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Abstract: During the start-up period, if the journals bearing bushing and shaft materials have
different heat conductivities, the thermal expansion of the shaft might be more rapid than that
of the bushing. This reduces the radial clearance between the bearing components and generates
higher shear stresses in the lubricating fluid, which can lead to bearing seizure, resulting in the
deterioration of the journal bearing. (1) First, we present an experimental case study of the seizure of
a central groove journal bearing with a carbon-filled polytetrafluoroethylene (PTFE) bushing and a
steel shaft; (2) Then, a static thermoelastohydrodynamic (TEHD) simulation is compared to Cristea’s
experiments (Cristea, A.-F., 2012); (3) Then, a pseudo-transient TEHD simulation is performed in
order to numerically predict the observed phenomena on the test rig; (4) Finally, the evolution of
the oil flow rate and the bushing temperatures during the start-up period determined with the
pseudo-transient TEHD modelling are compared to the experimental data of the test rig. The pressure
field is determined with the thermohydrodynamic (THD) Elrod’s modelling, with Vijayaraghvan’s
robust solver algorithm. The pseudo-transient temperature field in the bearing components as well
as the thermal and mechanical deformations are calculated with a commercial software.

Keywords: carbon-filled PTFE; central groove journal bearing; start-up period; bearing seizure;
pseudo-transient thermoelastohydrodynamic (TEHD) regime

1. Introduction

In the aviation industry weight has always been a crucial question. On one hand, in order to
reduce weight, one can find lightened gears, beams and lightened (hollow) shafts. On the other hand,
these mechanical components should operate without excessive mechanical deformation which can
lead to the damage of the machine.

Inside the accessory gearbox of a gas turbine, the power transmission is realized through gears
mounted on a hollow shaft. In this case, the deformation of the shaft moves the gears out of their
optimal functioning point. Since the gears are dimensioned and manufactured to operate at a given
position, if they are moved out of this position, their wear increases and they may even break [1,2].

In order to limit the deflection of the shaft, a journal bearing might be mounted on the hollow
shaft, close to the maximal deformation point. In the present study, a journal bearing was mounted
close to the mid-point of a highly loaded hollow shaft, where the maximal deflection point is predicted.
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The journal bearing has a 30 wt % (mass fraction) carbon loaded PTFE ring under the bushing, while
the bushing and the shaft are both made of structural steel. This study focuses on the behaviour of this
journal bearing during the start-up period.

During start-up, the viscous forces in the oil film generate heat, which evacuates partially with
the oil by convection and partially through the solids by conduction. Since the PTFE is a good thermal
insulator (in other words has bad heat conduction coefficient), the bushing heats slower than the PTFE
ring. On the contrary, the heating of the shaft generates thermal dilatation without any restriction.
This means that the radial clearance of the journal bearing tends to decrease, resulting in a higher
viscous shearing in the oil. The elevated viscous shearing transfers more heat to the solids, resulting in
a faster closure of the radial clearance.

The clearance closure of a journal bearing was examined by Khonsari in 1989 [3]. His study
demonstrated the change of clearance during start-up. He found that the heating and dilation of the
solids can close the clearance, which can be catastrophic for the journal bearing. In 1995, Pascovici
published a numerical study [4] on the characteristic time of radial clearance closure of a journal
bearing. Pascovici found that there is a threshold at start-up that defines whether or not the clearance
closure will occur. According to Pascovici [4], the threshold depends on rotational speed, material, oil
viscosity, radial clearance of the bearing and other parameters.

In 1998, Jang [5] conducted friction torque measurements on a double axial groove journal bearing
during start-up. The bearing bushing was made of glass and the bearing shaft was an epoxy resin.
They compared their test results with THD analysis, which showed small discrepancies.

Kucinschi in 1999 and 2000 published the test results of a pseudo-transient hydrodynamic axial
groove journal bearing at start-up [6,7]. Kucinschi observed several thermal phenomena in the bearing:
the clearance closure between the bearing components, the response time of the bearing in case of
acceleration or deceleration and the change of load carrying capacity. Their tests displayed a highly
different behaviour in the case of a transitional regime than in the permanent cases. Kucinschi also
measured the friction torque evolution during his experiments.

In 2011, Bouyer [8] measured the friction torque during the start-up of an axial grooved plain
journal bearing with a bronze bushing and a plain steel shaft. Bouyer varied the inlet temperature of
oil during the tests, the radial load and the surface roughness of the shaft, but he did not continue his
experiments until clearance closure.

Later, Cristea examined this phenomenon [9] through a lumped model in case of circumferential
groove journal bearing. Cristea found that for the same journal bearing in order to avoid seizure a
rotational speed limit exists during start-up. Cristea [9] found that for the same rotational speed a lower
limit of radial clearance exists, which defines whether or not seizure will occur. Monmousseau [10]
published his pseudo-transient TEHD simulations for the case of a tilting pad journal bearing and he
found a limit of acceleration rate for the occurrence of seizure during the start-up period.

Another transient phenomenon in the functionality of journal bearings is the cumulative wear: in
2016, Chun and Khonsari published a numerical study [11] on rod bearing wear. They found that the
roughness of the surfaces in contact and the direction and magnitude of the load changes the wear.
In their studies, increasing the roughness of the surfaces in contact does not increase the wear in all
cases: it is possible to reduce the wear by increasing the roughness, if the roughness of each of the two
components is well chosen.

In our work, a test case for a circumferential groove journal bearing where the closure of the
clearance results in seizure between the carbon-loaded PTFE ring and the steel shaft is revealed
and discussed.

2. Presentation of the Test Bench

The experiments were realized on a test bench (Figure 1), which was specifically developed for
this purpose. The general and detailed description of the bench are presented in this section, with
special emphasis on the instrumentation.
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Oil viscosity at 100 °C (Pa·s) 0.0045657 
Oil density at 80 °C (kg/m3) 930 
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The hollow shaft is supported by roller bearings at its ends, while the journal bearing is mounted 
at 344 mm from the left-hand side end of the shaft, as seen on Figure 2. The steel shaft is hollow, with 
an 8.5 mm thickness and 600 mm length (see Table 2). The PTFE ring has a 4 mm thickness and an 80 
mm length (see Table 2). The loads applied on the shaft are equal to zero during start-up period, but 
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The temperature and pressure of the oil supply is measured during the tests. The temperature 
of the bushing is also monitored via 3 bimetal thermocouples, as well as the temperature of the PTFE 
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Figure 1. The test bench of the present study.

