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Abstract: The increase in the price of crude oil, the environmental impact, or the depletion of fossil
resources has increased the need for bio-based alternatives. This has led to the search for renewable,
biodegradable, and environmentally friendly raw materials to obtain lubricants that meet these
characteristics. This review deals with the state of the art of biolubricants along with their most
common raw materials and molecular structures, processes of chemical modification of bio-oils, as
well as the relationship between their structural features and physicochemical/tribological properties.
This review concludes that the production of fatty acid alkyl esters from vegetable oils is the most
promising chemical route to produce a wide range of biolubricants through double transesterification
reactions. It also highlights the need to explore this route for the production of microalgae-derived
biolubricants due to its environmental benefits during cultivation and production processes.
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1. Introduction

Water and food shortages are just some of the direct consequences of global warming
caused by the increase in CO2 emissions in recent decades. According to Lindsey’s report [1],
global sea levels have risen 24 cm since 1880, triggered by the start of the second industrial
revolution. The highest peak emissions in history were recorded last year with 40.5 tons,
behind pre-COVID-19 levels of 40.9 tons, with the use of fossil sources being the main
emitter of greenhouse gases, leading with 90.47%, of which 25% came from energy losses [2].

Maintaining machinery properly, conserving energy, and finding potential substitutes
for petroleum derivatives are necessary to combat accelerating climate change. One of the
sciences that can contribute to this purpose is tribology, which is responsible for optimizing
lubrication in the interaction between moving surfaces, and which has led to large amounts
of energy and money being saved in industry. Jost [3] estimated that GBP 515 million
could be saved by improving tribological conditions in the UK industry. In addition,
recent research into natural lubricant sources is helping to move society toward more
sustainable industries.

To achieve these goals, it is necessary to review the minimum requirements for lubri-
cants, the advantages and disadvantages of natural sources, and the existing techniques
for improving these materials to produce potential alternatives to petroleum-based lubri-
cants. The basic functions of lubricants can be summarized as follows: (a) to reduce energy
losses; (b) to protect surfaces from wear due to friction; (c) to protect against corrosion;
(d) to reduce oxidation effects; (e) to cool down surfaces; (f) to decrease heat losses due
to contact between moving surfaces; or (g) to increase tightness and prevent the leakage
of contaminants and sediments [4,5], in addition to certain requirements depending on
the application.

Lubricants can be classified according to their physical state as solid, liquid, or semi-
fluid (greases). The former is used when it is difficult to maintain contact with the fluid,

Lubricants 2023, 11, 380. https://doi.org/10.3390/lubricants11090380 https://www.mdpi.com/journal/lubricants

https://doi.org/10.3390/lubricants11090380
https://doi.org/10.3390/lubricants11090380
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/lubricants
https://www.mdpi.com
https://orcid.org/0000-0002-6878-2622
https://orcid.org/0000-0001-9358-5738
https://orcid.org/0000-0002-9838-8634
https://orcid.org/0000-0003-0828-4995
https://doi.org/10.3390/lubricants11090380
https://www.mdpi.com/journal/lubricants
https://www.mdpi.com/article/10.3390/lubricants11090380?type=check_update&version=1


Lubricants 2023, 11, 380 2 of 21

while the latter is used in situations where liquid lubricants are not applicable. They can
be further classified according to their source material as mineral-, synthetic-, animal-, or
vegetable-based lubricants (Figure 1). All base fluids directly refined from crude oil are
called mineral bases, those refined from natural sources are called vegetable bases, and
those synthesized (natural or mineral) are called synthetic bases [6].
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Environmental concerns about the accelerated development of global warming have
led to the promotion of the use of new biodegradable and more environmentally sustain-
able materials. As part of this movement, new competitive lubricants are being sought
from organic materials such as vegetable oils and animal fats to create what are known as
biodegradable lubricants or biolubricants. As lubricants, they must fulfill the basic lubri-
cating properties listed above. Thus, biolubricants show important attractive advantages
such as high biodegradability, low toxicity, sustainability (eco-friendly), increased worker
safety, increased machine life, reduced labor costs, and reduced energy consumption as
well as other tribological and physicochemical properties such as increased lubricity, higher
viscosity index, higher boiling point, or lower volatility [7,8]. On the contrary, they have
certain disadvantages, including poor oxidative, thermal, and hydrolytic stability (lead-
ing to shorter shelf life); low corrosion inhibition properties; and poor to bad pour point
(PP) [7,9].

According to Verified Market Research [10], the biolubricants market was valued
at USD 2.82 billion in 2018 and is expected to reach USD 3.63 billion by 2026, growing
at a Compound Annual Growth Rate (CAGR) of 3.2% from 2019 to 2026. Asia and the
Americas are also expected to have the highest growth rate in this sector between 2019
and 2024 [11]. These data show the growing industry interest in replacing petroleum-
based lubricants with more environmentally friendly ones, and therefore the need to find
solutions to concerns about production costs and other more functional aspects, including
poor oxidation stability.

This review deals with the state of the art of biolubricants along their most common
raw materials and molecular structures, processes of chemical modification of bio-oils, as
well as the relationship between their structural features and physicochemical/tribological
properties. In addition, due to the close relationship between physicochemical and tribo-
logical properties, from the physicochemical characterization of bio-oils, the necessity of
using some additives to improve these properties can be considered. The aim of this work
is to provide comprehensive information for the selection of bio-oils for the production
of biolubricants.

