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Abstract: The grease film thickness was measured in fully flooded elastohydrodynamic lubrication,
and the influence of rolling speed, load, consistency, base oil type and thickener type on grease film
thickness was analyzed. A new calculation model for grease film thickness was established. The
results show that the grease film thickness increases with the increasing rolling speed, and then
levels off with the amount of thickener in the contact region reaching an equilibrium. The degree of
grease film enhancement comparing to its base oil will depend on thickener type and consistency.
The larger the atmospheric viscosity and pressure-viscosity coefficient of the base oil, the higher the
film thickness of the greases with the same thickener. The grease film thicknesses with the same base
oil and different thickeners are determined by the size of thickener particles at the same consistency
or concentration. The larger the consistence of the grease, the larger the effective viscosity of the
grease at the contact and the thicker the grease film thickness whose base oil has the same type and
viscosity along with the same type of thickener. The calculated values by the new model are in good
agreement with the measured values.

Keywords: grease; film-forming properties; film thickness; influence factor; EHD

1. Introduction

As the most commonly used lubricant in current bearing equipment, grease with
a lubricating and sealing effect can extend bearing maintenance intervals and reduce
energy consumption. Generally, grease is a semi-solid composed of base oil, thickener
and additives. Due to the presence of the thickener, its fluidity is lower than that of the
corresponding base oil. As the film-forming process of greases is complex, the study of
film-forming properties is usually achieved by measuring the film thickness of the grease.

Some studies showed that speed affected grease film formation [1–3]. Temperature
also plays a decisive role in grease film formation [4]. Cen et al. [5] investigated the effects
of speed and load on grease film thickness, where the effects of the speed and load were
small. The grease composition plays an important role in the film-forming. The thickener
is essential for the performance of greases [6–8]. The grease can form a thicker film at a low
speed than the corresponding base oil [9–12], which indicates that the thickener fibers can
enter the contact region and affect the film thickness. The film thickness variation pattern at
speeds greater than the “transition speed” is consistent with the prediction by the Hamrock–
Dowson formula in fully flooded elastohydrodynamic lubrication, while thickeners play
an essential role at speeds less than the “transition speed” [13]. Kimura et al. [14] pointed
out that the increase of grease film thickness at low speeds depended on the base oil and
thickener. However, Kanazawa et al. [15] found that the grease film thickness at low speed
was determined by the type of thickener while at high speed by the base oil. Bleeding
oil also contributes to the film-forming properties. Saatchi et al. [16] pointed out a region
surrounding the thickener particles, called the effective media, which was assumed to have
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completely immobilized the oil. Bleed oil was assumed to occur from the viscous flow
of the unbound oil in a porous structure made of the effective media. It has been found
that different NLGI grades and different grease components have different influences on
grease film-forming [17]. Although the influence factors on the film formation were studied
in many kinds of literature, these studies were limited to certain influence factors, the
applicability of the research results drawn to other grease types and composition requires
further validation.

In addition to the Hamrock–Dowson classical computing model proposed in the
last century, certain developments and innovations have been made in recent years.
Yin et al. [18] proposed an equation and procedure successfully applied to the calculation
for the minimum oil film thickness in elastohydrodynamic lubrication. Zoelen et al. [19]
established a model for predicting the variation of oil film thickness from the inlet region
to the contact region in starved lubrication. Yang et al. [20] proposed a calculation formula
of oil film thicknesses for beam interference grades exceeding zero. Xue et al. [21] used an
iterative method to analyze grease film thickness and pressure distribution, and the effects
on them by the load and entrainment velocity. Wang et al. [22] developed a numerical
model to calculate the grease film thickness of smooth and rough surfaces, and compared
the results with the base oils. So far, there has existed only film thickness formula for
lubricating oils, such as the Hamrock–Dowson formula. The film thickness calculation
for grease by solving the motion, continuity, surface elasticity and rheology equations
simultaneously through numerical iteration, needs special software, and the accuracy of
the calculation result is restricted by many factors. Until now, there was no formula for
calculating the grease film thickness.