The symmetrical bushing mounted on the shaft is designed with a complete circumferential
groove located in the journal bearing mid-plane. The geometrical parameters of the journal bearing
and the lubricant oil properties are presented in Table 1.

Table 1. Journal bearing and oil supply properties.

Journal Bearing Properties

Diameter (mm) 80
Length (mm) 39.1

Radial clearance (micron) 52
Relative eccentricity (-) 0.22

Attitude angle (◦) 5
Oil supply groove width (mm) 7.7
Oil supply groove depth (mm) 2

Oil Supply Properties

Oil supply temperature (◦C) 80
Oil viscosity at 40 ◦C (Pa·s) 0.022972

Oil viscosity at 100 ◦C (Pa·s) 0.0045657
Oil density at 80 ◦C (kg/m3) 930

Bulk modulus (1/Pa) 3.38 × 109

The hollow shaft is supported by roller bearings at its ends, while the journal bearing is mounted
at 344 mm from the left-hand side end of the shaft, as seen on Figure 2. The steel shaft is hollow, with
an 8.5 mm thickness and 600 mm length (see Table 2). The PTFE ring has a 4 mm thickness and an
80 mm length (see Table 2). The loads applied on the shaft are equal to zero during start-up period,
but the shaft was not in a perfectly centred position during the experiments (see Table 1).

The temperature and pressure of the oil supply is measured during the tests. The temperature of
the bushing is also monitored via 3 bimetal thermocouples, as well as the temperature of the PTFE
ring (Figure 3).
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(each thermocouple is in the mid-plane of the journal bearing, TP3 is in cover on the zoomed view). 
The thermocouple TJ is in touch with the exterior of the PTFE ring, while TP1, TP2 and TP3 are in 
contact with the steel bushing, each being 180 degrees away from the oil supply entry position. 

  

Figure 2. The test bench. The oil supply temperature of the bearing is 80 ◦C, while the air supply
temperature is 25 ◦C, resulting in a 60 ◦C equilibrium temperature under the closed hood of the bench.

Table 2. The geometrical and mechanical properties of the hollow steel shaft and the PTFE ring.

Hollow Steel Shaft Properties

Outer Diameter (mm) 80
Inner diameter (mm) 63

Length between the bearings (mm) 600
Young’s modulus (GPa) 200

Poisson’s ratio (-) 0.3
Density (kg/m3) 7850

Specific heat (J/kg·K) 434

30 wt % Carbon Loaded PTFE Ring Properties

Outer Diameter (mm) 88
Inner diameter (mm) 80.104

Length of the ring (mm) 39.1
Young modulus (GPa) 135

Poisson’s ratio (-) 0.46
Density (kg/m3) 1500

Specific heat (J/kg·K) 892
Heat conductivity (W/m·K) 1.44

Coefficient of thermal expansion (1/K) 11.7 × 10−6
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Figure 3. The symmetric steel bushing with the position of the thermocouples TP1, TP2, TP3 and TJ
(each thermocouple is in the mid-plane of the journal bearing, TP3 is in cover on the zoomed view).
The thermocouple TJ is in touch with the exterior of the PTFE ring, while TP1, TP2 and TP3 are in
contact with the steel bushing, each being 180 degrees away from the oil supply entry position.
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The bushing had a lightweight-design, its detailed geometry is presented on Figure 4.
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Figure 4. The detailed geometry of the symmetrical bushing.

3. Experiment—Seizure during Start-Up Period of the Journal Bearing

Before start-up, the bench is heated for half an hour, with a constant oil and cool air flow until the
thermal equilibrium is reached. Since the oil flow temperature is at 80 ◦C and the air flow has a constant
temperature of 25 ◦C, the thermal equilibrium does not result in constant temperature in the solids.
The temperature of the bushing is 70 ◦C under the PTFE ring (TJ) and 60 ◦C on the outer diameter (TP3).
This is the reason behind the temperature difference measured by the thermocouples at the beginning
of the experiment. The cool air flow is necessary to better represent the industrial application.

At start-up, a constant acceleration of 100 rpm/s is applied on the shaft, until 2000 rpm of
rotational speed is reached. Later, a 50 s long stabilization phase starts, with constant rotational speed.
Then, a second acceleration phase starts with 50 rpm/s acceleration rate. This procedure is presented
in Section 4.5.

The closure of the radial clearance can be observed through the decrease of the oil flow rate:
at quasi-constant oil supply pressure, the oil flow rate decreases. At 120 s, the shaft and the PTFE ring
come into contact, resulting in seizure.

The rapid non-uniform temperature change of the bushing could be observed through the sensors
TP1, TP2, TP3 and TJ. The difference between TP1 and TP3 increase during the start-up period.
This suggests that the heat generated by the journal bearing is not dissipated in the solids with
sufficient speed, thus limiting the thermal expansion of the PTFE ring—while the shaft dilates freely.
This is the reason for the closure of the radial clearance, the decrease of the oil flow rate and the seizure
of the PTFE ring and the shaft.

4. Theoretical and Numerical Analysis

The computation tool of the present work was developed with special emphasis on cavitation,
thus Elrod’s model was chosen to be integrated in it. Elrod’s equation is a conservative model both in
the complete and oil film rupture zones. Generally, the journal bearing undergoes lubricant cavitation
at high loads (due to the high eccentricity ratio) or at high rotational speeds (even at lower eccentricity
ratios). High and uneven deformation fields might result in divergent zones in the oil film that cause
cavitation at unforeseen locations. The present work’s test case (see Figure 2 and Table 2) undergoes
cavitation due to the high rotational speed (at the end of the start-up period) and due to the complex
geometry solid’s thermo-mechanical deformation.

The present journal bearing components’ unforeseen thermo-mechanical deformation is due to
its uneven heat repartition in the complex geometry. This unpredictable behaviour results in such a
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deformed oil film that generate pressure fields which highly differ from the theoretical (undeformed)
ones. An unpredictably deformed oil film might result in divergent (thus possibly cavitated) oil film
at any point of the bearing, even at a low rotational speed. Elrod’s model is capable of taking into
account the mass conservation in these ruptured zones, which makes it suitable for a wide range of
applications, with high or unforeseen thermo-mechanical deformation.

