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Abstract: Information such as probability distribution, performance degradation trajectory, and
performance reliability function varies with the service status of rolling bearings, which is difficult
to analyze and evaluate using traditional reliability theory. Adding equipment operation status to
evaluate the bearing operation performance status has become the focus of current research to ensure
the effective maintenance of the system, reduce faults, and improve quality under the condition of
traditional probability statistics. So, a mathematical model is established by proposing the hierarchical
maximum entropy Bayesian method (HMEBM), which is used to evaluate the operation performance
status of rolling bearings. When calculating the posterior probability density function (PPDF), the
similarities between time series regarded as a weighting coefficient are calculated using overlapping
area method, membership degree method, Hamming approach degree method, Euclidean approach
degree method, and cardinal approach degree method. The experiment investigation shows that the
variation degree of the optimal vibration performance status can be calculated more accurately for
each time series relative to the intrinsic series.

Keywords: rolling bearing; performance degradation; variation degree; probability density function;
similarities between time series

1. Introduction

As the key components of rotating machinery, whether rolling bearings are in normal
working condition directly affects the running state of the host. As the running environment
of rolling bearings becomes more and more complex, changeable, and harsh, the perfor-
mance analysis and evaluation of rolling bearings are facing serious challenges. Therefore,
performance degradation analysis, evaluation, and fault diagnosis are very urgent and
necessary for rolling bearings, which will directly affect the safety and stability of the whole
host system [1–6]. The nonlinear contact and collision between the components (inner race,
outer race, rolling element, and cage) of rolling bearings lead to nonlinear and complex
dynamic characteristics in the performance degradation progress. Most attention focused
on rolling bearing concerns its performance degradation index, so it is generally necessary
to evaluate the degradation state of rolling bearing vibration performance effectively.

The performance maintaining relative reliability (PMRR) is used to characterize the
performance degradation degree of rolling bearings. Performance maintaining reliability
(PMR) is the probability of a rolling bearing running at the optimum performance status,
which can be expressed as a function [7]. During the period of optimal vibration perfor-
mance, there is almost no possibility of performance failure. Not only is the vibration
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data value small, but also the data fluctuation is not violent. Owing to the interaction and
coupling among internal and external factors, it is difficult to solve PMR using the existing
dynamic equations and statistical theory.

Adding equipment operation status to evaluate the performance reliability has become
the focus of current research to ensure the effective maintenance of the system, reduce
faults, and improve quality under the condition of traditional probability statistics [8].
The similarity between time series plays an important role in the analysis and evalua-
tion of performance degradation, which can be calculated using the overlapping area
method, membership degree method, Hamming approach degree method, Euclidean ap-
proach degree method, and cardinal approach degree method [9–11]. Therefore, this factor
should be considered in the dynamic evaluation process of PMR bearing vibration perfor-
mance. When calculating the PPDF, the similarity between time series can be regarded as a
weighting coefficient, so the variation degree of the optimal vibration performance can be
calculated more accurately.

Traditional performance degradation evaluation methods often need complete per-
formance data and assume that the data are deterministic. Weibull distribution plays
an important role in the research of bearing reliability and bearing life in the traditional
theoretical system. Many scholars build models using Weibull distribution or compare
the test results with the calculation results using Weibull distribution, which greatly pro-
motes the development of bearing performance reliability [12–15]. However, owing to the
high reliability and long performance degradation period of rolling bearings, it is difficult
to obtain complete vibration performance data in the experiment, and the collected test
data have the typical characteristics of poor information. Poor information occurs when
the characteristic information of objects researched is incomplete or inadequate [16–19].
Moreover, the vibration data of rolling bearings are uncertain in the testing process because
of the uncertainty factors such as the system error of the testing device, the changeability
of the service environment, and so on, which has great limitations for the analysis and
evaluation of bearing performance reliability [20,21].

In the existing data-analysis methods, the analysis result of using a single method
often has one-sidedness in some aspects, so the evaluation results of PMR can be obtained
more comprehensively by fusing several different methods. The bootstrap method can
simulate the probability distribution of data samples through re-sampling [22–25], which
can separate the systematic errors in dynamic evaluation process by using the nuclear
concept, but it needs to take advantage of the prior information of some rules of data
sampling. The maximum entropy principle is used to calculate the probability distribu-
tion of data samples while making the subjective estimation error minimum [17,24,26,27].
Bayesian theory fully combines the prior information with the current sample information
to obtain the posterior sample information [28–30]. The current real-time updating method
is based on Bayesian theory, which only uses the observed data sample to update the prior
probability distribution, but cannot apply other available information such as the moments
of parameters or functions of moments in the probability distribution. Therefore, a variety
of methods can be selected for fusion according to the research needs to make up for the
limitations of a single method. Ye et al. [7] initially put forward a new concept—accuracy
maintaining reliability (AMR) of super-precision rolling bearings, effectively fusing gray
bootstrap method and maximum entropy method to predict the failure degree of a bearing
successfully maintaining its optimum service accuracy status in the future. However, in
the process of calculation, the accuracy threshold was given in advance, which leads to
artificial subjective error. So, it is necessary to study a more general real-time performance
reliability evaluation method.

In view of this, this paper proposes a HMEBM to establish the reliability evaluation
model for evaluating the operation performance status of rolling bearings under the condi-
tion that the prior sample information of vibration performance time-series is unknown.
The ideas are as follows: based on the vibration acceleration data collected during the
service period of rolling bearings, the maximum entropy method was used to calculate the
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PDF of different time series. Then, the Bayesian method was applied to obtain the PPDF of
different time series. Similarities between time series were calculated using the overlapping
area method, membership degree method, Hamming approach degree method, Euclidean
approach degree method, and cardinal approach degree method, which were regarded
as weighting coefficients to calculate the PMR of different time series more accurately.
Bootstrap method and maximum entropy method were used to calculate the estimated
true value and estimated interval of PMRR. Finally, the failure probability of the rolling
bearings maintaining the optimal vibration performance status was analyzed. The flow
diagram of the proposed method is shown in Figure 1.