2. Biolubricants

According to the UNE-EN 16807 standard [12], the term “bio” is considered synony-
mous with good for the environment. Its use in lubricants is linked to its environmental
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properties; therefore, it is expected that all compounds called bio-lubricants will degrade in
the environment. According to this standard, bio-lubricants and bio-based lubricants must
fulfill a minimum requirement:

• Biological carbon (C14) content greater than or equal to 25%.
• Biodegradability of oils greater than or equal to 60% (50% for greases).
• Ecotoxicity: not classified as “dangerous for the environment”.

Proper Classification for Biolubricants from Feedstock

An important characteristic of biodegradable lubricants is the raw material used to
produce them. Therefore, these materials could be classified into first, second, third, and
fourth generations based on the feedstock, as shown in Figure 2 [13,14]. The first generation
would include all lubricants derived from edible crops like sunflower, rapeseed, soybean,
palm, palm kernel, coconut, olive, or castor [15]. These oils are characterized by a low oil
production yield and encourage the deforestation and destruction of ecosystems for their
cultivation [16]. In addition, the use of arable land competes with food sources, which
increases the cost of the final product and is counterproductive in the current context of
global food shortages. The second generation comes from non-edible materials such as
Jatropha, tobacco, or cotton seeds [17]. These materials are more widely available than
the previous ones, but they do still require arable lands for their growth and compete
with edible crops for land as in the first case. Third-generation biolubricants derived
from microalgae are emerging to solve this problem. Also, biolubricants derived from
macroalgae, bacteria, and fungi can also be included in this category [16,18].

Lubricants 2023, 11, x FOR PEER REVIEW 3 of 22 
 

 

2. Biolubricants 
According to the UNE-EN 16807 standard [12], the term “bio” is considered synony-

mous with good for the environment. Its use in lubricants is linked to its environmental 
properties; therefore, it is expected that all compounds called bio-lubricants will degrade 
in the environment. According to this standard, bio-lubricants and bio-based lubricants 
must fulfill a minimum requirement: 
• Biological carbon (C14) content greater than or equal to 25%. 
• Biodegradability of oils greater than or equal to 60% (50% for greases). 
• Ecotoxicity: not classified as “dangerous for the environment”. 

Proper Classification for Biolubricants from Feedstock 
An important characteristic of biodegradable lubricants is the raw material used to 

produce them. Therefore, these materials could be classified into first, second, third, and 
fourth generations based on the feedstock, as shown in Figure 2 [13,14]. The first genera-
tion would include all lubricants derived from edible crops like sunflower, rapeseed, soy-
bean, palm, palm kernel, coconut, olive, or castor [15]. These oils are characterized by a 
low oil production yield and encourage the deforestation and destruction of ecosystems 
for their cultivation [16]. In addition, the use of arable land competes with food sources, 
which increases the cost of the final product and is counterproductive in the current con-
text of global food shortages. The second generation comes from non-edible materials 
such as Jatropha, tobacco, or cotton seeds [17]. These materials are more widely available 
than the previous ones, but they do still require arable lands for their growth and compete 
with edible crops for land as in the first case. Third-generation biolubricants derived from 
microalgae are emerging to solve this problem. Also, biolubricants derived from macroal-
gae, bacteria, and fungi can also be included in this category [16,18]. 

 
Figure 2. Biolubricant classification according to feedstock. Figure 2. Biolubricant classification according to feedstock.



Lubricants 2023, 11, 380 4 of 21

Microalgae are microorganisms capable of photosynthesis in freshwater, seawater,
or wastewater and therefore do not require arable land for their cultivation. Among the
requirements for the growth of these microorganisms, the presence of nutrients such as
nitrogen, carbon, phosphorus, and potassium makes it possible to use them for wastewater
treatment [19,20]. Compared to previous plant sources, they have additional economic
and environmental advantages for their application as biolubricants: (a) high growth rate;
(b) high biomass production; (c) high lipid content; (d) cultivable all-year-round; (e) higher
CO2 reduction during photosynthesis; and (f) effective removal of phosphates and nitrates
in wastewater during cultivation [21,22].

Finally, a fourth generation of biomass derived from genetically modified microalgae
is being considered. The possibility of manipulating microalgae through mutagenesis
or genetic transformation will open the door to the production of suitable bio-oils for
biolubricant formulation without the need to improve them using chemical techniques
such as epoxidation or the use of additives [18,23,24].

3. Common Techniques for Biolubricant Production

Obtaining biomass from crops is the first step in the biolubricant production process.
Depending on the type of crop, this can involve simple collection and purification processes,
for example, using agricultural residues or waste cooking oil [25]. Raw materials such as
macro- and microalgae require more elaborate harvesting processes, which can be physical,
chemical, or biological (Figure 3). Centrifugation is the most widely used technique in the
biomass-derived microalgae industry, usually complemented by drying systems such as
lyophilization to efficiently remove moisture [13,22]. Figure 3 shows the bio-oil production
chain including harvest, drying, pretreatment (if necessary), and extraction, and identifies
the most used techniques at each stage.
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Once the biomass has been obtained, it is subjected to bio-oil production techniques.
For materials with simple matrices, such as vegetable oils, more rudimentary methods are
used, for example, mechanical or expeller pressing [26,27]. In the case of complex matrices
like microalgae, pretreatment for cell disruption is required to facilitate bio-oil extraction.
The use of high-pressure homogenization or ultra-high-pressure homogenization as a
pretreatment resulted in high lipid extraction yields, reaching an increase of 30% in some
cases [28–30]. The disadvantage of these techniques is the high operating cost due to the
increased working pressures (supercritical conditions). As a solution, other procedures are
being studied, including ultrasound, microwave, or osmotic shock [31–33].
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In terms of extraction techniques, organic solvents are the most implemented, which
can be alone or supported by complementary pretreatments [27]. If the biomass is semi-
solid or solid, solvent extraction would be carried out using a Soxhlet device [34,35]. Ionic
liquids with magnetic nanoparticles were also introduced as a potential alternative in 2021
by Egesa and Plucinski [36], where an extraction efficiency of 99% was achieved with a
hexane-ionic liquid mixture.