The next section reveals in detail the hydrodynamic (HD) model used in this study. Then, the
thermohydrodynamic (THD) model is presented with its numerical solution and discretization method.
Further on, the heat equation in the fluid and in the solids is detailed, with the complete thermomechanical
modelling. While coupling all of these models a steady-state thermoelastohydrodynamic (TEHD) model
is obtained. Finally, taking into account the thermal inertia of the solids and neglecting the negligible
transient terms in the fluid, the pseudo-transient TEHD model is obtained.

4.1. Elrod’s Model in the Isothermal (Hydrodynamic, HD) Regime

In 1974, Elrod and Adams [12] presented an equation that is capable of taking into account the
mass conservation in the cavitation region. Nowadays, this equation is called the Elrod’s model.
Later, in 1981 Elrod and Adams developed an improved algorithm for their model [13], which is
applied in the present work.

Elrod’s model for the isothermal, HD case [13]:

1
R2

∂

∂θ

(
gβh3 ∂κ

∂θ

)
︸ ︷︷ ︸

Poiseuille

+
∂

∂z

(
gβh3 ∂κ

∂z

)
︸ ︷︷ ︸

Poiseuille

= 6µ0ω
∂κh
∂θ︸ ︷︷ ︸

Couette

, (1)

where:

κ: Filling factor
t: Time (s)
β: Bulk modulus of the lubricant (1/Pa)
g: Switch function (-)

In the active zone: g = 1,
In the inactive zone: g = 0

R: Journal bearing radius (m)
θ: Circumferential coordinate (rad)
z: Axial coordinate (m)
h: Oil film thickness (m)
µ0: Dynamic viscosity of the lubricant (Pa·s)
ρ: Density of the lubricant (kg/m3)
ρ0: Reference density of the lubricant (kg/m3)

Compared to the Reynolds equation, it resolves the filling factor, which has a different definition
the active and inactive (cavitated) zones:

• In the active zone κ is the ratio between the density and the reference density: κ = ρ/ρ0,
• In the inactive zone κ is the ratio between the non-cavitated lubricant volume and the total volume

of the mesh element: κ = Vliquid/Vtotal.

Thus, a supplementary information is known in the cavitation region; the ratio of cavitated
lubricant. This information defines whether or not pressure build up occurs in the convergent zones.
Contrary to the Reynolds equation, which generates pressure in every convergent zone, without
considering the oil mist properties. The pressure in both active and inactive zones of the journal
bearing is calculated as:

p = gβ ln κ + pcav (2)

where:
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p: Pressure in the journal bearing (Pa)
pcav: Cavitation pressure of the oil (Pa)

In order to simplify the calculations, it is possible to rewrite the Elrod equation in a dimensionless
form, with the dimensionless variables of Equation (19):

1
R2

∂

∂θ

(
gh

3 ∂κ

∂θ

)
+

1
L2

∂

∂z

(
gh

3 ∂κ

∂z

)
= 6

µ0ω

β

∂κh
∂θ

. (3)

The transient term of the Elrod’s equation can be neglected due to the fixed position of the
shaft (see Table 1), which makes the temporal film thickness change a function dependent only on the
thermal dilatation. The characteristic speed of thermal dilatation is the order of C/dt = 4.33× 10−7 m/s,
where dt is the full clearance closure time, (120 s in our case) and C is the radial clearance (see Table 1).
The characteristic speed of the hydrodynamic pressure establishment can be estimated by the linear
velocity of the shaft, in our case: D/2 × ω = 2.09 m/s, for the rotational speed 5 s after start-up (where
D is the diameter of the shaft and ω is the rotational speed). This value strictly increases after start-up
meaning that the hydrodynamic effects are least 2.09/4.33 × 10−7 = 4.8 × 106 times faster than the
thermal dilatation. This justifies our hypothesis to neglect the transient term of the Elrod’s equation.

4.2. Elrod’s Model in the Thermohydrodynamic (THD) Regime

In 1996, Vijayaraghavan published the dimensionless modified Elrod’s equation [14], which is
capable of taking into account the thermal phenomenon in the lubricant film:

1
R2

∂

∂θ

(
gβG

∂κ

∂θ

)
+

1
L2

∂

∂z

(
gβG

∂κ

∂z

)
= ω

∂

∂θ

(
h− κ

I2

J2

)
. (4)

Equation (4) is called the thermohydrodynamic (THD) Elrod’s equation, where the transient
term was neglected for the same reasons as for the isothermal, HD Elrod’s model. The variables in
Equation (4) are defined:

G =
∫ 1

0

y
µ

(
y− I2

J2

)
dy , (5)

I2 =
∫ 1

0

y
µ

dy , (6)

J2 =
∫ 1

0

dy
µ

, (7)

I =
∫ y

0

ξ

µ
dξ , (8)

J =
∫ y

0

dξ

µ
, (9)

where the dimensionless variables are defined in Equations (16)–(21), and:

y: Radial coordinate in the film (m)
ξ: Running coordinate in the radial direction (-)

In order to determine the temperature field in the fluid, the heat equation should be written in
the oil film (given by Dowson [15] and Ferron [16]). The heat equation in the fluid film is given in the
following, dimensionless form with the dimensionless variables of Equations (16)–(21):

Pe
[

u
∂T
∂θ

+ v
∂T
∂y

+ ηw
∂T
∂z

]
︸ ︷︷ ︸

Convective term

=
1

h
2

∂2T
∂y2︸ ︷︷ ︸

Di f f usive term

+ Br
µ

h
2

[(
∂u
∂y

)2
+

(
∂w
∂y

)2
]

︸ ︷︷ ︸
Viscous heat generation term

(10)



Lubricants 2018, 6, 14 8 of 24

It is important to mention that the transient term in the heat equation is neglected due to its
relatively small influence on the temperature field in the fluid. The transient term

(
ρCp

∂T
∂t

)
should be

additioned to the left hand side of the heat equation. The dimensionless pseudo-transient term on the
left hand side of the dimensionless heat equation is: Pe

ωt0
∂T
∂t (where the dimensionless time is: t = t

t0
and the reference time equals to the length of the experiment: t0 = 120 s).