Despite grease film-forming has been studied in many papers, there is still ambiguity
on the factors influencing the grease film-forming ability under fully flooded conditions,
which inspired this study. In this paper, a grease film-forming experiment at room tem-
perature was carried out and the grease film thickness was measured by employing a film
thickness test rig to investigate the effect of various factors such as load, rolling speed,
consistency, base oil type and thickener type on grease film thickness. In addition, the
calculation models of film thickness for lithium greases and polyurea greases were estab-
lished based on experimental data. The main objective of this paper is to lay the theoretical
foundation for the study of grease film thickness and to provide primary data for grease
formulation and bearing performance calculation.

2. Materials and Methods
2.1. Experimental Materials

Five greases without additives were used for the experiments, as shown in Table 1,
where the base oils are poly alpha olefins (PAO) oil, ester oil and mineral oil, respectively,
and the thickeners are lithium 12-Hydroxystearate as well as cyclohexylamine, octade-
cylamine and isocyanate. The viscosities of PAO, ester and mineral oil are 68 mm2/s
at 40 ◦C, as well as 10.06 mm2/s, 9.72 mm2/s, 9.53 mm2/s at 100 ◦C, respectively. The
pressure-viscosity coefficients of PAO oil, ester oil and mineral oil are 1.7 × 10−8 Pa−1,
1.85 × 10−8 Pa−1 and 2.21 × 10−8 Pa−1, respectively. A total of 4 consistencies for Grease 5
were selected, whose cone penetration values are 230, 250, 270 and 300 (0.1 mm), respectively.

2.2. Experimental Method

The grease film thickness measurements were performed on the test rig (EHD2), as
shown in Figure 1. In this rig, a steel ball (diameter 19 mm, 52100 steel) is loaded against a
chromium-coated glass disc with a spacer layer. The disc and ball are driven by separate
electric motors, respectively. The performance of the rig is as follows:

1. The measuring accuracy can reach ±1 nm;
2. The spacer layer imaging method (SLIM) is used to observe the oil film-forming in

the experiment process;
3. The maximum load is 50 N and the maximum contact pressure is 0.7 GPa for glass disc;
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4. The maximum rolling speed is 4 m/s;
5. The temperature range: Ambient~150 ◦C;
6. The volume of the test sample was 120 mL.

Table 1. Grease composition and properties.

Type of Grease Thickener Base Oil Cone Penetration
(0.1 mm)

Concentration
(Mass %)

Grease 1 Lithium 12-Hydroxystearate PAO oil 270 11%
Grease 2 Lithium 12-Hydroxystearate Ester oil 270 12%
Grease 3 Lithium 12-Hydroxystearate Mineral oil 270 8%
Grease 4 Cyclohexylamine, octadecylamine and isocyanate Mineral oil 270 9%

Grease 5 Cyclohexylamine, octadecylamine and isocyanate PAO oil

230
250
270
300

13%
12%
11%
9%
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Figure 1. Film thickness test rig.

The film thickness was measured by the two-beam interference method, as shown in
Figure 2. During the experiment, the steel ball comes into contact with a chrome-coated
glass disc, forming a Hertz contact region by applying a load. Due to the half transmitting
and half reflecting characteristic of the chromium metal film on the surface of the glass
disc, the incident light is reflected at different locations. Part of the beam is reflected on the
chrome film surface, named the reflected beam 1 in Figure 2, while the other part of the
beam is reflected on the grease-filled steel ball surface, named reflected beam 2 in Figure 2.
There is a distance between the two reflected beams, and this difference is the value of oil
film thickness. Since the incident beam is monochromatic, the two reflected beams have
the same frequency and interfere. The film thickness and shape in the contact region can be
obtained through analyzing the collected interfering beams by the optical system.
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In this paper, the film thickness measurements were carried out at the temperature of
25 ◦C in nominal pure rolling. Sixteen rolling speed parameters were selected: 0.25 m/s,
0.50 m/s, 0.75 m/s, 1.00 m/s, 1.25 m/s, 1.50 m/s, 1.75 m/s, 2.00 m/s, 2.25 m/s, 2.50 m/s,
2.75 m/s, 3.00 m/s, 3.25 m/s, 3.50 m/s, 3.75 m/s and 4.00 m/s. A total of 4 normal contact
load parameters were selected: 10 N, 20 N, 30 N, and 40 N, and the corresponding contact
pressures are 0.41 GPa, 0.52 GPa, 0.59 GPa and 0.65 GPa.