3.1. Bio-Oils (Triglycerides) as Biolubricants

Vegetable oils are mainly composed of triglycerides: three fatty acids (FA) linked by a
glycerol. Compared to the long-chain hydrocarbons of mineral oils, which have between
20 and 50 carbon atoms, FAs have shorter chains of between 4 and 26 carbon atoms [37].
They may also contain one or more double bonds and branches. Figure 4 shows the most
common FA found in olive oil (mainly oleic acid).
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The use of these oils as lubricants has usually been studied as additives to improve
a specific property, such as viscosity modifiers. Gallardo-Hernández [38] studied the
use of Jatropha oil as an additive in a mineral oil (SAE40W oil) to evaluate its lubricating
and thermal properties. The improvement in the lubricity in terms of friction and the
deterioration in the anti-wear properties were observed, both related to the tribosystem
created by the blend. A strong influence on the thermal properties was also observed at a
content of less than 20%. Later, Contreras-Gallego [37] studied the variation in density and
kinematic viscosity when the above bio-oil was added at 10% and 20% in four different
mineral oils (SAE 5W-30, SAE 15W-40, SAE 25W-50, and SAE 40), as well as thermal
conductivity and specific heat. An improvement in thermal properties associated with
the increase in Jatropha oil was demonstrated. There was also a reduction in viscosity at
higher additive contents, related to the substitution of long-chain hydrocarbons (mineral
base oil) by shorter bio-oil ones. Recently, the feasibility of curcumin-extracted soybean
waste cooking oil as a 10%, 20%, and 30% additive in N-150 mineral oil was verified by
analyzing the tribological and physicochemical properties. In contrast to the previous
case, a reduction in wear volume and coefficient of friction (COF) of up to 16% and 32%,
respectively, was observed compared to N-150, due to a stronger tribofilm formed by the
additive. The function of curcumin as a natural antioxidant to prevent the oxidation of
soybean waste cooking oil was also confirmed. Finally, the increase in viscosity index with
the molecular weight was confirmed and the decrease in PP from −12 ◦C (N-150) to −30 ◦C
(10% bio-oil) was attributed to the increase in blend polarity [25].

3.2. Environmentally Friendly Modifications of Vegetable Oils

Despite the advantages offered by biolubricants based on bio-oils, it is inevitable
highlight the need for improvement to provide functional storage properties, in addition
to modifying psychochemical and tribological properties depending on the final applica-
tions. This led to the search for techniques capable of modifying the chemical structure of
triglycerides, producing so-called modified esters, as shown in Figure 5.
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3.2.1. Hydrolysis

As explained above, bio-oils have poor hydrolytic stability and tend to hydrolyze easily
in the presence of water or steam. This leads to the breakdown of their triglycerides and
the formation of the corresponding free fatty acids (FFA). This is a spontaneous secondary
reaction, promoted by the increase in temperature, which must be prevented [39,40].

3.2.2. Transesterification

Transesterification reactions are the most widely used technique for ester modifications,
especially in the biodiesel industry. As shown in Figure 6, it is based on the reaction between
a triglyceride and an acyl acceptor (an alcohol) in the presence of a catalyst, and under
temperature conditions, to produce fatty acid methyl ester (FAME) as the main product
and glycerol as the secondary product. The catalyst function aims to assist the reaction
and the deprotonation of the alcohol so that it can join the ester group. These can be acid,
basic, or enzymatic catalysts, as well as homogeneous or heterogeneous (depending on the
reaction phase) [4,13,41].
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To avoid secondary reactions such as hydrolysis and thus soap formation at high FFA
contents (>2–4 mg KOH/g), it is necessary to neutralize them through an esterification
process using an acid catalyst, usually sulfuric acid [42]. It is also necessary to control
the humidity of the bio-oil and remove any existing moisture, as this also promotes the
saponification reaction.
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In the last decade, a new modality called direct or in situ transesterification has at-
tracted attention. It combines lipid extraction (bio-oil extraction) and the transesterification
reaction into one process, using biomass as a reagent instead of bio-oil, which means energy
and economic savings [43]. The water content is also no longer a critical parameter, as it has
greater hydrolytic stability. However, it requires more severe temperature conditions and
longer reaction times [13]. A notable application is the processing of microalgal biomass. A
wide range of species of these organisms develop strong cell walls, which complicates the
extraction process and thus requires an efficient prior cell disruption method. As mentioned
above, the operating costs of lyophilization or high-pressure homogenization are high, even
more so for complex matrices such as microalgae. The ability to skip the cell disruption and
extraction steps is advantageous in terms of both operating cost and energy consumption.
Table 1 shows the research that has used this technique for FAME (biodiesel) production in
recent years, highlighting the presence of microalgae [44–49].