This means that the transient term of the heat equation after 5 s (when the rotational speed is
500 rpm) isω× t0 = (500/30× π)× 120 = 6283 times smaller than the other terms of the dimensionless
heat equation. Meaning that 5 s after the beginning of the test the transient term is negligible and due
to the strictly increasing behaviour of the rotational speed of the shaft, it will stay negligible compared
to the other (convective, diffusive and viscous) terms. It is also important to mention that right after
start-up (between 0 and 5 s) the transient temperature change is the smallest due to the small heat
generated in the fluid film, making it negligible on the whole time domain. Meanwhile the transient
term of the heat equation in the solids cannot be neglected [8–11].

The three components of lubricant velocity in the film are (consecutively in the circumferential,
radial and axial directions):

u = h
2 ∂p

∂θ

(
I − I2

J2
J
)
+

J
J2

(11)

v =

(
∂u
∂θ

+
1
h

∂h
∂θ

u + η
∂w
∂z

)
(12)

w = ηh
2 ∂p

∂z

(
I − I2

J2
J
)

(13)

The definition of the Péclet number:

Pe =
ρCpωC2

Kl
(14)

and the definition of the Brinkman number is:

Br =
µ0ω2R2

KlT0
(15)

where:

Cp: Heat capacity of the oil (J/kg·K)
C: Radial clearance (m)
Kl: Thermal conductivity of the oil (W/m·K)
T0: Reference temperature (K)
µ0: Reference dynamic viscosity of the oil (Pa·s)

The dimensionless speeds (consecutively in the circumferential, radial and axial direction) are
defined as:

u =
u

U0
, v =

v
V0

, w =
w
U0

(16)

and the reference velocities are:
U0 = ωR , V0 = ωC (17)

The dimensionless temperature is:

T =
T
T0

(18)

The dimensionless coordinates of equations are:

y =
y
h

, z =
z
L

, h =
h
C

(19)
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The dimensionless dynamic viscosity is:

µ =
µ

µ0
(20)

The dimensionless pressure is:

p =
p

µ0ω
(

R
C

)2 (21)

Since these equations are based on the linear momentum conservation equation, the transient
term should be included in each direction. In our case, the acceleration of the shaft induces directly the
transient term in the circumferential direction (which is a transient Couette flow), that influences the
other (axial and radial) flow velocities. Thus, if the transient term in the circumferential direction can
be neglected, the axial and radial flow velocities will not be influenced due to the shaft acceleration
and the oil flow velocity can be determined through the above given steady-state equations.

By decoupling the Poiseuille and Couette terms of the linear momentum equation, the velocity
induced by the pressure field (Poiseuille flow) and the velocity induced by the surface movement
(Couette flow) can be separated. Following the analysis described in Appendix A, the maximal
difference between the steady-state solution for each instance and the transient solution of the Couette
flow for one constantly accelerating surface can be derived. As given in Appendix A, Equation (A16),
the maximal difference between the steady-state and transient solution can be obtained for the rapid
(first) acceleration phase:

fmin = − a0h2

ν

1
9
√

3
= −9.667× 10−6 m

s
. (22)

This value is constant during the acceleration phase (see Appendix A), making it negligible for the
whole time domain (since the linear velocity on the surface of the shaft after 5 s isω × D/2 = 2.09 m/s).

4.3. Discretization Method for Elrod’s Model in the Thermohydrodynamic (THD) Regime

While the switch function (g) defines the active and inactive zones, it also changes the equations
describing the corresponding zones. The two zones require different modelling, since the equation
is elliptic if g = 1 and parabolic if g = 0. The finite difference method differs for these two zones;
thus, it is important to appropriately connect them: a robust and simple method was developed by
Vijayaraghavan for the isothermal (HD) problem in 1990 [17]. According to [17] the first term of the
left-hand side of the Equation (3) can be discretized as:

1
R2

∂
∂θ

(
gh

3 ∂κ
∂θ

)
i

= 1
R2∆θ2

[
h

3
i+1/2gi+1(κi+1 − 1)−

(
h

3
i+ 1

2
+ h

3
i− 1

2

)
gi(κi − 1)

+h
3
i−1/2gi−1(κi−1 − 1)

] (23)

The second term of the left-hand side of the Equation (3) can be discretized as:

∂
∂z

(
gh

3 ∂κ
∂z

)
j
= 1

∆z2

[
h

3
j+1/2gj+1

(
κj+1 − 1

)
−
(

h
3
j+ 1

2
+ h

3
j− 1

2

)
gj
(
κj − 1

)
+h

3
j−1/2gj−1

(
κj−1 − 1

)] (24)

where the subscripts i and j correspond consecutively to the circumferential (θ) and axial (z) direction
of discretization. The subscripts +1/2 and −1/2 for an arbitrary A variable, for both in the axial and
circumferential direction are:

Ai+1/2 = (Ai+Ai+1)
2

Ai−1/2 = (Ai+Ai−1)
2

(25)
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Vijayaraghavan’s algorithm can be adapted to the THD case (Equation (4)) in the circumferential
direction as follows:

1
R2

∂
∂θ

(
gG ∂κ

∂θ

)
i
= 1

R2∆θ2

[
Gi+ 1

2
gi+1(κi+1 − 1)−

(
Gi+ 1

2
+ Gi− 1

2

)
gi(κi − 1)

+Gi− 1
2

gi−1(κi−1 − 1)
] (26)

while in the axial direction the discretization has the following form:

∂
∂z

(
gG ∂κ

∂z

)
j
= 1

∆z2

[
Gj+ 1

2
gj+1

(
κj+1 − 1

)
−
(

Gj+ 1
2
+ Gj− 1

2

)
gj
(
κj − 1

)
+Gj− 1

2
gj−1

(
κj−1 − 1

)] (27)

Vijayaraghavan’s discretization method adapted for the last term of Equation (4) is:[
∂
∂θ

(
h− κ I2

J2

)]
i

= 1
2R

[
gi+1/2

(
h− κ I2

J2

)
i+1

+ (3− 2gi+1/2 − gi−1/2)
(

h− κ I2
J2

)
i

−
(

4− 2gi− 1
2
− gi+ 1

2

)(
h− κ I2

J2

)
i−1

+
(

1− gi− 1
2

)(
h− κ I2

J2

)
i−2

] (28)

