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Abstract: Hydraulic components are often subjected to sliding contacts under starved or mixed
lubrication. The condition of starved lubrication occurs during the start-up phase of the hydraulic
machines or at low working temperature, causing friction and wear of components such as the
cylinder block or the valve plate. The aim of this paper was to evaluate the hydrophobicity and
oleophilic behavior of lead/lead-free bronze coatings under different texture conditions obtained
by varying the diameter and the density of the dimples. The wettability tests were performed using
sessile drop tests with oil and water liquids. The dimple parameters were analyzed using confocal
microscopy, while the XRF analyses were performed to evaluate the composition of the bronze
coatings. Based on the wettability measurements using oil and water, it was possible to assess that
the porous surface acted as oil reservoirs that could prolong the life of lubricating oil layer, and may
have resulted in a superior wear resistance. Furthermore, a relevant hydrophobicity was highlighted,
suggesting that the surface texturing promoted the water-repellent barrier action on the surface. The
experimental results showed that the discrepancy in surface properties in oil and water was raised
when using the lead bronze coating. These coupled oleophilic and hydrophobic behaviors could play
a beneficial role in sustaining the durability of a lubricating oil layer under a condition of continuous
water-droplet impact.

Keywords: wettability; lubrification; oleophilicity; hydrophobicity; laser surface texturing

1. Introduction

Friction and wear processes are generated in all parts subjected to a sliding con-
tact. The study of the tribological behavior of systems in reciprocating contact is a
topic of fundamental importance in many industrial fields, such as mechanics [1–3], hy-
draulics [4], and prosthetics [5,6], in order to reduce the deterioration of components and
improve their working life. Ruggiero et al. [7] investigated the tribological performances
of tooth-to-tooth contact and material-to-natural tooth contact (zirconia vs. zirconia and
natural tooth vs. zirconia) using a reciprocating tribometer under lubricated conditions
(artificial saliva). Wang et al. [8] analyzed the effects of textured surfaces on the friction
performance of a low-speed and high-torque water hydraulic motor. The experimental
results showed that about 62.6% of the wear-loss reduction could be reached using an
ellipsoidal pit surface, and the wear loss mainly occurred on the edges of pits.

Typically, the problem of friction and wear is addressed by using lubricants, but in
some working conditions, the lubrication may be insufficient. For this reason, in the last few
decades, different types of coatings have been studied to guarantee lubrication even in the
most severe conditions, such as coatings based on solid lubricants (lead and bismuth) [9,10],
functionalized surfaces to create superhydrophobic/superoleophobic coatings [11,12], self-
lubricating multilayered coatings [13], or textured surfaces. Surface texturing has been
known for a long time, as shown by the numerous studies reported in the scientific litera-
ture [14–17], but the aim of this study was to evaluate how the surface texturing affected
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the oleophilic and hydrophobic properties of the coating. Yang et al. [18] studied the effects
of micro/nano hierarchical structures on the surface of a titanium alloy (Ti-6Al-4V), and
observed that the contact angle of the drop increased as the density of the microtextured
surface increased, and the wetting state of the textured surfaces conformed to the Cassie
model. Volpe et al. [19] analyzed the effects of three different surface-texture geometries on
aluminum alloy surfaces. It was shown that by improving the laser texture strategy, it was
possible to reduce the laser processing time to produce superhydrophobic surfaces.

In recent times, several surface-texturing techniques have been developed, including
micromilling [20], hot embossing [21], electrochemical machining [22], wire EDM ma-
chining [23], and surface laser texturing [24–27], which is the most applied technique for
obtaining various micropatterns on a material surface due to its high precision, lower
environmental impact, good controllability, and flexibility without any chemical treatment.
The most widely used surface laser texturing taxonomies include the nanosecond (ns),
picosecond (ps), and femtosecond (fs), as they have better controllability, accuracy, and
complexity [28]. Due to these advantages, the surface laser texturing technique has been
extensively used in numerous applications to improve the tribological performance of coat-
ings, such as lubrication in bearing applications; to improve adhesion bond strength in var-
ious coating applications; and fabrication of structures for hydrophobic/superhydrophobic
surfaces [29–31].