More recently, Encinar et al. [50–54] have worked on the modification of vegetable-
oil-derived FA using double transesterification reactions. In the first step (Figure 7), the
triglyceride is degraded to the corresponding FAME. The novelty of this process lies in the
second step, in which another transesterification reaction is carried out on these FAMEs,
this time using a complex alcohol as a reagent, to obtain the so-called fatty acid alkyl [54]
esters (FAAEs). According to the researchers, the advantage of this refinery model is the
diversity of the main products, starting with the use of bio-oil; the production of biodiesel
(FAME) and biolubricants (FAAE); the economic and energy savings with the recovery
of materials such as glycerol, as well as the recycling of methanol produced during the
second transesterification, which can be reintroduced into the process as a reagent in the
first transesterification [55]. So far, only vegetable feedstocks such as safflower, cardoon,
rapeseed, soybean, or Jatropha oil have been subjected to this technique.
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3.2.3. Epoxidation/Ring Opening

A significant problem with bio-oils is their poor thermal and oxidative stability due to
the effect of double bonds on C-H bond strength. For this reason, the authors recommend
raw materials that consist as much as possible of saturated fatty acids (SFAs) because
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they do not contain double bonds in their structure [20,56]. One way to neutralize these
double bonds is through epoxidation reactions. These are based on the reaction of alkenes
with peroxyacids to form a cyclic ether (epoxide) compound [57,58]. Epoxidized com-
pounds have been shown to have superior frictional and anti-corrosive properties and
better performance at low temperatures, providing a more economical, sustainable, and
environmentally friendly alternative to mineral-based lubricants [58–60].

3.2.4. Estolide Synthesis

Another eco-friendly modification of FFA is the formation of estolides. These are
synthetic compounds derived from the linkage of the respective triglycerides or their FFA,
which use their hydroxyl groups to form the estolide bonds [59,61]. The advantages of
these structures include better oxidative stability, improved PP, and higher flash point
(FP). However, this modification does not resolve the hydrolytic stability problems of the
compound [62].

Table 1. Environmentally friendly modifications for the production of and improvement in biolubri-
cants. Microalgae species in bold text.

Feedstock Technique Molecular Structure Ref.

High-oleic safflower oil Double transesterification FAAE [52]

Cardoon oil Double transesterification FAAE [50]

Cardoon oil Double transesterification FAAE [53]

Rapeseed oil Double transesterification FAAE [51]

Rapeseed and castor oils Double transesterification FAAE [54]

Indian mustard seed oils Double transesterification FAAE [63]

Rapeseed, seed and frying oils Double transesterification FAAE [55]

Soybean oil Double transesterification FAAE [64]

Jatropha oil Double transesterification FAAE [65]

Coconut oil Hydrogenation [66]

Waste cooking oil Epoxidation + Transesterification Epoxidized FAME [60]

Karanja seed oil Simple transesterification FAME [67]

Schlichera oleosa oil Simple Transesterification FAME [68]

Refine bleached palm kernel oil Simple Transesterification FAME [69]

Soybean oil Epoxidation Epoxidized triglycerides [58]

Madhuca indica oil Epoxidation Epoxidized triglycerides [70]

Michelia champaca oil Epoxidation Epoxidized triglycerides [71]

Moringa olifera Lam oil Epoxidation Epoxidized triglycerides [26]
Passiflora edulis oil Epoxidation Epoxidized triglycerides

Crude Palm oil Hydrolyzation + Esterification Modified esters [72]

Crude Jatropha oil
Esterification + Transesterification

FAME [73]Esterification + Ultrasound—assisted
transesterification

Waste ayurvedic oil Ultrasonic irradiation assisted
Transesterification FAME [74]

Pequi oil Hydrolyzation + Esterification FA [75]

Dunaliella salina In situ transesterification FAME [44]

Chlorella vulgaris foamate In situ transesterification FAME [45]

Chlorella pyrenoidosa In situ transesterification FAME [46]

Chlorella vulgaris In situ transesterification FAME [47]

Rubber seeds In situ transesterification FAME [48]

Botryococcus braunii In situ transesterification
FAME [49]

Coccomyxa subellipsoidea In situ transesterification
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4. Influence of Structural Features on Biolubricant Performance

Among the structural characteristics that determine the physicochemical and tribolog-
ical properties of a biolubricant, the following stand out: the presence of double bonds or
unsaturation; the length of the chains present; or the molecular weight, polarity, and the
presence of branches in the structures that make it up. Cecilia [56] and Chan [76] have pre-
viously reviewed the influence of these parameters on their performance as bio-lubricants.
Table 2 shows in more detail how the different structures can modify some of the main
properties of lubricants.

Table 2. Effect of some structural features on the physicochemical and tribological properties
of biolubricants.

Property Unsaturation
(Double Bounds)

Chain Length
(Molecular Weight) Polarity Branching Degree

Pour Point ↓ ↑ ↑ ↓
Flash Point - ↑ - -

Viscosity ↓ ↑ - -

Viscosity Index - ↑ ↓ ↑
Oxidation stability ↓ ↓ ↓ ↑
Lubricity ↓ ↑ ↑ ↓
Wear protection ↓ ↑ ↑ ↓
Tribofilm thickness - ↑ ↑ -

Tribofilm adhesion strength ↓ - ↑ ↓

4.1. Presence of Double Bonds

The molecular structure of these compounds can contain zero (saturated), one (mo-
nounsaturated), or multiple C=C double bonds (polyunsaturated). Each FA introduces the
double bonds at a specific position in its structure, for example, at the 6, 9, and 12 carbon
atom positions [77]. The presence of double bonds promotes oxygen attack on the carbons
adjacent to these bonds, as shown in Figure 8. The areas most affected by this phenomenon
are the carbons atoms located between two double bonds, so that the oxidative stability
of the structure decreases as the areas of oxygen attack increase [57,78,79]. This oxidative
stability refers to the ability of lubricants to retain their properties when exposed to en-
vironmental oxygen without suffering oxidative degradation [80]. It has also shown an
increase in PP and a tendency to increase viscosity and decrease viscosity index (VI) by
reducing the content of unsaturated FAs [57,78,81].
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4.2. Carbon Chain Length

Chain length and molecular weight are parameters that directly influence important
physicochemical properties. Increasing the chain length leads to structures with higher
molecular weights, resulting in a higher FP, which is relevant as the FP is an important
factor in determining the required safe transport and storage temperatures [79]. In addition,
kinematic viscosity increases with the molecular weight and the VI also increases as denser
structures help to ensure that the viscosity does not fluctuate significantly with increasing
temperature [82].