The lubricant’s viscosity is determined by the equation of Walther-McCoull [18]:

log10
(
log10(ν + λ)

)
= A− B log10 T (29)

where:

ν: Kinematic viscosity of the lubricant (cSt = m2/s × 106)
T: Temperature of the lubricant (K)
λ: Dimensionless parameter (-)

(λ = 0.7 for the present ISO VG 32 oil)
A,B: Dimensionless parameters (-)

4.4. The Steady-State Thermoelsatohydrodynamic (TEHD) Simulation

After the THD computation, a thermomechanical computation was conducted with a commercial
finite element software: the pressure field and the heat fluxes from the oil film were applied as
mechanical and thermal loads on the corresponding surfaces of the PTFE ring and the shaft. The shaft
and the bushing temperature fields are influenced by the temperature under the hood, equal to 60 ◦C
during the experiment. This influence is introduced through a heat convection coefficient on every
free surface (not being in contact with the oil) of the solids.

First, the commercial software determines the temperature field in the solids, then it resolves
the thermal and mechanical deformation of the solids. The temperature field and the deformation of
the nodes that are in contact with the oil are exported from the thermomechanical solver and after
an under-relaxation are sent back to the THD solver, which is then re-executed (Figure 5). The full
convergence is reached when the deformed oil film and the temperature field of the oil film has
converged for the same iteration. The relative convergence criteria on the pressure and temperature
field was 0.01% for each node of the domain.
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Figure 5. Flow chart of a steady-state TEHD simulation. THD: Thermohydrodynamic calculation in
the oil film.

The heat equation in the solids (bushing, PTFE ring and the shaft) can be deduced from the first
law of thermodynamics (without the convective, radiative and heat generation terms):

ρSCpS
∂T
∂t
−∇(k∇T) = 0 (30)

where:

ρS: Density of the solid (kg/m3)
CpS: Heat capacity of the solid (J/kg·K)
k: Thermal conductivity of the solid (W/m·K)

Since a no-slip condition is applied on the fluid-solid interface in terms of speed and temperature,
the continuity of the heat fluxes at the solid-fluid interface can be expressed as:

k∇TS = −Ko∇To (31)
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The thermal boundary conditions on the surfaces of the solids which are in communication with
the environment are represented with a heat flux induced by a heat convection coefficient (h):

Q = h(Tenv − T) (32)

The thermal dilatation can be determined with the thermal dilatation coefficient for
isotropic materials:

εth = α∆T (33)

where:

εth: Thermal strain tensor (-)
α: Thermal dilatation coefficient (1/K)

In the solids, the linear elasticity equation for isotropic materials is applied:

ρ
..
u = ∇σ + F (34)

where:

u: Displacement field (m)
ü: Displacement field’s second derivative with respect to time (m/s2)
σ: Stress tensor-field (Pa)
F: Volumetric forces (N/m3)

The Stress tensor-field can be determined with the following equation:

σ = C : ε (35)

where:

ε: Strain tensor (-)
C: Fourth order stiffness tensor (Pa)

The stiffness tensor values can be obtained as follows:

Cijkl =
νE

(1 + ν)(1− 2ν)
δijδkl +

E
2(1 + ν)

(
δikδjl + δilδjk

)
(36)

where:

E: Young’s modulus (Pa)
ν: Poisson’s ratio (-)
δ: Kronecker delta (-)

The relative deformation field is the sum of the mechanical and thermal strain fields:

ε = εm + εth (37)

where:

εm: Mechanical strain tensor (-)

4.5. The Pseudo-Transient Thermoelastohydrodynamic (TEHD) Simulation

The above given method describes a steady-state TEHD analysis. A pseudo-transient TEHD
analysis should also take into account the thermal inertia of the solids. The mechanical (or
deformational) inertia of the oil and the mechanical inertia of the solids (shaft, PTFE ring and bushing)
are usually neglected because the deformation of the solids is nearly instantaneous.

In order to correctly describe the thermal pseudo-transient behaviour of the solids, the time-step
of the pseudo-transient simulation should be defined with great caution. A small time-step results
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in a high computation time, while a too long time-step might not describe precisely the case. Thus, a
preliminary pseudo-transient thermal analysis was conducted on the 3D geometry of the test rig:
a parabolic function of heat flux (representing the friction losses during acceleration multiplied by two)
was established between 0 and 30 s. The initial state of this preliminary analysis equals to that of the
real pseudo-transient analysis. At t = 30 s the heat flux on the surface of the shaft and the PTFE ring
equals 24,000 W/m2.

Between 0 and 30 s after start-up, 3 different transient thermal analysis was executed with three
different time-steps: 2.5, 5 and 7.5 s. For each type of simulation, the heat flux applied on the solids
was the one at 50% of the current time step (i.e., for the step between 10 and 12.5 s the heat flux applied
was the one at 11.25 s: 3375 W/m2).

The preliminary pseudo-transient TEHD analysis (Figure 6) justifies that the ideal time-step for
this geometry is 5 s. A shorter time step (2.5 s) gives results relatively close to the analysis with a
5 s interval, but the computational time is two times shorter. The longer interval (7.5 s) results in a
different temperature field from the precedent two, thus the 5 s interval was chosen for the complete
pseudo-transient analysis. The heat flux applied on the solids during the preliminary pseudo-transient
thermal simulations was the double of the heat flux due to the losses in the oil film (obtained through
THD calculations in the oil film at 2000 rpm with a radial clearance of 30 microns). The mean heat
flux (friction losses multiplied by the rotational speed) of a journal bearing at such rotational speed
and radial clearance was 12,000 W/m2. At 5000 rpm, the mean heat flux is 22,000 W/m2 for a
journal bearing with radial clearance of 30 micron—meaning that the heat flux applied during the
preliminary pseudo-transient TEHD simulation is always greater than that of the experiment. Due to
the exaggerated thermal behaviour of the solids during the preliminary pseudo-transient analysis, this
time-step ensures that it can describe well the real case during the pseudo-transient TEHD simulation
at every given speed and time, from 0 to 120 s.
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Figure 6. Preliminary pseudo-transient thermal analysis of the influence of time step on the geometry.
The maximal temperature of the PTFE ring with three different time steps, while the heat flux is a pure
parabolic function from 0 to 24,000 W/m2, as a function of time.