The laser surface texturing has several advantages in terms of tribo-mechanical behav-
ior. Indeed, the presence of micro-dimples, could allow an enhancement of the tribological
behavior optimizing the surface lubrication, thanks to a reservoir action supplied by the
tailored surface dimples [32]. Besides, in hydrodynamic or mixed lubrication, these surface
microcavities acts as hydrodynamic bearings [33]. A further relevant feature of the laser
surface texturing is the capacity to decrease the abrasive wear, since the cavities of the
profile behave like trap for the debris that are formed during the relative motions with
other bodies improving the tribological properties of the coated surface [27].

Although the tribological behavior of textured coatings has been analyzed in many
scientific studies, the focus of the authors is not to evaluate the effect of the texture on the
friction and wear of the coating, but rather how the wettability of the coating varies and
in particular the hydrophobicity and oleophilic, and therefore lubrication, changing the
geometric parameters of the dimples and the composition of the bronze alloy.

The possibility of correlating the microstructural properties with the surface interaction
with polar and non-polar liquids, such as water and oil, represents an increase in knowledge
for this class of materials, providing further stimuli for their development and industrial
applicability of this technique in this field [34,35].

In this paper the wettability measurements with pump oil and water were performed
on different types of lead/lead-free textured coating, varying the diameter and density of
the dimples. The surface and dimples parameters were analyzed using confocal microscopy,
while XRF analyses were performed to evaluate the composition of the bronze coatings.

2. Materials and Methods
2.1. Materials

All tests were carried out on two different bronze alloys (the specimens are shown in
Figure 1): one called EN CC480K, which did not contain lead; and one called EN CC496K,
with a percentage of lead of about 12%.

These materials are typically used for antifriction coatings in hydraulic pumps and
motors, such as on valve plates [36], cylinder blocks [4], and slippers [30], or in the au-
tomotive field [37,38]. As is known, in the bronze alloys used for components that can
work in conditions of starved lubrication and high friction, lead is used as a solid lubricant.
However, lead is a toxic element, and therefore manufacturers are attempting to eliminate
or replace it (with bismuth). For the above reasons, we decided to evaluate the behavior of
two bronze alloys, one containing lead and one free of lead.
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Figure 1. (a) EN CC480K bimetal disk (lead-free bronze); (b) EN CC496K bimetal disk.

Table 1 shows the results of the XRF analyses of the two different bronze alloys. As
shown in the table, the EN CC480K alloy contained 90% copper and a trace amount of
Pb, while the EN CC496 K alloy had a high lead content, ranging between 10% and 15%.
The effects of the different compositions on the wettabilities of the coatings were analyzed
through the use of an EDS analysis.

Table 1. Compositions of bronze alloys.

Bronze Alloys Sn% Pb% Ni% Si% Cu%

EN CC480K 7.94 0.06 1.08 0.31 90.5
EN CC496K 10.86 12.43 0.03 0.15 76

The textured microstructures on the bimetal coated cylinder disk samples were ob-
tained by using a surface laser texturing technique (Laser P 400, GF Machining Solution,
Schaffhausen, Switzerland), with maximum power of 40 W and a spot size of 15 µm. In
particular, the surface texture was tailored by varying the diameter and the density of the
dimples on the surface, for both the lead-based and lead-free bronze coatings. The codes
and surface-texture parameters for all batches are reported in Table 2.

Table 2. Codes and surface-texture parameters for all batches.

Sample Typology of Texture Dimple Diameter (µm) Density Area (%)

AR As received / /

B100-D10
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Samples were investigated with three laser-beam diameters (100, 150, and 200 µm).
Furthermore, for a laser beam of 100 µm, four dimple surface densities were analyzed, in
the range of 10–40%. For each batch, 3 replicas were created.

A total of 42 samples were created: they were classified based on their textured surface
and coating characteristics. In particular, each batch was coded with an acronym using a
prefix that referred to the coating characteristic (PbB and PbF, for the Pb-based and Pb-free
surfaces, respectively. A second suffix, “B” coupled with a number, referred to the beam
diameter (expressed in microns). The last suffix, “C” coupled with a number, referred
to the density of the surface area of the laser-melted surface. As an example, the code
PbF-B100-D20 indicates a sample with a Pb-free surface, textured with a beam diameter
of 100 µm and a surface density of 20%. PbB-AR and PbF-AR codes were used for the
as-received samples of Pb-based and Pb-free surfaces, respectively.