Figure 1. Flow diagram of proposed method.

2. Mathematical Models

During the service period of rolling bearings, the vibration acceleration data are
periodically recorded. The time variable is defined as t, and w time series are obtained
as Xw.

Xw = (xw(1),xw(2), · · · , xw(k), · · · , xw(N) ); k = 1, 2, · · · , N; w = 1, 2, . . . , r (1)
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where w stands for the order number of time series Xw; r is the number of time series; xw(k)
is the kth performance data in time series Xw; N is the number of original data.

The intrinsic series is the time series where the performance data are recorded during
the optimum vibration performance status for rolling bearings, which is recorded as the
first time series and expressed by X1.

2.1. Solving PDF

Transmuting the performance data into continuous information, the PDF fw(x) of the
time series Xw with maximum entropy is defined as

fw(x) = exp(c0w +
j

∑
i=1

ciwxi) (2)

where c0w is the first Lagrange multiplier and ciw is the (i + 1)th Lagrange multiplier for
the time series Xw; i is the order number of origin moment, i = 1, 2, . . . ,j; j stands for the
highest origin moment order; generally, j = 5.

According to the maximum entropy principle, the optimal estimation of the density
function based on sample information can be obtained, and the main idea of maximum
entropy is that the solution is the most “unbiased” among all feasible solutions, as follows:

Hw(x) = −
∫

Ωw

fw(x) ln fw(x)dx → max (3)

where Hw(x) is the information entropy and Ωw represents the feasible domain for the data
sample of the time series Xw, and Ωw = [xminw, xmaxw]; xminw and xmaxw are the lower-bound
value and upper-bound value in the time series Xw; lnfw(x) is the logarithmic value of fw(x).

Equation (3) satisfies the constraint conditions∫
Ωw

fw(x)dx = 1 (4)

∫
Ωw

xi fw(x)dx = miw (5)

where miw stands for the ith order origin moment for the data sample of the time series Xw,
and m0w = 1.

The entropy can reach its maximum by adjusting fw(x), and the PDF fw(x) can be
obtained by using the Lagrange multiplier method.

The Lagrange function Lw(x) can be expressed as

Lw(x) = Hw(x) + (c0w + 1)[
∫

Ωw

fw(x)dx−m0w] +
j

∑
i=1

ciw[
∫

Ωw

xi fw(x)dx−miw] (6)

The first Lagrange multiplier can be given by

c0w = −ln[
∫

Ωw

exp(
j

∑
i=1

ciwxi)dx] (7)
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Other j Lagrange multipliers should satisfy the constraint condition

1−

∫
Ωw

xiexp(
j

∑
i=1

ciwxi)dx

miw
∫

Ωw

exp(
j

∑
i=1

ciwxi)dx
= 0 (8)

To ensure solution convergence, the original data interval is mapped to interval [−e, e]
by the substitution of the variable. Let

x = awt + bw (9)

where aw and bw are mapping parameters for the data sample of the time series Xw;
t∈[−e, e], e has a value of 2.71828.

Based on the mapping of the original data in the interval [−e, e], the PDF in Equation (2)
can be obtained as

fw(t) = exp[c0w +
j

∑
i=1

ciw(awt + bw)
i] (10)

In order to be more adaptable to researchers’ habits, the variable t is replaced by the
variable x.

2.2. Parameter Estimation

Set a significant level and let α∈(0,1). The confidence level P is given by

P = (1− α)× 100% (11)

Assume that the maximum entropy estimated interval is [xLw, xUw] under confidence
level P. The lower boundary value xLw should satisfy

1
2

α =
∫ xLw

xminw

fw(x)dx (12)

The upper boundary value xUw should satisfy

1− 1
2

α =
∫ xUw

xminw

fw(x)dx (13)

2.3. Calculating PPDF

Consider the data sample in the intrinsic series X1 as the prior sample, which is
obtained during the period of the optimal vibration performance status for rolling bearings.
In order to study the variation process of the vibration performance reliability for rolling
bearings, the PPDF for each time series is constructed according to Bayesian statistics as

hy fw(x) =
f1(x) fw(x)∫

Ω1w

f1(x) fw(x)dx
(14)

where hyfw(x) is the PPDF of the wth time series Xw; Ω1w is the intersection of the feasible
regions of the data samples for the intrinsic series X1 and the wth time series Xw.

The similarity between time series plays an important role in the analysis and evalua-
tion of bearing vibration performance variation. Therefore, this factor should be considered
in the dynamic evaluation process of PMR of bearing vibration performance. When calculat-
ing the PPDF, the similarity between time series can be regarded as a weighting coefficient
so that the variation degree of the optimal vibration performance can be calculated more
accurately for each time series relative to the intrinsic series. Moreover, the result of analysis
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using a single method often has one-sidedness in some aspects, so the evaluation results of
PMR can be obtained more comprehensively by fusing several different methods.

2.4. Overlapping Area Method

The PMR for vibration performance of rolling bearings is used to express the possibility
that rolling bearings run at the optimal vibration performance status. The PMR for the
intrinsic series is defined as R1 = 1. The PMR Rw (1) for the wth time series is expressed
using the overlapping area method by

Rw(1) = S1w =

x1w∫
x=x1L

hy f1(x)dx+ηw

x2w∫
x=x1w

hy fw(x)dx+
x1U∫

x=x2w

hy f1(x)dx (15)

where S1w is the overlapping area for the PPDF of the wth time series and the intrinsic series;
x1L and x1U are the lower and upper bound values of confidence intervals for the PPDF of
intrinsic series, respectively; x1w and x2w are the abscissa values of the intersections for the
PPDF of the wth time series and the intrinsic series, and x1w < x2w; ηw is the overlapping
area for the PDF of the wth time series and the intrinsic series.