The disc used has a measured roughness value, Rq, of 10.0 nm, and the ball has a
roughness value, Rq, of 15 nm, so the composite roughness is 18 nm. The minimum film
thickness of base oils computed by the Hamrock–Dowson [23] formula is above 100 nm.
Thus, the lambda ratio λ (ratio between film thickness and composite surface roughness
Rq) was more than 5.6. The contact zone is in a state of full EHD lubrication. A small scoop
was incorporated into the rig to channel the over-rolled grease back into the track so that
a continuous grease supply was applied and no starvation could occur. Before each test,
a thin layer of grease (approximately 0.5 mm) should be smeared on the glass disc and a
small ball load was applied to the disc at a constant speed of 10 mm/s for 20 min in pure
rolling conditions. This preliminary step was introduced to distribute the grease evenly
over the contact area as well as to pre-shear the grease to ensure the same initial condition
and obtain steady data for each test. The central film thickness was measured by increasing
the rolling speed step by step on the test rig, and the film thicknesses of greases at different
rolling speeds were measured three times and its average value was taken. After each test,
the steel ball and glass disc were cleaned in toluene and isopropanol in an ultrasonic bath,
and then air-dried before the next test.

3. Results and Discussion
3.1. Results
3.1.1. Effect of Rolling Speed and Normal Load on Grease Film Thickness

Figures 3–5 show the film thicknesses of Grease 1, Grease 2, Grease 3 and their base oils
versus rolling speed under fully flooded lubrication. The grease film thickness increases
with the increase in rolling speeds under the constant normal contact load, but the growth
rate of grease film thickness decreases with the increasing rolling speeds. It also can be seen
that the grease film thickness decreases with the increasing normal contact loads when the
rolling speed is constant. Even if the load increases exponentially, the grease film thickness
changes slightly. When the rolling speed is 4 m/s and the normal contact load is 10 N and
40 N, the maximum and minimum values of grease film thickness were obtained, as shown
in Figure 6. The maximum/minimum film thicknesses of Grease 1, Grease 2 and Grease 3
are 1105.5 nm/972.3 nm, 1176.4 nm/1021 nm, and 1225.9 nm/ 991.2 nm, respectively.
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3.1.2. The Effect of Consistency on Grease Film Thickness

The consistency can be expressed in cone penetration and grease grade number. The
cone penetration indicates the deformability of the grease under low shear rate conditions.
The higher the cone penetration of grease, the softer the grease will be, the less consistency
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it will be, and the more likely it will deform and flow. For Grease 5, four consistencies (cone
penetration of 230, 250, 270 and 300 (0.1 mm)) were selected for preparation.

Figure 7 shows the variation of the film thickness of Grease 5 versus rolling speed and
consistency at a load of 10 N. As the cone penetration increases (the consistency decreases),
the film thickness of the grease decreases. When the load is 20 N, 30 N and 40 N, the rule of
the variation of grease film thickness versus rolling speed and consistency is similar. When
the rolling speed is the same, the smaller the consistence of the grease, the smaller the
grease film thickness, which indicates that the thickener is involved in the oil film-forming.
Figure 8 shows the maximum and minimum values of grease film thickness for different
loads and consistencies at a rolling speed of 4 m/s. When the loads are 20 N, 30 N and
40 N, the maximum values of grease film thickness all appear at the cone penetration of
230 (0.1 mm), and the values are 1213 nm, 1155 nm and 1124 nm, respectively, while the
minimum values of grease film thickness all appear at the cone penetration of 300 (0.1 mm),
the values are 928 nm, 847 nm and 856.6 nm, respectively.
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3.1.3. The Effect of Base Oil Type on Grease Film Thickness