In terms of tribological properties, it has been found that COF and wear volume
decrease with increasing chain length due to the better anti-wear performance of the film
formed by the ester groups on the contact surfaces. This is achieved due to the stronger
film formed by the biolubricant [25,83].

4.3. Polarity of the Structures

The structures of vegetable oils are linear, unbranched chains with polar end groups,
as shown in Figure 8. The polarity of these esters increases the effectiveness of wear
reduction by forming an adsorbed protective layer on the contacting metal surfaces, which
reduces the surface energy and increases the strength of the formed tribological film due
to their high polarity. These tribological films exhibit a low COF at both low and high
temperatures [83–85]. This is why the degree of polarity is important when looking at
the molecular structure of a lubricant: COOH > CHO > OH > COOCH3 > CO > COC
(decreasing polarity degrees) [40]. Parameters such as VI or PP are also strongly influenced
by the high polarity of these structures, resulting in higher VI values as the polarity
increases, or in a drop in PP due to polar functionality [25,82].

4.4. Branching Degree

The chains that constitute these oils are characterized by the fact that they are formed
by linear chains of 4 to 26 carbon atoms, with a natural lack of branches. For this reason, the
shorter the chain length, the more the structure tends to clump together, while the longer
the chain length, the more linear they are due to the absence of branches. As a result, these
chains have higher PP values than branched structures with the same number of carbon
atoms, due to the molecular structure, which tend to compact [79,86].

4.5. Selecting Vegetable Oils for Biolubricant Formulation

Based on the evaluation of the influence of the molecular structures of vegetable oils
on their physicochemical and tribological properties, the flow chart shown in Figure 9
has been prepared as a guideline for the selection of vegetable oils for the biolubricant
formulation. This scheme follows the one proposed by Farfán-Cabrera et al. [20], dedicated
to the selection of microalgae species for the production of biolubricants. Critical input
variables are considered to be the FFA content or acidity, the degree of unsaturation, and
the chain length of the corresponding FAs, which have more influence on the properties of
interest of biolubricants, such as hydrolytic, oxidative stability, lubricity, PP, and viscosity. If
the balance between these properties does not meet the minimum requirements for a given
application, the diagram shows the chemical conversions typically used as a function of
the input variable to be improved. Other alternatives may be found in the use of additives
or the selection of less demanding applications.
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5. Tribological Characterization and Performance of Vegetable-Derived Structures

One of the objectives of using vegetable derivatives for the formulation of biolubricants
is to reduce the use of elements such as chlorine, sulfur, or phosphorus, as in commercial
lubricants formulated from mineral sources, and also to achieve competitive tribological
properties. Chan et al. [76] reported the state of the art of tribological tests performed on
biolubricants up to 2017. Now, a summary of the publications from 2018 to 2023 in which
tribological tests were performed on 1st-, 2nd-, and 3rd-generation biolubricants is shown
in Table 3. Table 3 shows the fluids tested, the tribological tests and test conditions used,
and the COF and wear results obtained. For studies performed using different additive
concentrations and loads, only the results obtained with the highest load and the most
representative additive concentrations are included in Table 3.
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Table 3. Tribological tests and conditions used for evaluating biolubricants from 2018 to 2022
(a 10−3 mm3; b mm3/m; c mm3/Nm; d mm; e 10−7 mm3/s; f g).

Test Fluid Equipment Test Conditions COF Wear Ref.

Lithium grease
(MVI500/PAO6/DOS)

Ball-on-disc
10–50 Hz, 50 N
(1.74 GPa), RT,

30 min

0.16 125 × 10−2 a

[87]Lithium grease
(MVI500/PAO6/DOS) + 3%
cho-ricinoleic

0.12 5.00 × 10−2 a

Gallate oil ester
Ball-on-disc test

Steel
25 Hz, 100 N

(2.19 GPa), RT,
30 min

0.095 0.055 a

[80]
Cooper 0.12 0.045 a

Phe-3Ci8
Steel 0.085 0.045 a

Cooper 0.069 0.040 a

Auxenochlorella protothecoides

Ball-on-disc test

50 Hz, 77 and
150 N (2 and

2.5 GPa), 25 ◦C,
60 min

0.065–0.07 0.107–0.175 a

[88]

Chlorella sorokiniana 0.07–0.08 0.099–0.148 a

Aurantiochytrium limacinum SR21 0.1–0.14 0.124–0.184 a

Auranti-ochytriumsp. T66 0.09–0.13 0.110–0.169 a

Rhodosporidium toruloides 0.09–0.08 0.139–0.227 a

Cryptococcus curvatus 0.08–0.1 0.128–0.246 a

PEG 200 0.12–0.13 1.140–7.120 a

Jatropha oil (JO)
Ball-on-disc test

0.25 m/s, 50 N
(1.2 GPa), 25 ◦C

0.06 6.00 × 10−4 b

[89]Mineral engine oil (SAE 10W-30) 0.095 1.50 × 10−4 b

Mineral engine oil + 20% JO 0.08 1.50 × 10−4 b

Canola oil (CaO)