ηw =

x∗1w∫
x=x∗1L

f1(x)dx+

x∗2w∫
x=x∗1w

fw(x)dx+

x∗U1∫
x=x∗2w

f1(x)dx (16)

where x*
1L and x*

1U are the lower- and upper-bound values of confidence intervals for the
PDF of intrinsic series, respectively; x*

1w and x*
2w are the abscissa values of the intersections

for the PDF of the wth time series and the intrinsic series, and x*
1w < x*

2w.

2.5. Membership Degree Method

Xw is mapped into [0,1] by mapping formula to ensure that all data are fuzzy numbers.

zw(k) =
xw(k)− xwmin

xwmax − xwmin
(17)

Let Zw be a fuzzy subset on the finite field Q. The elements between columns have
different attributes, and the elements in the same column have the same attributes. Zw is
described as

Zw = (zw(1), zw(2), . . . , zw(k), . . . , zw(N)) (18)

When studying the conformity degree of Zw (w = 1,2, . . . ,r) relative to Z1, define the
absolute difference as

∆w(k) = |zw(k)− z1(k)| (19)

∆kmax = max
w

∆w(k) (20)

The membership functions of elements with the same attributes are established as

µwk = µwk(zw(k), z1(k)) = 1− ∆w(k)
∆kmax

(21)

The average membership degree is given as

µw =
1
N

N

∑
k=1

µwk, w = 1, 2, . . . , r (22)

The membership degree can reflect the similarity degree between data series. The
larger the average membership degree µw is, the more significant the relationship between
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Zw and Z1 is; and on the contrary, the less significant the relationship between Zw and Z1
is.

The PMR Rw(2) for the wth time series is expressed using the membership degree
method by

Rw(2) =
x1w∫

x=x1L

hy f1(x)dx+µw

x2w∫
x=x1w

hy fw(x)dx+
x1U∫

x=x2w

hy f1(x)dx (23)

2.6. Approach Degree Method

Let X1 and Xw be fuzzy subsets on the finite field Q. µ1k∈[0,1] and µwk∈[0,1] are the
membership degrees of X1 and Xw, respectively. Minkowski distance dpk is defined as

dpk = dp(X1, Xw) =

(
1
N

N

∑
k=1
|µ1k − µwk|p

) 1
p

(24)

where N is the number of elements in sets X1 and Xw; p is a constant, and generally is
considered to be a positive integer.

When p = 1, Minkowski distance becomes Hamming distance; when p = 2, Minkowski
distance becomes Euclidean distance.

The approach degree between two fuzzy subsets X0 and Xi is defined as

β = βp(X1, Xw) =
1
2

[
X1 ◦ Xw +

(
1− X1

_◦ Xw

)]
(25)

where

X1 ◦ Xw =
N
∨

k=1
(µ1k ∧ µwk) (26)

X1
_◦ Xw =

N
∧

k=1
(µ1k ∨ µwk) (27)

The Hamming approach degree β1w is given as

β1w = β1(X1, Xw) = 1− 1
N

N

∑
k=1
|µ1k − µwk| (28)

The PMR Rw(3) for the wth time series is expressed using the Hamming approach
degree method by

Rw(3) =
x1w∫

x=x1L

hy f1(x)dx+ β1w

x2w∫
x=x1w

hy fw(x)dx+
x1U∫

x=x2w

hy f1(x)dx (29)

Euclidean approach degree β2w is defined as

β2w = β2(X1, Xw) = 1−

 1
N

N

∑
k=1
|µ1k − µwk|

2
1/2

(30)

The PMR Rw(4) for the wth time series is expressed using the Euclidean approach
degree method by

Rw(4) =
x1w∫

x=x1L

hy f1(x)dx+ β2w

x2w∫
x=x1w

hy fw(x)dx+
x1U∫

x=x2w

hy f1(x)dx (31)
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Cardinal approach degree β3w is given as

β3w = β3(X1, Xw) =

2
N
∑

k=1
(µ1k ∧ µwk)

N
∑

k=1
µ1k +

N
∑

k=1
µwk

(32)

The PMR Rw(5) for the wth time series is expressed using the Cardinal approach degree
method by

Rw(5) =
x1w∫

x=x1L

hy f1(x)dx+ β3w

x2w∫
x=x1w

hy fw(x)dx+
x1U∫

x=x2w

hy f1(x)dx (33)

The approach degree describes the similarity degree between X1 and Xw. The larger
the approach degree is, the more significant the relationship between X1 and Xw is; on the
contrary, the less significant the relationship between X1 and Xw is.

2.7. Dynamic Evaluation of PMR

According to the above five values of Rw, small data samples of PMR of rolling bearing
vibration performance are obtained for each time series.

Rw = (Rw(1), Rw(2), . . . , Rw(5)) = (Rw(γ)); γ = 1, 2, . . . , 5;w = 1, 2, . . . , r; (34)

where Rw is the data sample of PMR for the wth time series; Rw(γ) is the γth data in the
PMR data sample for the wth time series.

Using the bootstrap method, B bootstrap re-sampling samples of size z, namely the
bootstrap re-sampling samples Rwbootstrap, can be obtained by an equiprobable sampling as

RwBootstrap = (Rw1, Rw2, . . . , Rwθ , . . . , RwB) (35)

where Rwθ is the θth bootstrap re-sampling sample, θ = 1, 2, . . . , B; B is the times of the
bootstrap re-sampling, and also the number of bootstrap samples, with

Rwθ = [Rwθ(Θ)]; Θ = 1, 2, . . . , z (36)

where Rwθ(Θ) is the Θth data in the θth bootstrap re-sampling sample of PMR for the wth
time series.

