Chen et al. [42] investigated the effect of cutting
force and tool vibration on surface roughness and attempted to predict it using a nested
artificial neural network. The dry turning was performed on a CNC lathe using an uncoated
carbide tool on titanium alloy. Feed rate proved to be the important parameter affecting
surface roughness. The prediction accuracy of ANN was better than that of RSM and
linear regression.

From the literature, it can be inferred that prediction of cutting force, cutting power,
surface roughness and tool wear has been attempted by different researchers on different
materials in dry turning or cryogenic turning using different machine learning algorithms.
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The prediction of surface roughness in a nanoparticle-enriched cutting fluid environment
is very limited. The MQL approach has been undertaken by various researchers using
nanofluid, but the variation in particle size in the cutting fluid and its prediction using
machine learning is a newer approach. In this paper, alumina nanoparticles of two different
average particle size i.e., 30 and 40 nm, are used and turning is performed with two different
cutting fluids of individual particle sizes. The aim of the study is to analyze the effect of
varying the particle size in the cutting fluid and assessing its effect on surface finish of AISI
304 steel. Furthermore, the prediction of surface finish is carried out and compared with
that of the experimental values using three different machine learning algorithm, namely
linear regression, random forest and support vector machines. In order to develop the
models, the tool used in this paper is jupyter notebook bundled with Anaconda software
package version 1.7.2 and the programming language used is Python 3.0.

2. Materials and Methods

The turning operation was carried out on a conventional lathe machine (DUO Machine
Corps, Rajkot, India). The workpiece for machining is AISI 304 steel which has wide
applications in aerospace components, such as valves, special screws, aircraft fittings,
in the fertilizer industry, in equipment in the food processing industry, in households
(kitchenware) and in components utilized in harsh chemical environments. The chemical
constituents of AISI 304 steel are mentioned in Table 1. The cutting insert of tungsten
carbide (Widia’s CNMG120408) of TN 2000 grade having corner radius of 0.8 is used
clamped on Widia’s tool holder. The input parameters for machining are cutting speed,
depth of cut, feed rate and nanoparticle concentration whereas the response parameter is
surface roughness. The input parameters and their levels are depicted in Table 2. In order
to measure the average surface measurement (Ra), a surface roughness tester (Mitutoyo
SFJ 210) is used. The roughness tester’s probe comprises of a diamond tip having radius of
2 µm, which traverses on the surface of workpiece. The probe has the retraction speed of
1 mm/s and measuring speed of 0.25 mm/s and 0.08 mm as its cut off length. The surface
roughness tester has a measuring range of 360 µm (−200 µm to 160 µm). For recording the
value of surface roughness, at the circumference of the workpiece, at six different locations
the indenter of the tester is used at those locations for measuring the average value of
surface roughness.

Table 1. Chemical constituents of AISI 304 steel.

Elements S P C Mo Cu Si Mn Ni Cr Fe

Weight% 0.02 0.027 0.065 0.13 0.14 0.3 1.78 8.1 18.2 71.2

Table 2. Input parameters used in the current study.

Levels/Factors −1 0 1

Depth of cut (mm) 0.6 0.9 1.2
Feed rate (mm/rev) 0.08 0.12 0.16

Cutting speed (m/min) 60 90 120
Nanofluid concentration (wt.%) 0.5 1.0 1.5

The coolant used for cutting is a biodegradable-based cutting fluid enriched with
water-based alumina nanofluids of average particle size of 30 and 40 nm. The alumina
nanoparticle offers higher conductivity in the cutting fluid and each particle size enriched
cutting fluid is individually used. The colloidal suspension of alumina nanoparticles in
water having average particle size of 30 nm and 40 nm is incorporated in vegetable oil
for preparation of the cutting fluid. The nanofluid samples are prepared in three varying
volumetric concentrations of 0.5%, 1% and 1.5%. The prepared nanofluids are discharged
onto the machining zone using minimum quantity lubrication setup, which delivers the
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cutting fluid in atomized form. Each experiment is repeated thrice and the average value
of surface roughness is taken for enhanced accuracy. The machining setup is shown in
Figure 1, comprising of roughness tester, MQL setup and AISI 304 steel workpiece and
pneumatic supply.
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2.1. Machine Learning Models for Predicting Surface Roughness
2.1.1. Linear Regression

This is one of the simplest methods of solving any predictive problem and is the one
of the popular machine learning algorithms. It aids in predicting real or numeric variables.
It exhibits a linear relationship within a dependent variable and one or greater than one
independent variables, thus it is termed linear regression.