Grease 1, Grease 2 and Grease 3 have the same thickener, all of which are lithium
12-hydroxystearate, and the base oils are PAO oil, ester oil and mineral oil, respectively.
The film thicknesses of these three greases versus rolling speed under the same working
conditions are shown in Figure 9. It can be found that the film thickness of Grease 3 is the
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largest, followed by Grease 2, and the smallest is Grease 1 when the rolling speed is the
same, which means that grease with a base oil of mineral oil forms the largest film thickness,
followed by ester oil and the smallest by PAO oil. The three grease film thicknesses are
larger than those of their base oils.
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3.1.4. The Effect of Thickener Type on Grease Film Thickness

The base oil for both Grease 3 and Grease 4 is mineral oil, and the thickeners of Grease 3
and Grease 4 are lithium 12-hydroxystearate, cyclohexylamine and octadecylamine, re-
spectively. Figure 10 shows the film thickness of Grease 3 and Grease 4 versus rolling
speed at a load of 20 N. The oil film-forming properties of greases with different thickeners
vary considerably. As shown in Figure 10b, the film thickness difference between the two
greases gradually increases during the gradual increase in rolling speeds. When the rolling
speed is 4 m/s, the difference between the two film thicknesses is the greatest. At the same
rolling speed, the film thickness of Grease 4 is larger than that of Grease 3. In other words,
when the base oil is the same, the film thickness of polyurea grease is higher than that of
lithium grease. The thickener has a more significant effect on the film-forming ability of
grease, which indicates that thickener also enters the contact region to participate in the
composition of the grease film.
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3.2. Discussion

Early studies show that the film thickness of grease is slightly larger but practically
follows the H–D formula for its base oil in the high-speed region in fully flooded elastohy-
drodynamic lubrication. When the speed decreases, the thickness deviates from the formula
and shows a marked increase, called the low-speed region. This general behavior results in
the characteristic ”V-shaped” film thickness versus speed curve for greases [3,15,24]. The
speed at the inversion point of the “V” is called the “transition speed” [25]. The “transition
speed” was affected by the thickener type and the test temperature [15].

The grease film measurement in this paper belong to the high-speed region. As
seen from Figures 3–5 that grease forms a higher film thickness compared to its base
oil in fully flooded lubrication. The EHD contact is probably not only lubricated by the
bleed oil, but also by parts of the thickener entering the contact and causing a higher film
thickness [12,26]. The degree of film enhancement compared to the base oil will depend
on the thickener type and concentration [7]. When the rolling speed is less than 3 m/s,
grease film thickness follows the H–D formula for its base oil, similar to the results of the
above literature [3,15,24,25], and then the film thickness growth of the grease decreases
and approaches to a fixed value. In most of the previous literature [3,15,24,25], the study
on the grease film thickness versus rolling speed was only limited to the rolling speed of
less than 3 m/s. Changes in grease film thickness beyond 3 m/s have been not studied.
The growth rate gradually decreases, and then approaches to a fixed value when the
rolling speed is beyond 3 m/s, which may be because when the grease film thickness
increases to a specific value, a steady pressure develops in the contact area. At this point,
the contact region is filled with enough thickener, so that no more thickener can enter the
region and the variation of grease film thickness remains almost unchanged with a further
increase in speed. It again shows that grease film thickness in the high-speed region is
determined not only by bleed oil but also by thickener, though the bleed oil plays a major
role. Another research objective in this paper is to establish the calculation formula of
grease film thickness. Previous studies have shown that the grease film in the low-speed
region is characterized by chaos and irregularity. Therefore, only the grease film thickness
in the high-speed region was investigated in this paper. The literature [15] shows that the
transition speeds of diurea-thickened grease and lithium-thickened greases were 120 mm/s
and 30 mm/s, respectively, at 25 ◦C. Therefore, the rolling speeds selected in this paper are
greater than 0.25 m/s.