2.2. Wettability Measurments

Water-contact-angle measurements were performed by using a tensiometer instrument
(AttensionTheta by Biolin Scientific, Gothenburg, Sweden). The test was performed with
bidistilled water and pump oil. The oil lubricant used was LI-HIV 46 (viscosity index 175).
It is commonly applied in pumps and motors. Table 3 summarizes the main physical
parameters of the lubricating oil.

Table 3. LI-HIV 46 oil parameters.

Parameters Value

Density at 20 ◦C 873 kg/m3

Viscosity at 40 ◦C 46 cSt
Viscosity at 100 ◦C 9 cSt

Viscosity index 175
Freezing ◦C −35

Flammability ◦C 210

A droplet of the liquid (volume of 3 µL) was softly sited on the coating surfaces in
conditions that were open to air and at room temperature (25 ◦C). After the deposition, the
droplet profile was recorded by a microcamera and automatically analyzed by the software
supplied with the tensiometer instrument. For each sample, 10 replicas (randomly located
on the surface) were performed for all batches.

Morphological analyses of the textured surface and related surface features were
carried out by means a 3D confocal optical microscope (Leica DCM 3D, Wetzlar, Germany).
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3. Results and Discussion
3.1. Surface Morphology

To better evaluate the surface characteristics of the coatings and the geometry of the
dimples, confocal microscopies were carried out on both the EN CC480K alloy coating and
the EN CC496K alloy coating. Figure 2 shows the 3D scans of the AR samples (Figure 2a,b)
and those of two B150-D10 textured samples (Figure 2c,d). As reported in Table 4, the
surface of the PbB-AR sample had a higher average roughness than the PbF-AR sample,
measuring approximately 100 nm. This may have been because lead bronze alloys exploit
the insolubility of lead in copper to create lead-free globules in a copper–tin matrix. The
soft lead phase deformed easily and was smeared on the surface to form a solid lubricant,
leaving empty pockets that could have been the cause of the increased roughness.
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Figure 2. Comparison of 3D confocal microscopies: (a) PbF-AR sample; (b) PbB-AR sample;
(c) PbF-B150-D10; (d) PbB-B150-D10.

Table 4. Roughness parameters of untextured specimens in an area of 636.61 × 477.25 (µm2).

Roughness PbB-AR PbF-AR

Max (µm) 1.728 2.495
Min (µm) −6.220 −6.181

Mean (nm) 474.79 583.25

As shown in Figure 2c,d, the dimensions of the dimples were comparable with the
project dimension, although the surface laser texturing technique did not allow them to have
a perfect hemisphere. However, it should be noted that the surface laser texturing process
caused asperities called pile-ups, which increased the surface roughness by involving an
increase in friction and possible debris formation [27,39].

To evaluate the effects of the surface laser texturing on the surface of the bronze
coatings, the roughness profiles of the textured samples obtained by varying the diameter
of the dimples (Figure 3) and the profiles of the textured samples obtained by varying the
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density of the dimples were compared (Figure 4). The roughness profiles were obtained
while taking into consideration the portion of the specimen with the maximum density
of dimples. When examining the graphs in Figure 3, it is possible to notice some of the
negative aspects related to the laser beam texturing technique. In fact, by increasing the
diameter of the dimples, the depth of the dimples also increased, reaching peaks of 30 µm
(Figure 3c). This was due to the inability of the diameter of the laser beam to draw a
perfect hemisphere. Furthermore, as shown in Table 5, as the diameter of the dimples
increased, the average surface roughness also increased. This aspect was probably due to
the formation of pile-ups (more visible in Figure 3a), which were much greater than the
quantity of material removed.
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Figure 4. Comparison of roughness profiles when varying dimple density: (a) PbB-B100-D20;
(b) PbB-B100-D30; (c) PbB-B100-D40.

Table 5. Roughness parameters of PbB specimens with different dimple diameters in an area of
636.61 × 477.25 (µm2).