The equation of linear regression is represented in Equation (1):

Y = ao + a1X + ε (1)

Y = dependent variable
X = independent variable
ao = intercept of the line
a1 = linear regression coefficient
ε = random error
Linear regression can be categorized as simple linear regression involving a single

independent variable to predict the numerical dependent variable value and multiple linear
regressions which involve more than one independent variable to predict the numerical
dependent variable value.
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2.1.2. Random Forest

Random forest is a machine learning algorithm based on ensemble learning which
combines multiple classifiers for solving the problem and enhances the performance of
the model [43]. This group learning approach utilizes bootstrap samples from a training
dataset for creating forest of decision trees [44]. The decision nodes and leaves explain the
decision tree, where leaves represent the final outcome and decision nodes are the points
where the data are split. This model is widely used owing to its simplicity and diversity
and is used for both regression and classification. The construction of random forest model
is depicted in Figure 2.
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2.1.3. Support Vector Machines

This machine learning model was proposed by Vapnik [46]. Support vector machine
is used for prediction of discrete values and is a type of supervised learning algorithm.
Support vector regression is a technique lying under the domain of support vector machine.
The main aim of this technique is to get the line of best fit which is a hyperplane having
maximum number of points as shown in Figure 3. In order to frame the hyperplane, SVR
selects extreme points/vectors and these extreme points are termed as support vectors,
which thus justifies the nomenclature of the technique. Support vector regression aims to
fit the best line in the range of threshold value, which is the distance between the boundary
line and the hyperplane. The flow chart explaining the process of building support vector
machines is shown in Figure 4.
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2.2. Performance Indicators

Three different performance indicators are selected for judging the accuracy of the
models in predicting the surface roughness values, which are coefficient of determination
(R2), mean absolute percentage error (MAPE) and mean square error (MSE) as given in
Equations (2)–(4), respectively.

R2 = 1 −
∑n

i=1

(
Yi − Ŷ

)2

∑n
i=1

(
Yi − Ȳ

)2 (2)
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MAPE =
1
n ∑n

i=1

∣∣∣Yi − Ŷi
∣∣∣

Yi
× 100 (3)

MSE =
1
n ∑n

i=1 (Yi − Ŷ)
2

(4)

where n is number of data points, Yi represents observed values, Ŷ represents predicted
values and Ȳ signifies the mean value of Y.

2.3. Data Pre-Processing

The surface roughness values at 30 and 40 nm particle size of alumina obtained from
the experiments are imported in our jupyter notebook using python inbuilt library known as
pandas which is mostly used for data modification. Standard scalar technique is employed
to remove the scale indifference, which usually occurs due to difference in units of different
features such as feed rate, cutting speed, depth of cut and nanoparticle concentration.

3. Results and Discussions

The design of experiments using four factors (cutting speed, feed rate, depth of cut and
nanoparticle concentration) and three levels (low, medium and high) is made and a total of
27 experiments are planned using the box-behenken approach with design expert software.
In this paper, the response parameter is mainly surface roughness, which comes under
non-beneficial category and, therefore, it should be the minimum. To minimize it, proper
lubrication and cooling is required at the machining interface. Therefore, in the present
paper, alumina nanofluid of two different average particle sizes mixed with biodegradable
cutting fluid with MQL is used for cooling and lubrication purpose. The response table is
shown in Table 3.

Table 3. Experimental design for MQL turning.

