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Abstract: CoCrMo alloy has long been used as a pairing femoral head material for articular
joint implant applications because of its biocompatibility and reliable tribological performance.
However, friction and wear issues are still present for CoCrMo (metal)/CoCrMo (metal) or CoCrMo
(metal)/ultrahigh molecular weight polyethylene (UHMWPE) (plastic) pairs in clinical observations.
The particulate wear debris generated from the worn surfaces of CoCrMo or UHMWPE can pose
a severe threat to human tissues, eventually resulting in the failure of implants and the need for
revision surgeries. As a result, a further improvement in tribological properties of this alloy is
still needed, and it is of great interest to both the implant manufacturers and clinical surgeons.
In this study, the surface of CoCrMo alloy was laser-treated by a fibre laser system in an open-air
condition (i.e., no gas chamber required). The CoCrMo surfaces before and after laser remelting were
analysed and characterised by a range of mechanical tests (i.e., surface roughness measurement and
Vickers micro-hardness test) and microstructural analysis (i.e., XRD phase detection). The tribological
properties were assessed by pin-on-disk tribometry and dynamic light scattering (DLS). Our results
indicate that the laser-treated surfaces demonstrated a friction-reducing effect for all the tribopairs
(i.e., CoCrMo against CoCrMo and CoCrMo against UHHMWPE) and enhanced wear resistance
for the CoCrMo/CoCrMo pair. Such beneficial effects are chiefly attributable to the presence of the
laser-formed hard coating on the surface. Laser remelting possesses several competitive advantages
of being a clean, non-contact, fast, highly accurate and automated process compared to other surface
coating methods. The promising results of this study point to the possibility that laser remelting
can be a practical and effective surface modification technique to further improve the tribological
performance of CoCr-based orthopaedic implants.
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1. Introduction

With the increasing life-expectancy and active lifestyles of the elderly population of modern
society, the number of articular joint prosthetic surgeries, e.g., total hip replacement (THR) and total
knee replacement (TKR), is ever increasing [1–3]. Unlike other implants, articular joint implants are
designed to function under persistent loading and shear stress. For this reason, wear has long been
recognized as the principal cause of inflammatory bone loss [4,5]; the particulate wear debris can
initiate a cascade of adverse tissue responses including osteolysis (bone resorption), aseptic loosening
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and implant failure, often resulting in the need for late revision surgeries. Thus, it is critical to develop
and/or employ materials that show highly wear-resistant properties as bearing materials. Presently,
one of the most prevalent femoral head materials is CoCrMo alloy, while either CoCrMo or ultrahigh
molecular weight polyethylene (UHMWPE) is used as the mating pair [1–3,6,7]. Despite excellent
biocompatibility and reliable tribological performance, however, friction and wear issues are still
persistent even for CoCrMo/CoCrMo or CoCrMo/UHMWPE pairs [1–3,6,7]. Particularly, the very
small-sized wear particles generated from the CoCrMo-on-CoCrMo bearing surfaces have a large
surface-to-volume ratio, which could promote the release of Cr and Co ions into the host body [8].
It is thus of interest to determine whether the tribological properties of these bearing materials can be
further improved, aiming to minimize the generation of such wear debris from the wearing process.

Attempts to improve the wear resistance of CoCr-based alloys have been made in the literature
using different surface modification methods, including plasma surface alloying with N and C [9]
or plasma nitriding [10], electron beam surface treatment [11], deposition of hard coatings, namely
titanium nitride (TiN) [12–14] and diamond-like carbon (DLC) [15,16], by physical vapour deposition
(PVD) or deposition of DLC [17] by chemical vapour deposition (CVD). In this study, we are primarily
interested in improving the tribological properties of CoCrMo by means of laser processing.