The properties of the bleed oils differ hardly from those of the base oils in the high-
speed regions [12], so the grease film thickness can be mainly determined by its base oil.
Figure 9 indicated the influence of base oil type on the grease film thickness, and there is
a slightly difference in grease film thickness whose thickeners are the same. Gunsel [27]
pointed out that the larger the atmospheric viscosity and pressure-viscosity coefficient, the
higher the oil film thickness in fully flooded elastohydrodynamic lubrication. The atmo-
spheric viscosities of the three base oils used in this paper are same. The pressure-viscosity
coefficients of PAO oil, ester oil and mineral oil are 1.7 × 10−8 Pa

−1, 1.85 × 10−8 Pa
−1 and

2.21 × 10−8 Pa
−1, respectively. Therefore, the film thickness of mineral oil is the largest,

followed by ester oil, and the smallest is PAO oil. The pressure-viscosity coefficients of the
three base oils are close, so the oil film thickness is also close. The film thickness of Grease
3 is the largest, followed by Grease 2, and the smallest is Grease 1 as shown in Figure 9,
which results from the film thickness of mineral oil being the largest, followed by ester oil,
and the smallest is PAO oil.

The influence of thickener type on the grease film thickness can be revealed in Figure 10,
the grease film thicknesses with the same base oil and different thickener are different.
Cann [28] assumed that grease film thickness might consist of a part formed by elastohy-
drodynamic action and a part formed by residual layers formed by the thickener, and the
residual film thickness was about 30–60 nm. Figure 10 shows that the film thicknesses
of Grease 3 at 2 m/s and 4 m/s are 879.07 nm and 1609.01 nm, respectively, and the film
thicknesses of Grease 4 at 2 m/s and 4 m/s are 1098.84 nm and 1268.9 nm, respectively. The
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thicknesses of the base oil at 2 m/s and 4 m/s are 602.22 nm and 964.84 nm, respectively.
The minimum difference between the two grease film thicknesses and the base oil thickness
is more than 276 nm. Therefore, the enhancement in the film thickness of grease is not
dependent on the residual film deposited on the ball and disc, but on the thickener entering
in the contact region. Cyriac [26] also concluded that the films in the high-speed region
were so thick that the effect could not be ascribed to the formation of a boundary layer,
but the increase in viscosity of a fluid containing thickener particles. When the thickener
consistencies of greases are same, the smaller the thickener particles, the more thickener
particles enter into the contact to increase the grease film thickness. Since the fiber skeleton
of Grease 4 (mineral oil-polyurea grease) is smaller than that of Grease 3 (mineral oil-lithium
grease), as shown in Figure 11, which results in a much higher thickener content in the
contact region and a thicker film of Grease 4 than that of Grease 3.
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It can be found from Figure 7 that the larger the consistency or concentration of
thickeners (the smaller the cone penetration), the thicker the grease film thickness whose
base oil has the same type and viscosity along with the same type of thickener. The reason
is that the larger the consistency of the grease (the more the content of the thickener), the
larger the effective viscosity of the grease at the contact and the thicker the grease film
thickness formed.

4. Calculation Model for Grease Film Thickness
4.1. Mathematical Model

Analysis of the experimental data reveals that the grease film thickness H may be
expressed as an exponential function of rolling speed V:

H = (α + βV)e−µV + δ (1)

where H is the grease film thickness, V is the rolling speed at the contact point of the ball
and disc specimens, α, β, µ and δ are undetermined parameters. The least-square regression
analysis is used to compute coefficients α, β, µ and δ. The least-square method refers to
finding a Φ(Xi) that minimizes ∑n

i=1[F(Xi)− Φ(Xi)]
2 to obtain the coefficients α, β, µ and δ.