S.No. Cutting Speed
(m/min)

Feed Rate
(mm/rev)

Depth of Cut
(mm)

Nanoparticle
Concentration

(%)

Surface Roughness
at 30 nm

Surface
Roughness

at 40 nm

1 90 0.16 1.2 1 2.89 2.63
2 60 0.12 1.2 1 2.32 2.30
3 120 0.12 0.9 1.5 1.40 1.43
4 60 0.12 0.6 1 2.37 2.16
5 90 0.12 0.9 1 2.30 2.05
6 60 0.12 0.9 0.5 2.50 2.36
7 120 0.12 1.2 1 1.64 1.77
8 120 0.08 0.9 1 1.79 1.63
9 90 0.08 1.2 1 1.57 1.72

10 60 0.08 0.9 1 2.08 1.89
11 90 0.12 0.9 1 1.99 2.02
12 120 0.12 0.9 0.5 2.12 1.92
13 90 0.12 1.2 1.5 1.81 1.83
14 90 0.12 0.9 1 2.02 1.98
15 60 0.16 0.9 1 3.01 2.95
16 120 0.12 0.6 1 2.03 1.91
17 90 0.12 0.6 0.5 2.24 2.05
18 90 0.08 0.6 1 1.82 1.66
19 90 0.08 0.9 0.5 2.31 2.21
20 90 0.08 0.9 1.5 1.41 1.57
21 60 0.12 0.9 1.5 1.81 2.05
22 90 0.12 1.2 0.5 2.21 2.05
23 90 0.12 0.6 1.5 1.78 1.97
24 90 0.16 0.6 1 2.93 2.76
25 90 0.16 0.9 1.5 2.39 2.53
26 90 0.16 0.9 0.5 2.96 2.67
27 120 0.16 0.9 1 2.49 2.55
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3.1. Prediction of Response (Surface Roughness) by Different Machine Learning Models

The surface roughness obtained from turning operation was predicted using three
different regression-based machine learning models. The total number of data points are
27, which were used for model creation and evaluation. Two-thirds (2/3) of the input data
were picked at random for model construction (training). The model was validated using
the remaining 1/3 of the input data (testing). In predicting surface roughness by different
models, four different input variables are used, namely feed, depth of cut, cutting speed
and nanoparticle concentration. In order to minimize the errors that may arise due to the
unit differences of the input parameters, scaling was performed of both training and testing
data using standard scalar. For ensuring best parameter for our model, cross validation
was performed using GridSearch CV and to check the underfitting or overfitting of the
model; both training and test errors are used.

3.2. Analysis of Surface Roughness at Particle Size of 30 nm

The surface roughness values obtained from 27 experiments are used for testing and
training purposes. The different values predicted by three models are presented in Table 4.
To judge the accuracy of the predicted models, three performance indicators are used. The
testing and training errors are shown in Table 5. The significance of feed rate is encountered
in case of surface roughness as helicoid generation takes place and becomes broader and
deeper when feed rate is increased. The similar trend can be observed in investigations
performed by Bouacha et al. [48] in their study. The heat dissipation property is improved by
the use of alumina nanoparticles as it enhances lubrication as well as wetting characteristics
on the rake face of cutting tool. As per the error metrics used, random forest gave better
prediction followed by linear regression and SVR. The illustrations in Figure 5 show the
contour plot of surface roughness with the variation of feed and nanoparticle concentration
at fixed velocity rate 90 m/min and at fixed depth of cut 0.9 mm. As mentioned, in Figure 5
the dark blue region holds the minimum value of surface roughness (i.e., less than 1.50). It
is also the optimum region for surface roughness with particle size 30 nm. The prediction
of surface roughness by different algorithms is plotted by different colors and is compared
with that of the experimental values in Figure 6. The comparative graph between predictive
and experimental values is made using matplotlib library. Predicted values from random
forest are closer to the experimental values, thus reducing the error in case of RF and
making it a better performing model out of the three.

Table 4. Predicted values from different machine learning algorithms at particle size 30 nm.

Experiment
Number

Experimented
Value Predicted SVR Predicted RF Predicted LR

9 1.57 1.58 1.58 1.48
14 2.02 2.16 1.94 2.10
10 2.08 2.14 2.35 2.18
22 2.21 2.45 2.38 2.36
1 2.89 2.95 2.91 3.29
12 2.12 2.27 2.37 2.23
17 2.24 2.55 2.38 2.40
18 1.82 1.86 1.81 1.82
13 1.81 1.79 1.80 1.81
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Table 5. Performance metrics at particle size 30 nm.