Roughness PbB-B100-D10 PbB-B150-D10 PbB-B200-D10

Max (µm) 17.409 11.174 8.866
Min (µm) −16.384 −31.646 −34.295

Mean (µm) 3.330 4.161 4.584

Figure 4 shows a comparison of the roughness profiles as the density varied. What
should be noted when analyzing the curves is that the greater the density of the dimples
on the surface, the smaller the portion of material that separated one dimple from another,
until it became real roughness in the case of the PbB-B100-D40 sample. While the increase in
the density of the dimples ensured a more effective lubrication due to the greater presence
of “oil reservoirs” on the surface, on the other hand, it also involved a substantial increase
in the surface roughness, approximately 3–4 times greater than that obtained by varying the
diameter of the dimples. Furthermore, as shown in Table 6, in this case the depth values for
the dimples that were obtained were even higher than in the previous case, up to 40–45 µm
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in depth. However, as will be analyzed in the next chapter, a greater increase in roughness
led to an increase in the hydrophobic characteristics of the coatings.

Table 6. Roughness parameters of PbB specimens with different dimple densities in an area of
636.61 × 477.25 (µm2).

Roughness PbB-B100-D20 PbB-B100-D30 PbB-B100-D40

Max (µm) 14.472 28.936 27.515
Min (µm) −45.045 −49.443 −18.330

Mean (µm) 8.1984 12.579 10.467

Figure 5 shows a comparison of the roughness profiles of the lead-free bronze and
lead bronze samples. As shown in Figure 5a,b, in the cases of both the PbB-B100-D10 and
PbB-B100-D40 samples, the profile drawn by the dimples had a more regular trend, and the
lower surface of the dimples had a less-indented appearance. This more regular trend was
justified by the lower hardness of the lead bronze coating compared to the free-lead bronze.
In fact, for both the PbF-B100-D10 and PbB-B100-D40 samples, the depths of the dimples
were much greater than that defined in Table 2, and this was justified by the longer time
taken by the laser to melt the coating.
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Figure 6 shows the statistical parameters of the surface profile used to analyze the
correspondence between the geometric design parameters of the texture and the real
geometric parameters averaged as a function of 10 measurements for each type of texture.
Therefore, by analyzing the statistical parameters of the texture, the numerical values of
which are shown in Table 7, it was possible to confirm that the surface laser texturing
process generated a variability of a few tens of microns with respect to the design values,
and this was due to the diameter of the laser beam of the machine used, as well as the
type of material. It is important to specify that the data were obtained while considering
both the PbF and PbB specimens to have broader statistical data. However, as already
mentioned, and as shown in Figure 5, there was a difference in workability between the
two types of coatings that certainly depended on the presence of lead.
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Table 7. Variation of surface geometric parameters.

Parameters B100-D10 B150-D10 B200-D10 B100-D20 B100-D30 B100-D40

S (µm) 119.50 ± 8 243 ± 20 411 ± 22 38.2 ± 5 16 ± 6 15.7 ± 2
D (µm) 113 ± 10 165.4 ± 15 221.6 ± 20 119.2 ± 7 138 ± 8 154.3 ± 4
H (µm) 14.1 ± 3 22.7 ± 5 27 ± 2 26.4 ± 7 37.3 ± 10 20.4 ± 4

3.2. Surface Wettability

In order to better correlate the morphologies of the textured surfaces with the surface
properties of the bronze coatings, wettability measurements were carried out. Some
representative images of 3 mL droplets deposited on the textured surfaces, with varying
surface texturing, are shown in Figures 7 and 8 for both the Pb-based and Pb-free coated
surfaces. In particular, the wettability measurements were carried out with water (polar
liquid—Figure 7) and pumping oil (nonpolar liquid 002D—Figure 8).
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When evaluating the wettability results, an evident correlation of the surface properties
with the polar and nonpolar characteristics of the liquid was identified. All the specimens
in both the PbB and PbF batches showed a predominantly hydrophobic behavior with
water and an oleophilic one with pump oil. In particular, the surfaces showed a strong
interaction with the oil, which spread easily in the interstices of the textured surface, which
led to very low contact angles.