The maximum entropy method is used to calculate the PDF of the generated sample
Rwbootstrap. According to the PDF, the true value and upper and lower bound values are
estimated for the data sample of PMR of each time series.

The PDF of the PMR data sample can be calculated as

f (Rw) = exp[c∗0w +
j

∑
i=1

c∗ iw(a∗wRw + b∗w)
i)] (37)

where c*
0w is the first Lagrange multiplier and c*

iw is the (i + 1)th Lagrange multiplier for
the time series Rw; i is the order number of origin moment, i = 1,2, . . . ,j; j stands for the
highest origin moment order; generally, j =5.where a*

w and b*
w are mapping parameters for

the data sample of the time series Rw.
The estimated true value of the PMR is obtained as

Rw0 =
∫
S

Rw f (Rw)dRw (38)
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Set a significant level and let α∈(0,1). The maximum entropy estimated interval is
given as

[RwL, RwU] = [Rw α
2
, Rw1− α

2
] (39)

with
α

2
=
∫ Rw α

2

Rwmin

f (Rw)dRw (40)

1− α

2
=
∫ Rw1− α

2

Rwmin

f (Rw)dRw (41)

where RwL is the lower bound value and RwU is the upper bound value of the PMR for the
wth time series.

The variation probability of the PMR for different time series relative to the intrinsic
series is defined by

Pw(γ) = 1− Rw(γ) (42)

According to the concept of relative error in measurement theory, the failure degree of
rolling bearings running at the optimal vibration performance status—that is, the PMRR
for the vibration performance of rolling bearings—is expressed by

dw(γ) =
Rw(γ)− R10

R10
× 100% (43)

where R1 is the PMR for the intrinsic series of rolling bearings.
dw(γ) < 0 indicates that the PMR for the time interval corresponding with the wth time

series is less than the PMR for the time interval corresponding with the intrinsic series. The
smaller dw(γ) is, the greater the failure probability of the rolling bearings maintaining the
optimal vibration performance status to work for the time interval corresponding with the
wth time series.

dw0 =
Rw0 − R10

R10
× 100% (44)

dwL =
RwL − R10

R10
× 100% (45)

dwU =
RwU − R10

R10
× 100% (46)

where dw0 is the estimated true value, dwL is the lower-bound value and dwU is the upper-
bound value of the PMRR for the wth time series.

The flow diagram of the proposed method is shown in Figure 1.

3. Experimental Verification
3.1. Case 1

This is a strength lifetime test on the vibration performance of rolling bearings. Experi-
mental data are collected in the whole life-cycle of rolling bearings in Hangzhou Bearing
Test & Research Center. The test machine model is an ABLT-1A. This machine mainly
consists of a test head seat, test head, transmission system, loading system, lubrication
system, and a computer control system. The physical drawings of the testing machine
and test head are shown in Figures 2 and 3a–c. The test bearings and support bearings
are angular contact ball bearings with grade P2 and type 7008AC provided by Luoyang
Bearing Science &Technology Co., Ltd. (Luoyang, China). The inner ring, outer ring, and
rolling elements are made of high carbon chromium bearing steel, which has the following
characteristics: density 7.8 g/mm3, elastic modulus 2.08 × 105 N/mm2, Poisson’s ratio 0.3
and Hardness 700 HV10. The bearing parameters are shown in Table 1.
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Figure 2. Physical drawing of testing machine.

Figure 3. Testing head. (a) Physical drawing, (b) Main view, (c) Section view.
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Table 1. Parameters of angular contact ball bearings with type 7008AC.

Parameters Values Parameters Values

Inner diameter d/mm 40 Number of balls 19
Outer diameter D/mm 68 Ball diameter/mm 7.144

Width B/mm 15 Contact angle/◦ 25

The research is conducted at a motor speed 6000 r/min, an axial load of 4.17 kN, and
a radial load of 4.58 kN. The DAQ board type is PCI-1711U, and the data-acquisition rate is
20 KHz. The vibration acceleration sensor used is a YD-1 piezoelectric sensor produced
by Far East Vibration System Engineering Technology Co., Ltd. (Beijing, China), with a
measuring range of ± 2000 g and a resolution of 0.0001 g. The RMS values of vibration
amplitudes are obtained by a 1 min interval. The computer collects the vibration data in
the RMS value at this interval with a unit of m·s−2. If significant variation occurs in the
bearing ring or the roller, or even if surface fatigue spalling is noticed, the vibration value
of the test machine will obviously increase, and the vibration performance will reduce. If
the vibration value reaches 25 m·s−2, the motor will stop running and the experiment will
be terminated. (The vibration threshold limit is set according to the service condition of
bearings and experience of experimental operators.) The vibration data are automatically
collected by the computer control system, as shown in Figure 4.

Figure 4. Vibration signals of bearing.