The test cycle was divided in 5 s intervals, resulting in 24 TEHD computation for the given start-up
period (see Section 4.5). For each interval, a TEHD analysis is executed. The first TEHD simulation is
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started after the heat-up period, when the PTFE ring has a temperature of 70 ◦C (TJ at 0 s), while the
bushing temperature decreases gradually from 70 to 60 ◦C farther away from the PTFE ring.

Although one pseudo-transient TEHD computation is run on an interval of 5 s, the convergence
of the corresponding THD simulation in the oil film is executed on the mid-point of the transient
thermal computation (Figure 7). Thus, the heat fluxes obtained by the THD calculation in the oil film
correspond to the mean heat flux coming from the oil film for any given time-step.

When the first TEHD simulation has converged, the initial temperature field is updated by
the temperature field resulting from the precedent TEHD simulation (Figure 7). The new initial
temperature field (for the TEHD simulation starting from 5 s) is the one obtained from the beforehand
converged simulation. The pseudo-transient simulation continues on like this for every 5 s long
simulation, until the point of seizure is obtained.
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Figure 7. The pseudo-transient TEHD simulation flow chart. One TEHD simulation is executed for
each 5 s interval, at the mid-point of each time step. After the convergence of one TEHD simulation,
the thermal initial condition is updated and a new TEHD simulation is conducted with a new shaft
rotational speed and heat convection coefficients.

During the pseudo-transient simulation, the rotational speed of the shaft should be updated for
each 5 s interval. The rotational speed taken into account for the thermomechanical and the THD
computation is an averaged speed on the given 5 s interval (see Figure 8). Since the rotational speed
changes the fluid’s velocity under the bench hood, the coefficient of heat transfer between the oil mist
and the free surfaces of the solids is also varied. This heat transfer coefficient is a linear function of the
rotational speed.
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The definition of the heat transfer coefficient was based on the article of Wodtke et al. [19]. They found
that the increasing rotational speed increases the heat exchange coefficient. Based on their results the heat
transfer coefficients of the present study vary linearly between 250 and 4800 rpm. At 250 rpm, the heat
exchange coefficient equals to 100 W/m2·K and at 4800 rpm equals to 600 W/m2·K.

In our case, the journal bearing had a fixed position, which was due to the geometry and assembly
tolerances. The position of the bearing was measured at the beginning of the experiment (see Table 1).
The position was defined by the geometry of the test bench; thus, the transient term of the Elrod’s
equation will be negligible against the Poiseuille and Couette terms (see Sections 4.1 and 4.2).

5. Comparison to Cristea’s Test

In 2011, Cristea [20,21] published several experiments of a central groove journal bearing at
equilibrium state. His test rig consisted of a rotating shaft of 80 mm diameter, with a 61 µm radial
clearance at room temperature (22 ◦C). The length of the symmetric journal bearing had two 20 mm
wide lands and a central, 13 mm wide central groove. The experiment was conducted at equilibrium
position with constant speed and load. Cristea’s journal bearing had a steel shaft and a bronze bushing
with an external diameter of 200 mm. The oil inlet temperature was constant, at 30 ◦C during the
experiments of Cristea [20] and 40 ◦C for [21] (see Table 3).

Table 3. Journal bearing and oil supply properties of the experiments of Cristea [20,21].

Journal Bearing Geometry—Cristea [20,21]

Shaft nominal diameter (mm) 99.876
Radial clearance at 22 ◦C (µm) 61
Journal bearing length (mm) 53

Oil supply groove width (mm) 20
Oil supply groove depth (mm) 4

Oil Supply Properties—Cristea [20,21]

Oil supply temperature (◦C) 30 (40 1)
Oil viscosity at 40 ◦C (Pa·s) 0.0293

Oil viscosity at 100 ◦C (Pa·s) 0.0111
Oil density at 80 ◦C (kg/m3) 860

Heat capacity of the oil (J/kg·K) 2000
Heat conductivity of oil (W/m·K) 0.13

Bulk modulus (1/Pa) 1.5 × 109

Oil supply temperature (◦C) 30
1 Oil supply temperature for [21].

Temperature and pressure measurements were conducted at different axial and angular positions.
The pressure was measured at every 10◦, in 5 different axial sections (at 1, 4, 7, 12 and 17 mm from the
end of the land). The temperature measurements were done at every 10◦, at 5 different axial sections
(at 1, 7, 13, 19 and 26.5 mm from the end of the land). Unlike in [20], Cristea measured the oil flow rate
and the resistant torque during his experiments in [21].

The resemblance of Cristea’s test rig to our test bench is very high, thus a preliminary comparison
of a steady-state TEHD simulation was conducted in order to compare the results at equilibrium state.
The comparison of the steady-state TEHD analysis presented in this section is that of the experiment
n◦11 of [21], where the applied load was 8000 N, at constant rotational speed of 4000 rpm, while
the mechanical and thermal properties of the bushing and the shaft of the test bench of Cristea are
presented in Table 4.

The measured and simulated pressures were compared in the plane 12 mm from the end of the
journal bearing, the closest measurement plane to the mid-plane of the land. The pressure obtained
from the TEHD simulation results are close to the measured values of [21]—see Figure 9. The simulated
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temperature field was also compared to the measured values, in the plane 13 mm from the end of the
journal bearing (Figure 10).

Table 4. The mechanical properties of Cristea’s CGJB steel shaft and bronze bushing [20,21].

Cristea’s CGJB Components [20,21] Steel Shaft Bronze Bushing

Diameter (mm) 99.876 99.998
Young modulus (GPa) 200 120

Poisson’s ratio (-) 0.3 0.34
Density (kg/m3) 7850 8700

Specific heat (J/kg·K) 460 435
Heat conductivity (W/m·K) 43 26

Coefficient of thermal expansion (1/K) 10.5 × 10−6 17.5 × 10−6
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The difference in the pressure and temperature might be due to the high number of holes for the
pressure and temperature sensors of the bushing. Yet another reason may be the lack of simulation
methods in the groove: physically, the temperature field in the groove is dependent on the oil flow
(speed and mass flow rate) in the groove and the pressure field is not constant in the groove [20].
The present TEHD simulation tool is not capable of taking into account these phenomena: the pressure
is supposed to be constant in the simulation tool and the oil temperature in the groove depends only
on the temperature of the bushing and shaft temperature. The oil flow in the 4 mm deep groove cannot
be taken into account with the Elrod (or Reynolds) equations. The difference in the simulated and
measured temperature field is shown on Figure 11.
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Cristea also measured the oil flow rate and the resistant torque of the journal bearing.
The comparison of the TEHD simulation and the experiment of these two values are presented
in Table 5. In spite of the difference in the pressure and temperature field, the simulated oil flow rate
and resistant torque values are close to the measured ones.