Existing literature related to the laser processing of CoCrMo alloy can be grouped into two main
categories, namely (i) laser cladding of the CoCrMo layer onto other substrates and (ii) laser 3D printing
of the CoCrMo solid part. The findings related to laser cladding can be summarised in chronological
order as follows: Meacock and Vilar studied the deposition of CoCrMo layer onto 304 stainless steel by
laser cladding [18]. Their findings indicated that the laser-induced fine microstructure can increase
the hardness of CoCrMo. Chen et al. applied a continuous wave (CW) mode CO2 laser to deposit a
CoCrMo cladding layer onto 718H mould steel [19]. Their laser-cladded CoCrMo layer demonstrated
an increased hardness (i.e., HV 794) and enhanced wear resistance. Barekat et al. performed a series of
studies to investigate different coating characteristics [20,21] and wear behaviour [22] of laser-cladded
CoCrMo on γ-TiAl substrate using a Nd:YAG laser. The findings related to laser 3D printing are as
follows: Monroy et al. applied a fibre laser to produce CoCrMo solid parts using the selective laser
melting technique (SLM) [23]. The CoCrMo parts created by the SLM process exhibited superior
hardness than those produced by conventional manufacturing processes (e.g., casting, electron beam
melting and forging). Mantrala et al. created a CoCrMo layer using the laser-engineered net shaping
(LENS) technique [24]. They reported that the microstructural features, as well as the hardness and
wear properties strongly depended on the laser processing parameters. In their follow-up study [25],
they reported that post heat-treatment can improve the wear resistance by increasing the hardness
(i.e., HV 512). Sahasrabudhe et al. applied the LENS technique to increase the wear resistance of
CoCrMo with the addition of calcium phosphate (CaP) in the laser-printed parts [26].

The abovementioned studies indicate the possibility of increasing the hardness and wear resistance
of CoCrMo alloy by laser processing. We have recently demonstrated that laser surface remelting
(hereafter, called laser remelting) of metallic materials, for example titanium or titanium-based alloys,
leads to a greatly enhanced wear-resistance [27,28]. Meanwhile, corresponding studies on CoCrMo
surface are relatively rare.

Laser remelting is an effective approach to modify the surface structure and properties of metallic
materials, such as roughness, hardness and corrosion resistance [29,30]. It is commonly employed as a
post-process treatment for enhancing the homogeneity in microstructure and reducing the porosity in
the surface layer [31–34]. Examples of successful applications to bio-metallic materials include AISI
316L stainless steel [31] and Ti6Al4V [34]. Unlike the more popular technique, namely laser ablation
(or laser surface texturing), which is based on the removal of material to create the surface patterns,
laser remelting modifies the surface based on the reallocation of material while in its molten state
(i.e., no material is removed when the surface is irradiated by a laser beam) [29]. The surface remains
below the material vaporisation temperature throughout the laser remelting process, whereas it is
above in the case of laser surface texturing [35].
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Laser remelting possesses several competitive advantages of being a clean, non-contact, fast,
highly accurate and automated process compared to the abovementioned surface modification methods.
The majority of them (i.e., plasma nitriding, PVD and electron beam treatment) required a gas or
vacuum chamber, which was only specific to the research group that used it, and it greatly increases
the cycle time of the treatment process. Our newly-modified laser remelting technique provides an
additional benefit of no involvement of a gas chamber. It can be applied directly to the curved implant
surfaces in an open-air condition. Further, the surface layer formed by laser remelting is metallurgically
bonded with the substrate, and thus, it has no concern of coating delamination (i.e., the main problem
for the hard coatings deposited by the PVD method).

To the best of the authors’ knowledge, only a very limited amount of research work has been
devoted to investigate the enhancement of wear resistance of CoCrMo alloy by laser remelting in the
context of articular joint implant applications. This became the motivation to conduct this study.

2. Materials and Methodologies

2.1. Materials

The material used in the laser remelting experiment was CoCrMo alloy, which was purchased
from Zapp Precision Metals GmbH (Schwerte, Germany). The samples were fabricated in the form
of cylindrical pins with a flat end (the diameter was ca. 7 mm in the stem, yet reduced to ca. 3.4 mm
at the end) and discs (30 mm in diameter and 5 mm in thickness), respectively. The sample surface
was ground sequentially with a series of sandpapers from 120 to 400 grit following the standard
metallography procedure. The purpose of grinding was to (1) remove the pre-existing oxides and
(2) ensure surface homogeneity/consistency in roughness. After grinding the surface, the samples
were cleaned in an ultrasonic ethanol bath for 10 min, rinsed in distilled water for another 10 min and
then dried completely in a cold air stream. Ultrahigh molecular weight polyethylene (UHMWPE) was
purchased from Orthoplastics Ltd. (Crosslinked, GUR 1020 Compression moulded, Lancashire, UK)
and was fabricated to a pin with a flat end (ca. 7.4 mm in diameter) and a disc (30 mm in diameter and
5 mm in thickness). From these two materials, three tribopairs, namely (a) CoCrMo pin-on-CoCrMo
disc, (b) UHMWPE pin-on-CoCrMo disc and (c) CoCrMo pin-on-UHMWPE disc, were prepared.
(b) and (c) are composed of the same pair of materials, but the configuration of the slider/disc was
opposite. Moreover, the diameters of the UHMWPE pin and CoCrMo pin were somewhat different.
Foetal bovine serum (FBS) was purchased from Sigma (Brøndby, Denmark).