The vibration time series of rolling bearings have obvious nonlinearity, randomness,
and uncertainty in Figure 4. Therefore, the vibration performance reliability of bearings
should be predicted and evaluated dynamically based on the complex and changeable
vibration information. The vibration data from the 1st to the 212th point range from 0.3
to 2.5 m·s−2. The vibration performance of the bearings appears stable during this period.
The vibration data from the 213th to the 472nd point range from 2.5 to 5.5 m·s−2. During
this period, the vibration signals are stronger and highly fluctuating. The vibration data
from the 473rd to the 2574th point range from 2.5 to 5.1 m·s−2. During this period, the
vibration performance of the bearings is stable. The values of vibration data from the 2575th
to the 6659th point range from 3 to 5.5 m·s−2. During this period, the vibration signals of
bearings are strengthened. The values from the 6660th to the 7446th data points are around
3.4–7.7 m·s−2. During this period, the vibration signals are stronger and highly fluctuating.
The values of the 7447th to 7793rd data points are in the range of 8.2–22.9 m·s−2. During
this period, the vibration signals increase linearly. Therefore, it can be considered that
the vibration performance of the bearings is at the initial wear stage during the period
corresponding to the 1st to the 472nd data point. The vibration performance is at the optimal
vibration performance state during the period corresponding to the 473rd to the 2574th data
point, which is regarded as the first time series (intrinsic series). The vibration performance
is at the normal wear stage during the period corresponding to the 2575th to the 6659th
data point, which is regarded as the second time series. The vibration performance is at
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the degeneration stage during the period corresponding from the 6660th to the 7446th
data point, which is regarded as the third time series. The vibration performance is at the
deterioration stage during the period corresponding to the 7447th to the 7793rd data point,
which is regarded as the fourth time series.

3.1.1. PDF of Data Samples of Time Series

For the first time series, various order origin moments can be obtained using the maximum
entropy method as [m11, m21, m31, m41, m51] = [−0.7710, 1.1829, −1.6809, 3.0058, −5.0425]; the
Lagrange multipliers [c01, c11, c21, c31, c41, c51] = [−0.526176, −1.0192, −0.8837, −0.3003,
0.0325, 0.0628]; the mapping parameters a1 = 1.8819 and b1 = −7.1511. Set the significance
level α is 0.01; that is, the confidence level P = 99%. The maximum entropy estimated
interval is [2.5507, 4.4738] m·s−2 for the first time series. According to Equation (10), the
probability density estimated function f 1(x) is calculated as shown in Figure 5.

Figure 5. PDF of data sample of the intrinsic sequence.

For the second time series, various order origin moments can be obtained using the maxi-
mum entropy method as [m12, m22, m32, m42, m52] = [−0.4015, 0.8709, −0.7686, 1.6745, −1.9542];
the Lagrange multipliers [c02, c12, c22, c32, c42, c52] = [−0.3629, −0.3569, −0.2062, −0.1813,
−0.1369, 0.0291]; the mapping parameters a2 = 1.9572 and b2 = −8.3179. The significance
level α is set as 0.01; that is, the confidence level P = 99%. The maximum entropy estimated
interval is [3.1823, 5.1008] m·s−2 for the second time series.

For the third time series, various order origin moments can be obtained using the maxi-
mum entropy method as [m13, m23, m33, m43, m53] = [−0.8840, 1.5477, −2.2030, 4.5372, −7.4059];
the Lagrange multipliers [c03, c13, c23, c33, c43, c53] = [−1.4292, −1.1189, −0.2384, 0.0274,
−0.0268, 0.0145]; the mapping parameters a3 = 1.1379 and b3 = −6.3153. The significance
level α is set as 0.01; that is, the confidence level P = 99%. The maximum entropy estimated
interval is [3.3405, 7.3435] m·s−2 for the third time series.

For the fourth time series, various order origin moments can be obtained using the maxi-
mum entropy method as [m14, m24, m34, m44, m54] = [−0.1634, 1.2181, −0.2573, 3.2716, −0.7843];
the Lagrange multipliers [c04, c14, c24, c34, c44, c54] = [−2.3395, −0.5070, −0.0421, 0.2472,
−0.0660, −0.0299]; the mapping parameters a4 = 0.3328 and b4 = −5.1758. The significance
level α is set as 0.01; that is, the confidence level P = 99%. The maximum entropy estimated
interval is [8.1599, 22.5150]m·s−2 for the fourth time series.

The PDF fw(x) of four time series are shown in Figure 6.
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Figure 6. PDF of data samples of time series.

3.1.2. PPDF of Data Samples of Time Series

Intersection interval [xw1, xw2] and intersection area ηw are calculated for the PDF of
the wth time series and the intrinsic series, as shown in Table 2. The similarity degrees
between time series ηw, µw, β1w, β2w and β3w are calculated using the overlapping area
method, membership degree method, Hamming approach degree method, Euclidean
approach degree method, and cardinal approach degree method, as shown in Table 3.

Table 2. Intersection intervals and overlapped areas of PDF.

Sequence Number
w

Intersection Interval
[xw1, xw2]/(m·s−2)

Intersection Area
ηw

1 [2.5000, 5.1000] 1
2 [3.6312, /] 0.3590
3 [3.9596, /] 0.0730
4 [/, /] 0

Table 3. Similarity degrees calculated using different methods.

Sequence
Number

w

Similarity Degrees

Membership
Degree

µw

Euclidean Approach
Degree

β1w

Hamming Approach
Degree

β2w

Cardinal Approach
Degree

β3w

1 1 1 1 1
2 0.7897 0.7538 0.7897 0.8825
3 0.6094 0.6036 0.6094 0.7573
4 0.0023 0.0017 0.0023 0.0045

The experimental data in Figure 3 show that the vibration performance has obvious
different uncertainty and nonlinearity for different fault diameters, which belongs to the
poor-information problem with an unknown trend. In order to study the variation trend
of PMR for the vibration performance, the product functions f 1(x)fw(x) and posterior
probability density functions hyfw(x) of the four time series are constructed using the
Bayesian principle, as shown in Figures 7 and 8.
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Figure 7. Product f 1(x)fw(x) of PDF.

Figure 8. PPDF of 4 time series.