Table 5. Comparison of the oil flow rate and resistant torque of Cristea’s measurements [21] and the
values obtained through the steady-state TEHD simulation.

Measured Simulated

Oil flow rate (l/min) 1.83 1.84
Resistant torque (Nm) 3.42 3.26

6. Comparison to Present Results

Further on, the comparison to this work’s test bench was executed. The comparison to the
temperature measurements at different location of the bushing is presented on Figure 12. Although the
simulated temperature field is close to the measured one, there is still improvement to be done on
the initial temperature field. The simulated temperatures at locations closer to the journal bearing
(TJ and TP1) are in general higher, while the temperature at the furthest from the journal (TP3) are
lower than the measured values. This indicates that the evolution of the heat transfer coefficient (h)
should be non-linear, or a different linear slope, or a bi-linear law would be more suitable for the
present application.
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The differences in the temperature gradients at the measured points underline the fact that
the PTFE ring and the lightweight geometry of the bushing function as an insulator. At 80 s, the
temperature of TJ increased by 14 ◦C, TP1 by 12 ◦C, TP2 by 5 ◦C and TP3 by 2.5 ◦C. Since the bushing
was fixed on its outer rim (where the temperature increment is close to 0), the thermal dilatation is
limited in the outer direction, while the hollow steel shaft can freely dilate and decrease the clearance.
The PTFE ring’s higher temperature and lower Young’s modulus limit the PTFE’s ring’s options to
dilate outwards, towards the steel bushing. This means that the PTFE ring partially dilates towards
the interior, which accelerates even more the clearance closure.Lubricants 2018, 6, x FOR PEER REVIEW  18 of 24 
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By comparing the TEHD-simulated oil flow rate to the measured one, the present method’s
capability to describe the behaviour of the central groove journal bearing (see Figure 13) is justified.
The evolution of the minimal and maximal film thickness reveal (Figure 13) that the journal bearing
was close to reach its equilibrium state at the end of the stabilization phase (at 70 s): the minimal
film thickness was already in the increasing phase, while the maximal film thickness was stabilizing.
This stabilization can be observed on the temperature field also: the temperature increases of the TJ
and TP1 sensors were slowing down (see Figure 12).

After the beginning of the second acceleration phase, the minimal and maximum film thickness
decrease and the gradient of the temperatures TJ and TP1 continue to increase. The brutal part of
the seizure commences 10 s before the complete seizure, at 105 s. After this time, the film thickness
exponentially decreases, limiting the oil flow rate, thus rapidly increasing the shear losses.

At 115 s, the simulated temperature field of the PTFE ring jumped to 160 ◦C, which is close to the
temperature limit of the material. The TEHD simulation at 120 s did not converge due to divergence in
the THD computation in the oil film: the temperature difference between the two solids and the oil
supply was too high for the given mesh (see Section 7) and for the given oil film thickness.

At t = 0 s, the sum of the maximal and the minimal film thickness is 44 microns, which means that
the initial diametral clearance at 22 ◦C (2 × C = 104 µm, see Table 1) was decreased during the heating
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up of the bench. In order to justify this, the deformation after the end of heat-up sequence should be
examined, at perfectly centred position of the shaft. The shaft and ring deformations of this analysis
are presented on Figure 14.

On the left side of Figure 14, the deformation of the outer surface of the shaft is revealed: the
mean deformation in the radial direction is 31.9 microns outwards (the two concentric black circles
represent the undeformed shape of the shaft). On the right side of Figure 14, the deformation of the
PTFE ring demonstrates that the ring expands by 1–2 microns. This means that the diametral clearance
closes by 2 × 31.9 microns due to the shaft dilatation, resulting in a 40 micron diametral clearance,
which is then slightly opened up by the 1–2 microns expansion of the ring, which is close to the sum of
the maximal and minimal film thickness that is displayed on Figure 13.Lubricants 2018, 6, x FOR PEER REVIEW  19 of 24 
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7. Computational Effort

The present method consists of two separate, yet connected models. The first one is the THD
Elrod’s model describing the oil film between the solids. The mesh of the regular, cylindrical domain
of the oil film had a uniform mesh size with 100 uniform divisions in the circumferential direction and
50 uniform divisions in the axial direction. Across the fluid film, in the radial direction the domain
was divided into 25 equal parts.

The shaft also had a uniform, hexahedral mesh, with four elements in the radial direction,
200 elements in the axial direction and 100 elements in the circumferential direction. The bushing
and the PTFE ring had a non-uniform tetrahedral mesh, with a maximum size of 1 mm, with
local refinements. The overall number of elements for the finite element model in ANSYS
Thermal-Mechanical was 500,000 (100,000 elements for the cylindrical shaft and 400,000 elements for
the bushing and the PTFE ring) with 300,000 nodes.

Across the “thin” parts of the bushing, the solid was divided into at least three elements. The PTFE
ring had 4 (gradually increasing sized) elements across its 4 mm thickness. These criteria ensure the
correct modelling of the temperature gradient across the thin thicknesses. The mesh for each solid
was a linear mesh, meaning that the nodes of the elements were situated only in the corner points of
the elements, without any nodes on the edges or on the faces of the elements. A mesh dependency
analyses was conducted for the most important parameters of the FEM model, which is not detailed in
the present work.

One thermomechanical computation took around 4 min on a medium-performance computer, with
four processors (each 1.5 GHz). One THD computation takes around 7–8 s with two medium-performance
processors (each 1.5 GHz). The criteria of convergence for the TEHD computation was 0.1% of relative
error on the fluid film and 1% relative error of temperature on the fluid-solid interfaces.