Ball-on-disc test
800 rpm, 130 N

(2.39 GPa), 25 ◦C,
15 min

0.125 15.5 × 10−6 c

[90]CaO + 0.05% CuO 0.08 13.0 × 10−6 c

CaO + 0.08% CuO 0.07 9.10 × 10−6 c

CaO + 0.1% CuO 0.05 6.00 × 10−6 c

Codonosis pilosula wax (grease)
Ball-on-disc test

25 Hz, 100 N
(2.25 GPa),

150 ◦C, 20 min

0.148 9 × 10−8 c

[91]Codonosis pilosula wax (base
grease) + multilayer graphene 0.145 7 × 10−8 c

Castor oil
Ball-on-three-plates

10 rpm, 20 N,
25 ◦C, 10 min

0.11 0.47 d

[92]Castor oil + epoxide cellulose
pulp (grease) 0.08 0.37 d

Castor oil (CO)

Ball-on-three-plates 20 rpm, 20 N, RT,
30 min

0.084 0.508 d

[93]

CO + epoxide-functionalized alkali
lignin dispersion grease (EAL-1) 0.09 0.524 d

CO + epoxide-functionalized alkali
lignin dispersion grease (EAL-2) 0.07 0.416 d

CO + epoxide-functionalized alkali
lignin dispersion grease (EAL-3) 0.09 0.366 d

CO + epoxide-functionalized alkali
lignin dispersion grease (EAL-4) 0.08 0.450 d

CO + epoxide-functionalized alkali
lignin dispersion grease (EAL-5) 0.22 0.440 d

N-150 mineral oil
Four-ball test

1200 rpm, 392 N,
75 ◦C, 60 min

0.117 0.685 d

[25]Curcumin-extracted soybean waste
cooking oil 0.08 0.573 d

SAE40W + 5% JO
Four-ball test 395, 20 min

0.101 0.950 d

[38]SAE40W + 20% JO 0.113 1.350 d

SAE40W + 50% JO 0.125 1.500 d

SAE 15W40

Four-ball test
1200 rpm, 392 N,

75 ◦C, 60 min

0.115 2.000 e

[94]
Palm oil (PO) 0.08 1.850 e

PO + 0.1% hBN 0.079 1.180 e

PO + 0.5% hBN 0.11 1.100 e
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Table 3. Cont.

Test Fluid Equipment Test Conditions COF Wear Ref.

Soybean oil FAAE
Four-ball test

1200 rpm, 392 N,
60 min

0.11 n/a
[64]Soybean oil FAAE + 5% ZnAl 0.055 n/a

Castor oil + seed oil

Four-ball test
1200 rpm, 392 N,

75 ◦C, 60 min

0.0697 0.919 d

[86]

Castor oil + seed oil + 0.25%
halloysite clay nanotube 0.0551 0.848 d

Castor oil + seed oil + 0.5%
halloysite clay nanotube 0.0527 0.845 d

Castor oil + seed oil + 0.75%
halloysite clay nanotube 0.0525 0.779 d

Castor oil + seed oil + 1% halloysite
clay nanotube 0.0452 0.723 d

Pequi oil
Four-ball test

4.95 × 105 µm/s,
55 N, 75 ◦C,

60 min

0.0588 0.371 d
[75]Mineral oil 0.0849 0.195 d

Cucurbita pepo L. oil
Four-ball test

1200 rpm, 392 N,
75 ◦C, 60 min

0.0506 0.333 d
[95]

SAE 20W40 0.0459 0.413 d

Refine bleached palm kernel FAME
Four-ball test

1200 rpm, 60, 80,
and 100 kg, 75 ◦C,

60 min

0.07 2.250 d
[69]

Engine oil 0.10 2.000 d

Sunflower oil
Four-ball test

1200 rpm, 392 N,
75 ◦C, 60 min

0.06 0.600 d
[96]

Soybean oil 0.055 0.700 d

Karanja FAME Four-ball test
1200 rpm, 15 and

40 N, 75 ◦C,
60 min

0.05–0.14 0.300–0.440 d [97]

Rice bran and sunflower oil
(RB + SFO)

Four-ball test
1200 rpm, 392 N,

75 ◦C, 60 min

0.332 0.911 d

[98]
RB + SFO + 0.01% CuO 0.3298 0.865 d

RB + SFO + 0.04% CuO 0.314 0.830 d

Coconut oil (CO)

Four-ball test
600 rpm, 392 N
(1 GPa), 75 ◦C,

60 min

0.09 0.587 d

[99]
Mustard oil (MU) 0.12 0.478 d

SAE20W40 0.103 0.496 d

CO + 10% MU 0.092 0.585 d

CO + 50% MU 0.099 0.489 d

Jojoba oil (JJO)

Four-ball test
800 rpm, 492 N,

RT, 30 min

0.04 0.422 d

[100]
Polymerized JJO 1 h (grease) 0.015 0.385 d

Polymerized JJO 2 h (grease) 0.03 0.471 d

Polymerized JJO 3 h (grease) 0.068 0.420 d

Lithium-based paraffin grease
Four-ball test

1200 rpm, 392 N,
75 ◦C, 60 min

0.091 0.850 d

[101]Lithium-based castor oil grease 0.07 0.700 d

Lithium-based coconut oil grease 0.082 0.930 d

Pailm oil FAME

High-frequency
reciprocating test

50 Hz, 200 g,
60 ◦C, 75 min

0.126 0.220 d

[102]
DF-CN48 0.15 0.290 d

DF-CN48 + 50% FAME 0.135 0.250 d

DF-CN51 0.29 0.460 d

DF-CN51 + 50% FAME 0.13 0.300 d

Styrax officinalis oil

Pin-on-disc test

350 rpm, 35, 70,
105, and 140 N
(1.14, 1.43, 1.64,
and 1.81 GPa),

125 ◦C

0.0094 0.880 d

[103]
Styrax officinalis FAME 0.0076 0.840 d



Lubricants 2023, 11, 380 14 of 21

Table 3. Cont.