3.1.3. PMR of Time Series

The intersection interval [x1w, x2w] and intersection area Sw are calculated for the PPDF
of the wth time series and the intrinsic series, as shown in Table 4. The values of PMR, Rw(1),
Rw(2), Rw(3), Rw(4), and Rw(5) are calculated using overlapping area method, membership
degree method, Hamming approach degree method, Euclidean approach degree method,
and cardinal approach degree method for different time series, as shown in Table 5. The
PMR of each time series decreases gradually, and the slope of the curve decreases gradually,
as shown in Figure 9.

Table 4. Intersection intervals and overlapped areas of PPDF.

Sequence Number
w

Intersection Interval
[xw1, xw2]/(m·s−2)

Intersection Area
ηw

1 [2.5000, 5.1000] 1
2 [3.3579, /] 0.6341
3 [3.5821, /] 0.4107
4 [/, /] 0
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Table 5. PMR calculated using different methods for different time series.

Sequence
Number

w

Values of PMR/%

Overlapping Area
Method
Rw(1)

Membership
Degree Method

Rw(2)

Hamming
Approach Degree

Method
Rw(3)

Euclidean
Approach Degree

Method
Rw(4)

Cardinal
Approach Degree

Method
Rw(5)

1 100.00 100.00 100.00 100.00 100.00
2 59.82 61.35 60.99 61.35 62.26
3 36.71 38.18 38.14 38.18 39.27
4 0.00 0.00 0.00 0.00 0.00

Figure 9. PMR of time series.

3.1.4. PMRR of Time Series

The values of PMRR, dw(1), dw(2), dw(3), dw(4), and dw(5) are calculated using the
overlapping area method, membership degree method, Hamming approach degree method,
Euclidean approach degree method, and cardinal approach degree method, as shown in
Table 6.

Table 6. PMRR calculated using different methods.

Sequence
Number

w

Values of PMRR/%

Overlapping Area
Method

dw(1)

Membership
Degree Method

dw(2)

Hamming
Approach Degree

Method
dw(3)

Euclidean
Approach Degree

Method
dw(4)

Cardinal
Approach Degree

Method
dw(5)

1 0 0 0 0 0
2 −40.18 −38.65 −39.01 −38.65 −37.74
3 −63.29 −61.82 −61.86 −61.82 −60.73
4 −100 −100 −100 −100 −100

3.1.5. Fusion Results of Multiple Weighting Methods

In the process of bootstrap generation, take the sample data of PMR of the second
time series as an example. Let the sampling number q = 5, the times for the bootstrap
re-sampling B = 10,000, and the significance level α = 0. R2 = (R2(1), R2(2), R2(3), R2(4),
R2(5)) = (59.82%, 61.35%, 60.99%, 61.35%, 62.26%). The bootstrap re-sampling samples
R2bootstrap can be obtained by an equiprobable sampling, as shown in Figure 10.
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Figure 10. Generated data of PMR of second time series.

The PDF of the PCR data sample can be calculated for the second time series, as
shown in Figure 11. Thus, the estimated true value of PMR R20 = 61.18% and the maximum
entropy estimated interval [R2L, R2U] = [59.68%, 62.39%] are obtained for the sample data
of PMR of the second time series. Similarly, the estimated true values and the estimated
intervals can be obtained for the sample data of PMR of the other three time series. The
results are shown in Table 7.

Figure 11. PDF of PMR of the second time series.

Table 7. Estimated true values and estimated intervals for different time series.

Sequence Number
w Estimated True Value Rw0/% Estimated Intervals

[R2L, R2U]/%

1 100 /
2 61.18 [59.68, 62.39]
3 38.13 [36.71, 39.55]
4 0 /

The calculated results of the estimated truth curve and the upper- and lower-bound
curve are shown for different time series in Figure 12. The estimated true value, lower-
bound value and upper-bound value of PMR decrease gradually and have trends of
nonlinear reduction over time. From the first time series to the second time series, the
estimated true value of PMR is reduced from 100% to 61.18% very rapidly; from the second
time series to the third time series, the estimated true value of PMR is reduced from 61.18%
to 38.13% slowly; from the third time series to fourth time series, the estimated true value
of PMR is reduced from 38.13% to 0 rapidly, relatively.
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Figure 12. Maximum entropy estimated results of PMR.

The PMRR for vibration performance of rolling bearings are calculated for different
time series, as shown in Table 8 and Figure 13. The estimated true value, lower-bound
value and upper-bound value of PMRR decrease gradually and have trends of nonlinear
reduction. From the first time series to second time series, the estimated true value of PCRR
is very rapidly reduced from 0% to −38.82%; from the second time series to the third time
series, the estimated true value of PCRR is slowly reduced from −38.82% to −61.87%; from
the third time series to the fourth time series, the estimated true value of PCRR is reduced
from −61.87% to −100% relatively rapidly.

Table 8. Estimated true values and estimated intervals of PMRR.

Sequence
Number

w

Estimated True Value
dw0/%

Estimated Intervals
[d2L, d2U]/%

1 0 [/, /]
2 −38.82 [−40.32, −37.61]
3 −61.87 [−63.29, −60.45]
4 −100 [/, /]
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Figure 13. Maximum entropy estimated results of PMRR.

This analysis result is more in line with engineering practice, because the prior informa-
tion and current sample information of the vibration performance degradation information
of bearings in service were comprehensively considered by the proposed method. In ad-
dition, the HMEBM also considers the similarity between time series, which contains the
hidden information of the degradation process of optimal vibration performance state.

3.2. Case 2

The test machine and the bearing used in this case are exactly the same as those of
Case 1. The vibration data are shown in Figure 14 by changing the test conditions of the
motor to a speed of 4000 r/min, an axial load of 4.17 kN, and a radial load of 4.58 kN.
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Figure 14. Vibration signals of bearing (Case 2).