Moreover, it is worth noting that the texturing procedure contributed significantly
to modifying the surface properties of the bronze coatings. The PbB-AR and PbF-AR
specimens showed a more evident surface hydrophilicity and a less marked oleophilic one
compared to the surface-treated ones. This qualitatively suggested that the surface without
laser treatment did not allow selective operation toward liquids, potentially offering a
less-effective lubricating capacity.

In order to be able to better quantitatively correlate the surface wettability perfor-
mances with the surface morphologies, Table 8 summarizes the water contact angle (WCA)
and pump oil contact angle (OCA) for all the investigated batches.

Table 8. Water and pump oil contact angles for PbF and PbB batches.

PbF Batches WCA (◦) OCA (◦) PbB Batches WCA (◦) OCA (◦)

PbF-AR 93.0 ± 3.7 16.5 ± 1.6 PbB-AR 100.0 ± 3.7 29.3 ± 2.9
PbF-B100-D10 109.6 ± 3.6 17.2 ± 1.7 PbB-B100-D10 149.9 ± 4.2 12.2 ± 1.2
PbF-B150-D10 122.1 ± 3.2 20.2 ± 2.0 PbB-B150-D10 133.5 ± 4.8 11.6 ± 1.2
PbF-B200-D10 100.1 ± 2.5 20.1 ± 2.0 PbB-B200-D10 105.3 ± 4.0 22.0 ± 2.2
PbF-B100-D20 134.9 ± 7.0 14.0 ± 1.4 PbB-B100-D20 140.8 ± 3.6 10.5 ± 1.0
PbF-B100-D30 149.5 ± 4.2 9.3 ± 0.9 PbB-B100-D30 141.5 ± 2.1 11.2 ± 1.1
PbF-B100-D40 144.3 ± 4.8 15.6 ± 1.6 PbB-B100-D40 145.5 ± 3.0 13.0 ± 1.3

Concerning the PbF batch, the laser surface texturing induced an increase in the contact
angle in a range of about 15◦–50◦. The higher result was observed for PbF-B100-D30, which
showed a WCA of 149.5◦, close to the superhydrophobic threshold [31].

When evaluating the evolution of the WCA values with varied surface texturing, it
was seen that the dimple size played a less-relevant role than the dimple density. Indeed,
the specimens characterized by the same density and a growing dimple size showed slight
similar water contact angle values. Conversely, with increasing dimple density, a significant
increase in the hydrophobic surface properties occurred.

In addition, when assessing the evolution of the OCA trend when varying the surface
texturing, the oleophilic properties were quite similar, if not worse. Only the PbF-B100-D30
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batch showed an evident increase in the interfacial affinity with nonpolar liquids, as shown
by an average OCA value of 9.3◦.

Different considerations could be addressed by evaluating the contact angle values
for the PbB batches. For samples with the lead-based bronze coating, the laser surface
texturing had an evident effect on the surface wettability performances. A coupled increase
in the hydrophobic and oleophilic behaviors took place. All samples characterized by a
laser beam diameter of 100 µm exhibited a WCA close to 150◦. Furthermore, the OCA
experienced a reduction of up to 20◦.

Not only the liquid/solid contact angles were evaluated, but also the sliding angles, in
order to understand the surface wettability behavior [40]. All the samples before and after
texturing showed a high liquid sliding angle (90◦), indicating a high liquid adhesion (data
not reported in the table). Thus, creating a textured structure did not change the water
adhesion on the sample surface, regardless of the coating nature.

The marked hydrophobic and oleophilic behaviors found in the laser-textured samples
could be related to the intrinsic surface morphology acquired by the coatings at the end of
the surface treatment. The resulting surface profile was constituted by a larger number of
peaks and valleys, making the surface regularly jagged and rough.

This was in accordance with Wenzel’s theory, which relates the surface roughness to
the liquid/solid contact angle [41,42]. Indeed, Wenzel proposed a relationship between the
surface-roughness ratio (R: ratio of the rough surface area to the smooth surface one) and
the contact angles on smooth and rough surfaces:

cos(θw) = R cos(θ) (1)

where θw is the Wenzel contact angle (contact angle on rough surface) and θ is the ideal
contact angle (contact angle on smooth surface). According to this equation, by increasing
the surface roughness, the hydrophobic surface becomes more hydrophobic, and the
hydrophilic surface becomes more hydrophilic [43]. In fact, as shown in Table 4, both
PbR_AR and PbB-AR were hydrophobic and oleophilic before texturing, and they become
more hydrophobic and oleophilic after texturing. In this Wenzel state, the liquid penetrated
the rough surface cavities; such behavior is known as the homogenous wetting mode,
in which the interaction and the adhesion between the liquid and the solid surface are
high [44].