Given a set of values Vi (i = 1, 2, 3, . . . , n) and the measured grease film thicknesses
Hi. Compute an estimated value H∗

i for each Vi by Equation (1). The deviation between
the estimated value and the measured value is εi = Hi − H∗

i , and the sum of squares of
deviations Q is as follows:

Q =
n

∑
i=1

(Hi − H∗
i )

2 =
n

∑
i=1

{
Hi −

[
(α + βVi)e−µVi + δ

]}2
(2)
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To minimize Q, a set of α, β, µ and δ should be found to minimize the value of Q (α, β,
µ and δ). Respectively, setting the derivation of Q for α, β, µ and δ equal to zero will yield
the following equations:

n
∑

i=1

[
(α + βVi)e−µVi + δ − Hi

]
e−µVi = 0

n
∑

i=1

[
(α + βVi)e−µVi + δ − Hi

]
Vie−µVi = 0

n
∑

i=1

[
(α + βVi)e−µVi + δ − Hi

]
(α + βVi)Vie−µVi = 0

n
∑

i=1

[
(α + βVi)e−µVi + δ − Hi

]
= 0

(3)

Each optimum solution of the coefficients α, β, µ and δ can be obtained by a computer
program used to solve Equation (3) at any given operating conditions.

For convenience in application, three dimensionless parameters, which include oper-
ating conditions, W, V, and material properties, η0, E*, R, G, can be assumed as follows.

Dimensionless load:
W = W/

(
E∗R2

)
(4)

Dimensionless speed:
V = η0V/(E∗R) (5)

Dimensionless consistency:
G = G/R (6)

where E* is the equivalent elastic modulus of ball and disc; R is the radius of equivalent
curvature of ball and disc; η0 is the atmospheric viscosity of base oil. W, V and G are contact
load, rolling speed and grease cone penetration, respectively.

For lithium grease, α, β, µ and δ are expressed by the exponential functions of W and V.

α = A0WA1 VA2 (7)

β = B0WB1 VB2 (8)

µ = C0WC1 VC2 (9)

δ = D0WD1 VD2 (10)

For polyurea grease of different consistencies, α, β, µ and δ are expressed as the
exponential functions of W, V and G.

α = A0WA1 VA2 GA3 (11)

β = B0WB1 VB2 GB3 (12)

µ = C0WC1 VC2 GC3 (13)

δ = D0WD1 VD2 GD3 (14)

According to the values of α, β, µ and δ under different test conditions of lithium
grease and polyurea grease, the values of the regression coefficients can be obtained through
Equations (7)–(14). The results are shown in Tables 2 and 3.

Table 2. Regression coefficients for lithium grease.

α β µ δ

A0: 2.2698 × 10−11 B0: 1.2613 × 10−12 C0: −2.0530 × 10−9 D0: 3.5269 × 10−8

A1: 9.1593 × 10−6 B1: 1.0021 × 10−4 C1: 8.2771 × 10−4 D1: 1.7401 × 10−3

A2: −2.63 × 10−2 B2: −2.46 × 10−2 C2: −2.72 × 10−2 D2: −3.47 × 10−2
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Table 3. Regression coefficients for polyurea greases of different consistencies.

α β µ δ

A0: −4.5269 × 10−11 B0: 1.6603 × 10−12 C0: 3.2045 × 10−8 D0: 4.0610 × 10−8

A1: 2.5547 × 10−4 B2: 1.4218 × 10−4 C1: 9.9042 × 10−5 D1: 1.0156 × 10−4

A2: −0.5028 B2: −0.4626 C2: −0.4548 D2: −0.4791
A3: −2.9881 × 10−2 B3: −3.9442 × 10−2 C3: −3.1540 × 10−2 D3: −2.7927 × 10−2

4.2. The Film Thickness Calculation Model for Two Greases

According to the above method, the model for calculating the film thickness of lithium
grease is as follows:

H = (α + βV)e−µV + δ (15)

α = 2.2698 × 10−11 × W9.1592×10−6
× V−2.63×10−2

(16)

β = 1.2613 × 10−12 × W1.0021×10−4
× V−2.46×10−2

(17)