3.2.1. PDF of Data Samples of Time Series (Case 2)

For the first time series, various order origin moments can be obtained using the
maximum entropy method as [m11, m21, m31, m41, m51] = [−0.0463, 0.8915, −0.2456, 2.1047,
−0.7743]; the Lagrange multipliers [c01, c11, c21, c31, c41, c51] = [0.6246, 0.3796, −0.4400,
−0.3470, −0.0294, 0.0463]; the mapping parameters a1 = 4.4481 and b1 = −9.1186. The
significance level α is set as 0.01; that is, the confidence level P = 99%. The maximum
entropy estimated interval is [1.5354, 2.5003] m·s−2 for the first time series.

The PDF fw(x) of four time series are shown in Figure 15.

Figure 15. PDF of data samples of time series (Case 2).

3.2.2. PPDF of Data Samples of Time Series (Case 2)

The intersection interval [xw1, xw2] and intersection area ηw are calculated for the
PDF of the wth time series and the intrinsic series as shown in Table 9. The similarity
degrees between time series ηw, µw, β1w, β2w, and β3w are calculated using the overlapping
area method, membership degree method, Hamming approach degree method, Euclidean
approach degree method, and cardinal approach degree method, as shown in Table 10.

Table 9. Intersection intervals and overlapped areas of PDF (Case 2).

Sequence Number
w

Intersection Interval
[xw1, xw2]/(m·s−2)

Intersection Area
ηw

1 [1.5000, 2.6000] 1
2 [2.2776, /] 0.6272
3 [2.3655, /] 0.4404
4 [/, /] 0
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Table 10. Similarity degrees calculated using different methods (Case 2).

Sequence
Number

w

Similarity degrees

Membership
Degree

µw

Euclidean Approach
Degree

β1w

Hamming Approach
Degree

β2w

Cardinal Approach
Degree

β3w

1 1 1 1 1
2 0.9053 0.8718 0.9053 0.9503
3 0.7138 0.6722 0.7138 0.8329
4 0.0066 0.0049 0.0066 0.0131

The experimental data in Figure 14 show that the vibration performance has obvious
different uncertainty and nonlinearity for different fault diameters, which belongs to the
poor-information problem with an unknown trend. In order to study the variation trend
of PMR for the vibration performance, the product functions f 1(x)fw(x) and posterior
probability density functions hyfw(x) of the four time series are constructed using the
Bayesian principle, as shown in Figures 16 and 17.

Figure 16. Product f 1(x)fw(x) of PDF (Case 2).

Figure 17. PPDF of 4 time series (Case 2).

3.2.3. PMR of Time Series (Case 2)

The intersection interval [x1w, x2w] and intersection area Sw are calculated for the PPDF
of the wth time series and the intrinsic series, as shown in Table 11. The values of PMR,
Rw(1), Rw(2), Rw(3), Rw(4), and Rw(5) are calculated using the overlapping area method,
membership degree method, Hamming approach degree method, Euclidean approach
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degree method, and cardinal approach degree method for different time series, as shown
in Table 12. The PMR of each time series decreases gradually, and the slope of the curve
decreases gradually, as shown in Figure 18.

Table 11. Intersection intervals and overlapped areas of PPDF (Case 2).

Sequence Number
w

Intersection Interval
[xw1, xw2]/(m·s−2)

Intersection Area
ηw

1 [1.5000, 2.6000] 1
2 [1.7124, 1.9161, 2.2126] 0.7473
3 [1.7431, 1.9981, 2.2740] 0.6751
4 [/, /] 0

Table 12. PMR calculated using different methods for different time series (Case 2).

Sequence
Number

w

Values of PMR/%

Overlapping Area
Method
Rw(1)

Membership
Degree Method

Rw(2)

Hamming
Approach Degree

Method
Rw(3)

Euclidean
Approach Degree

Method
Rw(4)

Cardinal
Approach Degree

Method
Rw(5)

1 100.00 100.00 100.00 100.00 100.00
2 64.30 72.08 71.14 72.08 73.34
3 57.54 62.41 61.67 62.41 64.53
4 0.00 0.00 0.00 0.00 0.00

Figure 18. PMR of time series (Case 2).

3.2.4. PMRR of Time Series (Case 2)

The values of PMRR, dw(1), dw(2), dw(3), dw(4), and dw(5) are calculated using the
overlapping area method, membership degree method, Hamming approach degree method,
Euclidean approach degree method, and cardinal approach degree method, as shown in
Table 13.
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Table 13. PMRR calculated using different methods (Case 2).

Sequence
Number

w

Values of PMRR/%

Overlapping Area
Method

dw(1)

Membership
Degree Method

dw(2)

Hamming
Approach Degree

Method
dw(3)

Euclidean
Approach Degree

Method
dw(4)

Cardinal
Approach Degree

Method
dw(5)

1 0 0 0 0 0
2 −35.7 −27.92 −28.86 −27.92 −26.66
3 −42.46 −37.59 −38.33 −37.59 −35.47
4 −100 −100 −100 −100 −100

3.2.5. Fusion Results of Multiple Weighting Methods (Case 2)

In the process of bootstrap generation, take the sample data of PMR of the second
time series as an example. Let the sampling number q = 5, the times for the bootstrap
re-sampling B = 10,000, and the significant level α = 0. R2 = (R2(1), R2(2), R2(3), R2(4),
R2(5)) = (59.82%, 61.35%, 60.99%, 61.35%, 62.26%). The bootstrap re-sampling samples
R2bootstrap can be obtained by an equiprobable sampling, as shown in Figure 19.

Figure 19. Generated data of PMR of second time series (Case 2).

The PDF of the PCR data sample can be calculated for the second time series, as
shown in Figure 20. Thus, the estimated true value of PMR R20 = 61.18% and the maximum
entropy estimated interval [R2L, R2U] = [59.68%, 62.39%] are obtained for the sample data
of PMR of the second time series. Similarly, the estimated true values and the estimated
intervals can be obtained for the sample data of PMR of the other three time series. The
results are shown in Table 14.