Test Fluid Equipment Test Conditions COF Wear Ref.

Neem oil (NO)
Pin-on-disc test

100 rpm, 40, 60,
80, and 100 N

(1.03, 1.17, 1.29,
and 1.39 GPa),

150 ◦C

0.075 59 d

[104]NO + 0.15 SiO2 0.073 57 d

NO + 0.9 SiO2 0.94 66 d

Karanja oil

Pin-on-disc test
20, 40, 60, and 80
N (1.28, 1.61, 1.84,

and 2.03 GPa)

0.086 4.20 × 10−6 c

[105]Karanja oil + 1% TiO2 0.061 2.89 × 10−6 c

Rice bran oil 0.056 4.70 × 10−6 c

Rice bran oil + 1% TiO2 0.043 3.40 × 10−6 c

Jatropha oil
Pin-on-disc test

120 rpm, 50, 80,
120 N (1.28, 1.5,
and 1.72 GPa)

0.085 0.890 f

[106]Jatropha oil + 0.2% SiO2 0.08 0.850 f

Jatropha oil + 1% SiO2 0.045 0.760 f

Waste ayuvedic oil Pin-on-disc test
300 rpm, 80 N
(2.36 GPa), RT,

60 min
0.040 0.800 d [74]

Schlichera oleosa oil Pin-on-disc test

200 rpm, 40, 60,
80, and 100 N

(1.03, 1.17, 1.29,
and 1.39 GPa),

125 ◦C

0.0089 0.780 d
[68]

Schlichera oleosa FAME 0.0065 0.720 d

PO

Pin-on-disc test
1000 rpm, 40 N,

RT, 20 min

0.045 3.60 × 10−8 c

[107]

PO + 0.5% CuO 0.034 1.25 × 10−8 c

PO + 0.5% TiO2 0.039 2.00 × 10−8 c

Brassica oil (BO) 0.047 4.00 × 10−8 c

BO + 0.5% CuO 0.040 1.60 × 10−8 c

BO + 0.5%v TiO2 0.043 2.50 × 10−8 c

Michelia champaca oil (MCO)
Pin-on-disc test

100 rpm, 117 N
(1.3 GPa), 75 ◦C,

60 min

0.084 0.1 f

[71]Epoxidized MCO 0.065 0.85 f

E-MCO + 1.2% CeO2 0.055 0.7 f

Vegetable oil (VO)

Pin-on-disc test
550 rpm, 18 N
(0.98 GPa), RT,

60 min

0.45 8.100 e

[108]
VO + 0.6% GNPs 0.43 5.000 e

VO + 0.6% hBN 0.42 4.500 e

VO + 0.6% (GNPs + hBN) 0.41 3.900 e

Putranjiva oil (PTO)
Pin-on-disc test

500 rpm, 150 N
(1.85 GPa), 125 ◦C

0.66 1.400 d
[109]

PTO + 1.3 CuO 0.88 0.960 d

Crambe abyssinica oil Pin-on-disc test

150 rpm, 30, 60,
90, and 120 N

(0.93, 1.17, 1.34,
and 1.48 GPa),

125 ◦C

0.009 0.780 d
[110]

Crambe abyssinica FAME 0.007 0.600 d

Coconut oil

Reciprocating
cylinder-on-disc tests

50 mm/s, 5 N, RT,
10 min

0.079

n/a [111]

Olive oil 0.071
Rapeseed oil 0.077
Soybean oil 0.083
Sunflower seed oil 0.075
Linseed oil 0.088

The tribological performance of vegetable oils depends on their molecular structure, as
discussed in Table 2. Having shorter chains than hydrocarbons do would tend to improve
lubricity and wear protection, but the presence of double bonds in the structure of vegetable
oils has the opposite effect [75,89,95]. Therefore, the higher the degree of unsaturation of
these oils, the lower the improvement in friction and wear. It has also been shown that the
effect of increased unsaturation on tribological properties is more pronounced at higher
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temperatures [112]. Yoshida et al. [111] also investigated the effect of double bonds on the
COF of six vegetable oils with different levels of unsaturation in relation to the presence of
mono-, di-, and tri-unsaturated FA. The oil with the highest content (%) of triunsaturation
showed the highest COF results (linseed oil), followed by the oils with the highest content
(%) of monounsaturation (rapeseed and olive oils).

Regarding the modified oils, Singh et al. [68,103,110] carried out comparative tests
of three vegetable oils with their corresponding FAME by means of a pin-on-disc test,
verifying in all of them the improvement in the anti-friction and anti-wear properties of
the FAME compared to the unmodified oil. This could be due to the polarity of these
compounds, thanks to the polar COOH groups present in FAME, which are adsorbed on
metal surfaces, forming a more resistant film.