2.2. Laser Remelting Experiment

The laser remelting experiment was carried out using an automated continuous wave (CW)
200 W fibre laser system (MLS-4030), which was integrated by Micro Lasersystems BV (Driel,
The Netherlands). The fibre laser was manufactured by SPI Lasers UK Ltd. (Southampton, UK),
and the wavelength of the laser was 1064 nm. The sample surface was laser-treated using the following
optimised processing parameters: laser power 40 W, scanning speed 25 mm/s (i.e., meandered scan
with lateral movement of 100 µm in the horizontal direction), stand-off distance 1.5 mm (i.e., laser
spot size was measured as approximately 100 µm) and shielding with the high purity N2 at 5 bar.
The optimised set of processing parameters was determined in a preliminary experiment. The objective
of this preliminary experiment was to create a defect-free surface, i.e., no surface discolouration and
cracks. The N2 gas was coaxially delivered with the laser beam to the surface via a standard laser
nozzle. The laser-treated area was 18 × 18 mm on the disc sample and completely covered the flat
surface at the end of the pin sample (ca. 3.4 mm in diameter). The laser-treated area was fully covered
with laser tracks, and the overlapping ratio between the tracks was about 50% in track width. The detail
of the laser remelting setup was given in the authors’ previous study [36]. The CoCrMo samples after
laser remelting are denoted as CoCrMo*.
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2.3. Surface Morphology and Phase Structure Analysis

The surface before and after laser remelting was imaged using an optical microscope.
The surface phase structure was characterized by XRD using a Bruker D8 Advance diffractometer in
Bragg–Brentano (θ/2θ) geometry with Cu Kα radiation, a fixed divergence slit and a Ni Kb suppression
filter. Data were scanned from 32◦ to 82◦ in 2θ using 0.005◦ steps. The penetration depth of X-rays
into the sample during the XRD measurements was estimated using the method of Cullity [37], with a
weighted mass absorption coefficient for Cu Kα X-rays taken from NIST standard reference data for a
CoCrMo composition corresponding to the average for ASTM F-75 medical-grade material [38]. Results
showed an information depth varying from approximately 0.8 µm at 2θ = 32◦ up to approximately
1.9 µm at 2θ = 82◦.

The measured peak positions in the XRD analysis are shown in the Table 1 below. Peak
assignments follow those of Guo et al. [39]. Note that the α and ε phase peaks at approximately
41◦ and 75◦ were not separately resolved in these measurements.

Table 1. Measured peak positions in XRD for CoCrMo before and after laser remelting.

Peak Assignment Measured Peak Position

Before Laser Remelting After Laser Remelting

α (100)/ε (100) 41.1
α (111) 43.8 44
ε (101) 46.9
α (200) 51 51.2

α (220)/ε (110) 75.1 75.3

α = fcc phase, ε = hcp phase.

2.4. Tribological Measurements: Pin-On-Disk Tribometry and Dynamic Light Scattering

The tribological properties of the sliding contacts of CoCrMo pin/UHMWPE disc with or without
surface modification of CoCrMo pins were characterized by means of pin-on-disk tribometry (CMS
Instruments SA, Peseux, Switzerland). Foetal bovine serum (FBS) was employed as the model synovial
fluid [40,41]. The applied load, sliding speed and total sliding distance were 10 N, 50 mm/s and
1000 m, respectively. The coefficient of friction, µ, defined as µ = friction/load, was recorded over the
entire sliding contacts with the pin-on-disk tribometer. Wear properties of tribopair samples were
characterized by means of the gravimetric method, optical inspection (photographs) of FBS containing
wear debris and the hydrodynamic size (DH) distribution of wear debris in FBS with dynamic light
scattering (DLS). A Zetasizer (DLS, Zetasizer ZSP model, Malvern Instruments Ltd., Worcestershire,
UK) was employed for DLS measurements. To this end, FBS containing wear particles was re-collected
using a micropipette. Disposable cuvettes (PMMA, Brand™, Wertheim, Germany) were used for
DLS measurements.