Figure 20. PDF of PMR of the second time series (Case 2).
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Table 14. Estimated true values and estimated intervals for different time series (Case 2).

Sequence Number
w Estimated True Value Rw0/% Estimated Intervals

[R2L, R2U]/%

1 100 /
2 72.16 [71.02, 73.46]
3 62.72 [61.51, 64.69]
4 0 /

The calculated results of the estimated truth curve and the upper and lower bound
curve are shown for different time series in Figure 21. The estimated true value, lower-
bound value and upper-bound value of PMR decrease gradually and have trends of
nonlinear reduction over time. From the first time series to the second time series, the
estimated true value of PMR is rapidly reduced from 100% to 72.16%; from the second
time series to the third time series, the estimated true value of PMR is slowly reduced from
72.16% to 62.72%; from the third time series to the fourth time series, the estimated true
value of PMR is reduced from 62.72% to 0 very rapidly.

Figure 21. Maximum entropy estimated results of PMR (Case 2).

The PMRR for vibration performance of rolling bearings are calculated for different
time series, as shown in Table 15 and Figure 22. The estimated true value, lower-bound
value and upper-bound value of PMRR decrease gradually and have trends of nonlinear
reduction. From the first time series to the second time series, the estimated true value of
PCRR is rapidly reduced from 0% to −27.84%; from the second time series to the third time
series, the estimated true value of PCRR is slowly reduced from −27.84% to −37.28%; from
the third time series to the fourth time series, the estimated true value of PCRR is reduced
from −37.28% to −100% very rapidly.

Table 15. Estimated true values and estimated intervals of PMRR (Case 2).

Sequence
Number

w

Estimated True Value
dw0/%

Estimated Intervals
[d2L, d2U]/%

1 0 [/, /]
2 −27.84 [−28.98, −26.54]
3 −37.28 [−38.49, −35.31]
4 −100 [/, /]
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Figure 22. Maximum entropy estimated results of PMRR (Case 2).

This analysis result is more in line with engineering practice because the prior informa-
tion and current sample information of the vibration performance degradation information
of bearings in service were comprehensively considered by the proposed method. In addi-
tion, the HMEBM also considers the similarity between time series, which contains hidden
information regarding the degradation process of optimal vibration performance state.

4. Conclusions

Based on the HMEBM, the reliability model is established to evaluate the operation
performance status of rolling bearings, which has no requirements for the priori information
of data samples, types, and components of bearings.

1. Considering the operation status of rolling bearing, the variation degree of the optimal
vibration performance status can be calculated more accurately to ensure effective
maintenance of the system, reduce faults, and improve quality under the condition of
traditional probability statistics.

2. The similarities between time series are obtained using the overlapping area method,
membership degree method, Hamming approach degree method, Euclidean approach
degree method, and cardinal approach degree method.

3. The maximum entropy method, Bayesian theory, and bootstrap method are fused fully
to discover more information in time series of bearing vibration performance. The
estimated true values and maximum entropy estimated intervals of PMR and PMRR
are calculated to dynamically monitor the health status of rolling bearings online.

The performance degradation law of rolling bearing will be further studied under
a different load and speed. In order to verify the universality of the proposed method,
HMEBM will be used to evaluate the performance degradation process of other type
of bearings.
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Nomenclature

w Order number of time series.
r Number of time series.
N Number of original data.
i Order number of origin moment.
j Highest order number of origin moment.
xw(k) kth performance data in time series.
Xw wth time series.
fw(x) Probability density function of time series.
ciw Lagrange multiplier.
Hw(x) Information entropy of time series.
Ωw Feasible domain for the data sample of time series.
lnfw(x) Logarithmic value of fw(x).
miw Order origin moment.
aw;bw Mapping parameters.
hyfw(x) PPDF of the wth time series Xw.
Ω1w Intersection of feasible regions of data samples.
R1 PMR of intrinsic series.
ηw Overlapping area of PDF.
S1w Overlapping area of PPDF.
dpk Minkowski distance.
β3w Cardinal approach degree.
xminw; xmaxw Lower bound value and upper bound value in the time series.
xLw; xUw Lower boundary value and upper boundary value of estimated interval.
x1L; x1U Lower and upper bound values of confidence intervals for the PPDF

of intrinsic series.
x*

1L; x*
1U Lower and upper bound values of confidence intervals for the PDF

of intrinsic series.
x1w; x2w Abscissa values of the intersections for the PPDF of the wth time series

and Intrinsic series.
x*

1w; x*
2w Abscissa values of the intersections for the PDF of the wth time series and

the intrinsic series.
Rw(1) PMR calculated by using overlapping area method.
Rw(2) PMR calculated by using membership degree method.
Rw(3) PMR calculated by using Hamming approach degree method.
Rw(4) PMR calculated by using Euclidean approach degree method.
Rw(5) PMR calculated by using Cardinal approach degree method.
Rw Data sample of PMR for the wth time series.
Rw(γ) γth data in the PMR data sample for the wth time series.
Rwθ θth bootstrap re-sampling sample.
B Times of bootstrap re-sampling and number of bootstrap samples.
Rwθ(Θ) Θth data in the θth bootstrap re-sampling sample of PMR
Rwbootstrap Generated sample.
RwL; RwU Lower-bound value and upper-bound value of PMR.
dw0; dwL; dwU Estimated true value, lower-bound value, and upper-bound value of PMRR.
PDF Probability density function.
PMR Performance maintaining reliability.
PMRR Performance maintaining relative reliability.
PPDF Posterior probability density function.
HMEBM Hierarchical maximum entropy Bayesian method.
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