µ = −2.0530 × 10−9 × W8.2771×10−4
× V−2.72×10−2

(18)

δ = 3.5269 × 10−8 × W1.7401×10−3
× V−3.47×10−2

(19)

The model for calculating the film thickness of polyurea greases of different consisten-
cies is as follows:

H = (α + βV)e−µV + δ (20)

α = −4.5269 × 10−11 × W2.5547×10−4
× V−0.5028 × G−2.9881×10−2

(21)

β = 1.6603 × 10−12 × W1.4218×10−4
× V−0.4626 × G−3.9442×10−2

(22)

µ = 3.2045 × 10−8 × W9.9042×10−5
× V−0.4548 × G−3.154010−2

(23)

δ = 4.0610 × 10−8 × W1.0156×10−4
× V−0.4791 × G−2.7927×10−2

(24)

4.3. Verifying Calculation Model

As shown in Figures 12–15, the points represent the measured values, the solid lines
represent the calculated values by the model, and the dotted lines represent the base oil
film thickness predicted by the Hamrock–Dowson formula. The measured and calculated
values of film thicknesses for Grease 1 and 4 are compared in Figures 12 and 13, respectively.
Figures 14 and 15 show the measured and calculated film thicknesses of
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Grease 5 at 10 N and 40 N for different consistencies. It can be seen that the errors
between the measured data and the values predicted by the formulae (15)–(24) are very
small. Thus, the calculation model of grease film thickness presented has a high calculation
accuracy. In addition, as shown from the Figures that the calculation model of grease film
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thickness presented in this paper is more appropriate to predict the grease film thickness in
comparison with the base oil film thickness predicted by the Hamrock–Dowson formula.

However, it must be remembered that the model of grease film thickness presented in
this paper simply represents a correlation and does not provide any physical significance
for regression coefficients. The regression coefficients obtained by experiments are different
for different greases. Presenting this correlation is simply to generate a method that may be
easily and quickly used to compute grease film thickness in rolling bearing. The numerical
simplicity of the model makes it easily adaptable to a sophisticated computer program.

5. Conclusions

In this paper, the influence of rolling speed, load, consistence, base oil type and
thickener type on grease film thickness was investigated and a new calculation model of
grease film thickness was established. The following conclusions are drawn:

(1) The degree of film enhancement comparing to its base oil in fully flooded lubrication
will depend on thickener type and consistency (or concentration);

(2) In the high-speed region (above 0.25 m/s), when the rolling speed is less than 3 m/s,
the grease film thickness increases with increasing rolling speed. The growth rate
gradually decreases, then approaches to a fixed value when the rolling speed is
beyond 3 m/s, which may be because at this point, the contact region is filled with
enough thickener, and no more thickener can enter the region and the variation of
grease film thickness remains almost unchanged with a further increase in speed;

(3) The lithium-based grease with mineral oil forms the largest film thickness, followed
by ester oil and the smallest by PAO oil. The larger the atmospheric viscosity and
pressure-viscosity coefficient of the base oil, the higher the film thickness of the greases
with the same thickener;

(4) The grease film thicknesses with the same base oil and different thickeners are deter-
mined by the size of thickener particles at the same consistency or concentration. The
fiber skeleton of mineral oil-polyurea grease is smaller than that of mineral oil-lithium
grease, which results in a thicker film of mineral oil-polyurea grease than that of
mineral oil-lithium grease;

(5) The larger the consistency or concentration of thickeners (the smaller the cone pene-
tration), the thicker the grease film thickness whose base oil has the same type and
viscosity along with the same type of thickener. The reason is that the greater the con-
sistency of the grease (the more the content of the thickener), the greater the effective
viscosity of the grease at the contact and the thicker the grease film thickness;

(6) A new calculation model for grease film thickness is proposed, which considers the
influence factors such as working conditions, grease type and consistency. The calcu-
lation model has a high calculation accuracy and applicability to predict the grease
film thickness compared to the base oil film thickness predicted by the Hamrock–
Dowson formula.
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