2.5. Surface Roughness Measurements

The 2D surface profile and the amplitude roughness parameters, namely (a) the arithmetic mean
deviation (Ra) and (b) maximum height (Rz), were measured using a portable roughness gauge
(Rugosurf 10G, TESA Technology, Telford, Shropshire, UK). The surface profile and parameters were
measured in accordance with the Standard ISO4287/JIS B0601. The cut-off length was 2.5 mm. A total
of 12 measurements was taken at different locations at the laser-treated surface. The average with
standard deviation of n = 12 was used to represent the Ra and Rz of the surface. The measurements
were made in both directions including parallel and perpendicular to the laser tracks at the top surface
of the laser-treated sample. Because no statistically-significant difference can be identified from the
two datasets, only the results of one dataset (i.e., parallel to the laser tracks) were reported here.
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2.6. Vickers Microhardness Tests

The hardness of the cross-section surface was measured by a Vickers microhardness testing
machine under a constant load of 200 kgf. Three indentation marks were made in different locations
down from the laser-formed surface coating to the base metal. Indentation Mark 1 was measured at
15 µm below the laser-formed coating, and indentation Marks 2 and 3 were measured at 65 and 115 µm
below the coating, respectively. The distance between each indentation mark was 50 µm. At least three
measurements were taken for each location to ensure the repeatability of the data, and the reported
result was the average of the multiple measurements.

3. Results and Discussion

3.1. Surface Morphology Analysis

Figure 1 shows the optical micrograph images of the laser-treated pin and disc at different
magnifications of 20× and 40×. Distinctive laser-melted tracks can be observed from the image in
Figure 1. The laser tracks were about 200 µm in width with circular-ripple features inside the tracks.
The direction (upward/downward) of the ripple features indicated the moving path of the laser beam
in the laser remelting experiment. Temmler et al. [29,30] proposed a schematic model to explain that the
resulting surface topography (i.e., surface ripples) in laser remelting is controlled by the variation of the
melt pool volume and the movement of the three-phase line, namely the boundary between liquid and
solid material and atmosphere, in the area of the solidification front. The ripple formation results from
the fluctuation of the melt pool volume, which can be precisely modulated by the modulation of laser
power. In other words, the surface topography can be controlled and optimised with a proper selection
of laser power. Optical micrograph images of UHWMPE were flat and featureless except for occasional
grinding marks. Representative images are shown in Figure S1 in the Supplementary Materials.
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Figure 1. Optical micrograph image of laser-treated (a) pin (20× magnification), (b) disc
(20× magnification) and (c) disc (40× magnification).

3.2. Frictional Properties

Throughout this study, one friction measurement was carried out per tribopair. Thus, statistical
information on the friction forces is missing in this study. First, the frictional properties of the self-mated
CoCrMo surfaces, with or without laser remelting, as characterized by pin-on-disc tribometry, are
presented in Figure 2.

For both cases, after a somewhat chaotic run-in period, the µ values started to be stabilized
with a slightly increasing trend until the end of measurements. The average and final µ values
for the CoCrMo/CoCrMo pair were 0.239 ± 0.022 and 0.274, respectively, and those for the
CoCrMo*/CoCrMo* pair were 0.163 ± 0.010 and 0.172, respectively. The µ values from the
CoCrMo*/CoCrMo* pair were clearly lower than those of the CoCrMo/CoCrMo pair over the entire
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duration of experiments. This result showed that laser remelting had a beneficial effect on the
tribological properties of self-mated sliding contacts of CoCrMo surfaces.

The µ values obtained when one surface of self-mated sliding contacts of CoCrMo or CoCrMo*
was replaced with a UHMWPE surface, either as pin or disc, under the same conditions are presented
in Figure 3.
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and UHMWPE/CoCrMo* (b) CoCrMo/UHMWPE and CoCrMo*/UHMWPE in FBS. The load was
10 N, and the sliding speed was 50 mm/s.