In order to better investigate the correlation between the wettability and the charac-
teristics of the surface profile of the specimens, an index related to the dimples’ surface
morphologies, named the DS index, was calculated according to the following expression:

DS index = (d ∗ h)/s (2)

where d and h are the diameter and height of the dimple, respectively. Consequently, d ∗ h is
the dimple area, and S is the length of the peak between two dimples. All the measurements
were defined in µm, thus the DS index was expressed in µm. The greater this index, the
greater the contribution of the cavities to the surface peaks.

Figure 9 shows the evolution of the water contact angle (WCA) and oil contact angle
(OCA) with the DS index for Pb-based and Pb-free textured samples.

For PbF batches (blue diamond marker in Figure 9), the WCA and OCA had a quite
good linear relationship with the DS index. The slope increased for the WCA values, and
vice versa (the slope decreased for the OCA). This result suggested that an increase in the
size of the dimples and their depth played a key role in enhancing the hydrophobic and
oleophilic behavior of the surface.

For the PbB batches (orange circle marker in Figure 9), a clear bilinear trend in the
WCA and OCA vs. DS index could instead be identified. The trend initially showed a
strong change in the contact angles due to a slight change in the DS index. The slope of
the fitting line (positive for WCA and negative for OCA) was very high. Subsequently,
for values of DS > 1.4, the trend showed a plateau zone. An increase in the dimple shape
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(diameter and depth) did not provide a statistically significant change in the contact angle.
The fitting line had a very low slope, indicating a trend almost parallel to the x axis.
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This behavior showed that for the PbB batch, a very extensive and invasive laser tex-
turing was not necessary to induce a surface-modification effect in the coating. A DS index
close to 4 was sufficient to guarantee an effective surface hydrophilicity and hydrophobicity.

Based on wettability measurements with oil and water, it was possible to assess that
the porous textured surface was tailored to act an oil reservoir thanks to its good oleophilic
behavior. This can prolong the life of lubricating oil layer and may result in a superior wear
resistance. Furthermore, a relevant hydrophobicity was highlighted, suggesting that the
surface texturing promoted the water-repellent barrier action on the surface.

4. Conclusions

The experimental studies in this paper were conducted to understand the influence of
surface laser texturing and roughness on the wettability of lead-free bronze and lead bronze
coatings. In order to increase the efficiency of components that work under reciprocating
sliding, classes of textured specimens were obtained by varying the diameter of the dimples
in a range of values between 100 and 200 µm and varying the surface density of the dimples
between 10 and 40%. By using a low-economic-impact technique, such as surface laser
texturing, it is possible to decrease the friction coefficient by increasing the hydrophobicity
and oleophilic, and therefore improve lubrication, especially in lubrication-starved con-
ditions. The results obtained on the basis of the wettability measurements with oil and
water highlighted that the porous textured surface was adapted to serve as an oil reservoir
thanks to its good oleophilic behavior. This can extend the life of the lubricating oil layer
and ensure better lubrication, even in hard-working conditions, resulting in superior wear
resistance. Furthermore, a significant hydrophobicity was highlighted, suggesting that the
surface texturing favored the water-repellent barrier action on the surface. For the tests
carried out on the PbF specimens, it was experimentally shown that an increase in the
size of the dimples and their depths played a key role in enhancing the hydrophobic and
oleophilic behavior of the surface, while regarding the PbB specimens, an increase in the
dimple shape (diameter and depth) did not provide a statistically significant change in
the contact angle, and therefore it was sufficient to guarantee a DS equal to 4, meaning a
coating with good hydrophobicity and oleophilic. Future work will concern the correlation
of the wettability tests with the tribological behavior of the coatings (both PbF and PbB)
in order to evaluate the extent to which the application of the surface texture affects the
friction coefficient of the coatings and the wear rate.
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