Test Errors Train Errors

Models/Performance Metrics R-Squared MSE MAPE R-Squared MSE MAPE

SVR 0.8053 0.0238 0.0547 0.9753 0.0057 0.0336
RF 0.8176 0.0223 0.0515 0.9710 0.0067 0.0322
LR 0.7660 0.0287 0.0547 1 4.6838 × 10−31 3.0185 × 10−16
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3.3. Analysis of Surface Roughness at Particle Size of 40 nm

The surface roughness prediction for particle size 40 nm from different machine
learning algorithms is shown in Table 6. The average particle size of alumina is increased
in this case. In case of 40 nm particle size, based on the error metrics as mentioned in
Table 7, it can be inferred that random forest is a better performing and well fitted model
in comparison to other two models. The fitness of the model is dependent upon the
closeness between the testing and train errors. The contour plot shown in Figure 7 for
surface roughness with particle size 40 nm depicts the variation in surface roughness along
with feed rate and nanoparticle concentration. Here also the dark blue region shows the
optimum or minimum value of surface roughness at fixed velocity 90 m/min and depth
of cut at 0.9. The comparison between the predictive and experimental values is depicted
in Figure 8.

Table 6. Predicted values from different machine learning algorithm at particle size 40 nm.

Experiment
Number

Experimented
Value Predicted SVR Predicted RF Predicted LR

9 1.72 1.87 1.87 1.52
14 1.98 2.18 2.07 1.93
10 1.89 2.07 1.93 1.79
22 2.05 2.35 2.26 2.04
1 2.63 2.53 2.53 2.95
12 1.92 2.10 1.94 1.83
17 2.05 2.31 2.23 2.04
18 1.66 1.92 1.86 1.43
13 1.83 2.03 1.92 1.69

Table 7. Performance metrics at particle size 40 nm.

Test Errors Train Errors

Models/Performance Metrics R-Squared MSE MAPE R-Squared MSE MAPE

SVR 0.3489 0.0459 0.1075 0.8497 0.0254 0.0642
RF 0.7231 0.0195 0.0645 0.7968 0.0344 0.0695
LR 0.6368 0.0256 0.0640 1 1.616 × 10−31 1.5186 × 10−16
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4. Conclusions

The machining of AISI 304 steel was conducted in a mist lubrication environment of
varying sizes of nanoparticles in the cutting fluid, and surface roughness was measured in
both the conditions. The surface roughness was predicted using different machine learning
algorithms for both the particle sizes, which is the novelty of the study performed. The
application of machine learning is suitable in today’s environment in minimizing errors
along with time and resources. The following conclusions can be drawn from the study:

• The experimental value of surface roughness obtained from 40 nm particle size of
alumina is lower in comparison to 30 nm particle size.

• Among the three machine learning models used in this study, random forest outper-
formed the other two models as the errors obtained from the performance metrics in
both the cases of average particle size were lower for random forest in comparison to
errors obtained from the other two models.

• The R-squared value of the training errors in case of random forest for 30 and 40 nm size
is 0.9710 and 0.7968, respectively.

• As per the application of the three machine learning models with both the particle sizes,
it can be seen that models performed better with 30 nm particle size in comparison
to 40 nm.

• The particle sizes of alumina used in this investigation can be used in further studies
for hybridization purpose with other nanofluids to enhance the properties of the
cutting fluid.

• It can be seen that there is a difference between train and test errors, which can be
minimized if the data points are increased, as they were limited to 27 in this case.

Furthermore, the prediction of more response parameters such as cutting force, tool tip
temperature and cutting power, incorporating various cooling strategies such as cryogenic
cooling and high pressure cooling, and optimization of MQL parameters can be explored
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using machine learning techniques. In order to achieve better accuracy, higher numbers of
data points need to be collected i.e., by increasing the number of experiments.
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Nomenclature

LR Linear Regression
SVR Support Vector Regression
RF Random Forest
MSE Mean Square Error
MAPE Mean Absolute Percentage Error
ANN Artificial Neural Network
DNN Deep Neural Network
BPNN Back Propagation Neural Network
Y dependent variable
X independent variable
ao intercept of the line
a1 linear regression coefficient
ε random error
Yi observed values
Ŷ predicted values
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