The µ values were observed to be comparable to or smaller than those of corresponding
CoCrMo/CoCrMo or CoCrMo*/CoCrMo* pairs. A few characteristics are noticed. Firstly, for
both combinations of CoCrMo and UHMWPE surfaces, laser remelting of CoCrMo led to the
reduction in the µ values of the tribopairs. This pair represents one of the most widely used and
‘slippery’ bearing pairs that are clinically used as orthopaedic implants [2,3,6], and this observation
demonstrates that laser remelting of CoCrMo can improve the tribological properties even when
the counter-surface is UHMWPE. Secondly, the UHMWPE/CoCrMo pair displayed higher µ values
compared to its inverse configuration, i.e., CoCrMo/UHMWPE, even though the two tribopairs
are composed of identical materials. Different tribological properties of unsymmetrical tribopairs
in opposite configurations (i.e., A sliding on B vs. B sliding on A) are often reported [42], and it
is generally ascribed to inequivalent energy dissipation in the two processes. In the present case,
however, the larger diameter of the UHMWPE pin than the CoCrMo pin (see Section 2.1 above) and the
consequent larger contact area appear to be the dominant reasons for higher friction forces and µ values.
Related to this issue, the µ values for the UHMWPE/CoCrMo pair was fairly constant over the entire
sliding duration, whereas a significant variation (overall, a gradual increase) was observed from the
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CoCrMo/UHMWPE pair, especially after laser remelting. Since the µ values of CoCrMo*/UHMWPE
gradually increased from ca. 0.03 in the beginning to ca. 0.1 at the end of experiments, we can relate
this behaviour to a significant change of the CoCrMo*/UHMWPE interface, e.g., polishing effect,
during the sliding contacts.

3.3. Wear Properties

The wear properties of the tribopairs were firstly characterized by means of the gravimetric
method. The masses of the pin or disk for each tribopair before and after the test, as well as the
changes in the mass are presented in Figure 4. Red and blue bars represent net loss and gain in
mass, respectively.
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Figure 4. Mass changes in bearing materials after the tribological tests shown in Figures 2 and 3. Blue
bars represent gains in the mass, and red bars represent losses in the mass.

A few characteristic behaviours were observed. Firstly, a beneficial tribological effect of laser
remelting on the CoCrMo/CoCrMo pair was clearly observed in the wear properties, as well. Secondly,
unlike the other tribopairs, CoCrMo/UHWMPE and CoCrMo*/UHWMPE pairs showed a net gain
in mass changes as represented by blue bars. A net gain in mass after tribological tests including
UHMWPE or other polymeric materials in simulated synovial fluids has often been reported in the
literature [43,44], and it was attributed to absorption of fluid (FBS in this study) into the network of
polymeric bearing materials. As net mass gain was not observed from the opposite configuration
i.e., UHMWPE/CoCrMo or UHMWPE/CoCrMo*, we propose that the portion of UHMWPE disc
surface that is free from tribological stress is mainly responsible for the absorption of fluids. In turn,
this observation implies that the validity of the determination of wear properties by the gravimetric
method is significantly weakened for polymeric materials. Thirdly, for the UHMWPE/CoCrMo pair,
the mass loss was coming exclusively from UHMWPE, rather than CoCrMo. This is readily expected
as the hardness of CoCrMo is substantially higher than UHMWPE. Lastly, for the UHMWPE/CoCrMo
pair, the mass loss is greater after CoCrMo was laser treated. This is probably because the laser-treated
CoCrMo surface is rougher and harder than untreated CoCrMo surfaces, as will be discussed below.
Given that the friction forces of the UHMWPE/CoCrMo pair were reduced after laser remelting
(Figure 2), the lower friction forces of this pair are accompanied by higher wear properties. It can thus
be suggested that higher wear from the sliding of the UHMWPE pin on the laser-treated CoCrMo
surface may lead to the transfer of UHMWPE, effectively reducing the interfacial shear strength
between them.

The wear properties of the tribopairs were assessed by means of optical inspection and DLS of
FBS re-collected after tribological tests, as well. Figure 5 shows the photographic pictures of FBS before
and after the tribological experiments.