The length of each TEHD analyses depends on the rotational acceleration of the shaft, the rotational
speed of the shaft and the temperature gradient. This problem gave a highly varying computation
time for each TEHD simulation. The first computation (from t = 0 s to 5 s) was 5 h long, while
the computational effort for the rest varied between 30 min and 1 h. The total computational time
for the 24 TEHD computations was 22 h, which is a reasonable computational cost for such an
industrial application.

8. Conclusions

The experiments determined that the current structure of the journal bearing can cause seizure
during start-up period. The experiment with temperature measurements demonstrated that the
PTFE ring temperature increases with a higher rate than the temperature of the bushing and the
shaft. This constrains the thermal expansion of the PTFE ring, while the dilatation of the steel shaft
is unperturbed. Since the PTFE ring’s Young’s modulus is nearly two times smaller than that of the
steel bushing, the hotter the PTFE ring is, it dilates more towards the interior (and slightly outwards,
towards the steel the bushing), accelerating the clearance closure.

The clearance closure was also observed through the decrease of the oil flow rate. As the clearance
closes, the same oil supply pressure results in a smaller oil flow rate; resulting in a higher oil temperature
in the journal bearing. This phenomenon also accelerates heat-up of the solids, thus the clearance
closure. These are the reasons leading to seizure at start-up. Moreover, with a longer stabilization phase
and slower acceleration rates a stable operation could be possible to achieve.

A pseudo-transient TEHD model was developed and validated to the experiment. The validation
proved that the TEHD Elrod’s model is capable of correctly describing the behaviour of the journal
bearing. The simulation proved our theory that the bushing’s temperature increase is limited due to
the low heat conductivity coefficient of the PTFE ring and the fast start-up sequence. Furthermore, the
PTFE ring under the lightweight bushing is not recommended for such a rapid start-up sequence.
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Appendix A

In order to prove the hypothesis that the time-dependent term of Equation (11) can be neglected,
the present appendix reveals the derivation of the time-dependent term of the transient Couette flow,
with a constant acceleration applied on the surface in motion. First, the transient equation for the 1D
Couette flow should be presented:

∂u
∂t

= ν
∂2u
∂y2 (A1)

The steady-state solution (us) can be calculated for a given wall speed at y = 0 (with no-slip
condition at both surfaces) as the following:

us(y) = u|y=0

(
1− y

h

)
= u0

(
1− y

h

)
(A2)

where h is the distance between the two surfaces in motion and u0 is the wall speed at y = 0 (see
Figure A1).
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At t = 0, the flow velocity is uniform and equals to zero. If a constant acceleration is supposed on
one of the surfaces (in our case at y = 0), the speed of that surface can be calculated (with taking into
account the hypothesis that at t = 0 the surface was not moving) as:

u|y=0 = a0t = u0(t) (A3)

By supposing that the transient solution of the Couette equation is the sum of the steady-state
solution for any given time and a time-independent function (f (y)), the problem can be separated:

u(y, t) = us(y, t) + f (y) = a0t
(

1− y
h

)
+ f (y) (A4)

Thus, it is possible to obtain:
∂u(y, t)

∂t
= a0

(
1− y

h

)
(A5)

ν
∂2u(y, t)

∂y2 = ν
∂2 f (y)

∂y2 , (A6)
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and Equation (A1) becomes:

ν
∂2u(y, t)

∂y2 = ν
∂2 f (y)

∂y2 . (A7)

By integrating Equation (A6) in the y direction twice:

f (y) =
a0

ν

(
y2

2
− y3

6h
+ C1y + C2

)
(A8)

Due to the no-slip condition at the walls, the boundary conditions are:

u(y, t)|y=0 = a0t
u(y, t)|y=L = 0

(A9)

These conditions are already met by Equation (A2), so:

f (y)|y=0 = f (y)|y=h = 0 (A10)

And the two constants (C1 and C2) values can be obtained:

C1 = − a0h
3

, C2 = 0 (A11)

Thus, the solution for the transient Couette equation with a constant acceleration at one of
the surfaces:

u(y, t) = a0t
(

1− y
h

)
+

a0

ν

(
y2

2
− y3

6h
− h

3
y
)

(A12)

By substituting u into Equation (A1) the solution can be verified. Moreover, a comparison with
a numerical solution was carried out and the theoretical and numerical result show a very good
accordance (relative error less than 2 × 10−6, see Figure A2).
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Figure A2. Comparison of the relativized numerical and analytical results. The analysed case was:
h = 500 µm, a0 = 0.2 m/s2, ν = 3 × 10−6 m2/s, at t = 0.1 s, the flow being at rest at t = 0 s. For the
numerical solution, the domain was divided into 10 equidistant intervals and the constant time step
was ∆t = 0.00005 s = 50 µs.
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In order to confirm the hypothesis that f is negligible, the minimal value of f should be determined.
By differentiating f by y, the point of minimal value can be obtained:

0 =
∂ f
(

y| fmin

)
∂ y| fmin

=
a0

ν

(
y| fmin

−
y| fmin

2

2h
− h

3

)
(A13)

The location of the minimal value of f (between 0 and h) is:

y| fmin
= h

(
1− 1√

3

)
(A14)

The minimal value of f is determined as:

fmin = f
(

y| fmin

)
=

a0h2

6ν

[
3
(

1− 1√
3

)2
−
(

1− 1√
3

)3
− 2
(

1− 1√
3

)]
(A15)

which can be simplified as:

fmin = − a0h2

ν

1
9
√

3
(A16)

fmin is the value of the maximal difference between the steady-state solution and the transient
solution for any Couette flow with linearly accelerating wall (with the initial condition that u = 0 at
t = 0). The importance of this equation is that the transient term is constant in time, thus it can be easily
judged whether or not it can be neglected by its minimal value: fmin, as seen on Figure A3.
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Figure A3. Comparison of the analytical steady-state and the analytical transient solutions.
The analysed case was: h = 500 µm, a0 = 0.2 m/s2, ν = 3 × 10−6 m2/s, at t = 0.1 s, the flow being at rest
at t = 0 s. The transient term was obtained by subtracting the steady-state solution from the transient
solution. The exact solution for fmin in this case is: fmin =− a0h2

ν
1

9
√

3
= −10.7× 10−6 m

s , while the flow
speed at the moving wall (y = 0) is 0.02 m/s.
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