Another widely used alternative for improving pure oils is the use of nanoparti-
cles as additives, particularly CuO, TiO2, and SiO2. For example, the use of CuO was
tested in canola oil and a significant reduction in wear was achieved from 15.5 × 10−6

to 6 × 10−6 mm3/Nm with 1% of the additive [90]. According to Table 3, at the same
maximum contact pressure, pure Jatropha oil has lower COF values (0.027) compared to
other pure oils such as neem (0.055), karanja (0.08), or rice bran (0.05) [104–106]. Regarding
nanoparticle additives, the study using karanja and rice bran combined with TiO2 showed
a higher COF reduction of about 28% at a nanoparticle concentration of 0.5% [105]. In the
case of neem, SiO2 nanoparticles were selected and showed a reduction in friction of 21%
at a concentration of 0.33% [93]. In the case of Jatropha oil, it was necessary to increase the
concentration of SiO2 nanoparticles to 1% to achieve a friction reduction of 24% [106]. On
the other hand, in the case of neem and Jatropha oils with SiO2, the wear was relatively
constant [104,106]. On the contrary, a significant reduction in wear was observed when
TiO2 was used as an additive in karanja and rice bran oils [105].

With regard to greases, there is also an increase in the study of obtaining bioalterna-
tives, especially using a vegetable oil as a base oil mixed with an ecological thickener such
as natural wax or modified cellulose derived from a vegetable source [92,113–116]. The
Chemical Process and Product Technology Research Center (Pro2TecS) of Huelva (Spain)
has studied the formulation of bio-greases from castor oil using thickeners such as epoxide-
functionalized alkali lignin (EAL) or epoxidized cellulose pulp from Eucalyptus globulus as
potential substitutes for traditional lithium and calcium greases [92,93]. EALs showed a
significant reduction in wear for most of the grease formulations prepared by the authors,
while a sharp increase in COF values was found for a high epoxy index (0.79 mol/kg) and
a higher thickener content (10%) [93]. In the second case, the COF variation was more
significant, with a reduction from 0.11 (castor oil) to 0.08 (grease) and an improvement in
wear reduction of 21%, and with the cellulose pulps modified with aromatic epoxides being
more efficient in protecting the metal surface [92]. Xie et al. [91] studied the improvement
in the tribological properties of a vegetable wax (Codonopsis pilosula)-based grease by
using a multilayer graphene as an additive, proving that this material is a good alternative
for improving anti-wear properties. Another study by Abbas et al. [100] also compared the
tribological performance of polymerized jojoba oil (grease) with the pure oil and found
that the polymerized jojoba grade also improved the tribological properties after 1 h of
polymerization reaction.

Figure 10 shows the distribution of the different raw materials used in previous papers
on the tribological characterization of biolubricants between 2015 and 2023, indicating
the raw material generations (1st, 2nd, 3rd, and 4th), the molecular structures (triglyc-
eride, FA, FAME, FAAE), as well as the most used combinations in the formulation of
biolubricants. According to Figure 10a, the use of 1st-generation biolubricants derived
from vegetable sources (edible plants) dominates with 72% of the references, followed by
the 2nd generation with 24% and, to a lesser extent, the 3rd generation with 4%. On the
other hand, there are no articles with biolubricants derived from genetically modified (GM)
microalgae (4th generation). However, articles with GM oils of the 1st generation have been
reported, as in the case of high oleic soybean [23,117,118]. The large number of tribological
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studies carried out on biolubricants formulated from pure oils (triglycerides) is shown in
Figure 10b, as well as the use of esters modified using the transesterification technique,
such as FAME (biodiesel) or FAAE, which have been shown to have better physicochemical
and tribological properties [64,68,69,97,102,103]. Finally, Figure 10c highlights the need to
use additives when the biolubricant is formulated from pure oil, with the most studied
being CuO and TiO2 nanoparticles. However, it can be observed how those formulated
from FAME (better anti-friction and anti-wear properties) are desired as pure base oils or in
blends with mineral base oils.
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6. Conclusions

The use of natural feedstocks instead of those derived from petroleum for lubricant
production constitutes an alternative in the fight against climate change, but the con-
sumption of edible crops or crops that require arable land is a concern that needs to be
overcome. The use of third-generation feedstocks is emerging as an attractive solution. In
particular, microalgae have the advantage of being cultured in a wide variety of systems,
including wastewater, which offers the possibility of exploiting the growth cycle of these
microorganisms in wastewater bioremediation.

Considering the above facts, some weaknesses of bio-oils such as poor oxidation
stability due to the presence of double bonds or poor flow properties at low temperatures
should be faced. In order to overcome these problems, it is necessary to select the raw
material correctly, and then check its lipid profile and verify that its molecular structure is
suitable for the properties that may be required by the future biolubricant. Many additives
based on nanoparticles have also been tested to improve the tribological performance of
biolubricants, with remarkable results at concentrations below 1%.
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The double transesterification technique developed for the production of FAAE bi-
olubricants appears to be a promising route for the synthesis of these materials, with the
ability to manipulate the degree of branching and chain length almost indefinitely. How-
ever, this technique has only been applied to 1st- and 2nd-generation feedstocks with the
associated limitations. It would be interesting to apply this technique to more attractive
feedstocks such as 3rd-generation feedstocks. In addition, the need to remove the double
bonds can be achieved by using the epoxidation technique. Finally, the combined use of
3rd-generation bio-oils, with their molecular structure modified through transesterification
and epoxidation techniques, and nano-additives can be a good solution for formulating
biolubricants for multiple applications.
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