Lubricants 2018, 6, 24 8 of 17

Lubricants 2018, 6, x FOR PEER REVIEW  8 of 16 

 

 
Figure 5. Colour changes in FBS: (a–c) corresponding to Groups 1, 2 and 3 in the mass changes in 
Figure 4 (i.e., (a) = Group 1, (b) = Group 2 and (c) = Group 3). In each group, the middle one is pristine 
FBS (no wear particles), and the samples on the left and right correspond to without (left) and with 
(right) laser remelting. 

In general, the colour changes of FBS after tribological tests were not significant, and this is in a 
strong contrast with a previous study where self-mated titanium-based materials were employed as 
the tribopair [28]. In that study, unmodified titanium-based materials, e.g., Cp Ti Gr 2 or TiAlV alloys, 
led to a serious blackening of FBS caused by wear debris. Much less pronounced changes in the 
colours of FBS in this study supports that CoCrMo/UHMWPE is indeed a highly wear-resistant 
tribopair as bearing materials for artificial joints [2,3]. Nevertheless, it is also noticeable that FBS for 
CoCrMo/CoCrMo in Figure 5a is apparently darker than pristine FBS or that for the 
CoCrMo*/CoCrMo* pair. This is consistent with lower friction forces (Figure 2) and lower gravimetric 
wear (Figure 4) observed from the CoCrMo*/CoCrMo* tribopair, rather than its un-treated 
counterpart, and further supports the beneficial effect of laser remelting on the tribological properties. 
For UHMWPE/CoCrMo and UHMWPE/CoCrMo* pairs (Figure 5b), the mass loss is relatively 
smaller than from the other pairs (see Figure 4) such that the change of colour of FBS is ignorable. 
Moreover, FBS for CoCrMo/UHMWPE and CoCrMo*/UHMWPE appear to be slightly darker than 
pristine FBS, which suggests that a sizeable amount of wear debris may have been generated, 
although it was not possible to identify it by the gravimetric method (Figure 4). 

Hydrodynamic size distribution, DH and Z-average values of wear particles in FBS of all the 
tribopairs are displayed in Figure 6.  

 
Figure 6. Distribution of hydrodynamic dimeter (DH) and Z-average values of FBS before and after 
tribological experiments with various tribopairs: (a) CoCrMo/CoCrMo and CoCrMo*/CoCrMo* pairs, 
(b) UHMWPE/CoCrMo and UHMWPE/CoCrMo* pairs and (c) CoCrMo/UHMWPE and 
CoCrMo*/UHMWPE pairs. 

Figure 5. Colour changes in FBS: (a–c) corresponding to Groups 1, 2 and 3 in the mass changes in
Figure 4 (i.e., (a) = Group 1, (b) = Group 2 and (c) = Group 3). In each group, the middle one is pristine
FBS (no wear particles), and the samples on the left and right correspond to without (left) and with
(right) laser remelting.

In general, the colour changes of FBS after tribological tests were not significant, and this is in a
strong contrast with a previous study where self-mated titanium-based materials were employed as the
tribopair [28]. In that study, unmodified titanium-based materials, e.g., Cp Ti Gr 2 or TiAlV alloys, led to
a serious blackening of FBS caused by wear debris. Much less pronounced changes in the colours of FBS
in this study supports that CoCrMo/UHMWPE is indeed a highly wear-resistant tribopair as bearing
materials for artificial joints [2,3]. Nevertheless, it is also noticeable that FBS for CoCrMo/CoCrMo
in Figure 5a is apparently darker than pristine FBS or that for the CoCrMo*/CoCrMo* pair. This
is consistent with lower friction forces (Figure 2) and lower gravimetric wear (Figure 4) observed
from the CoCrMo*/CoCrMo* tribopair, rather than its un-treated counterpart, and further supports
the beneficial effect of laser remelting on the tribological properties. For UHMWPE/CoCrMo and
UHMWPE/CoCrMo* pairs (Figure 5b), the mass loss is relatively smaller than from the other pairs (see
Figure 4) such that the change of colour of FBS is ignorable. Moreover, FBS for CoCrMo/UHMWPE
and CoCrMo*/UHMWPE appear to be slightly darker than pristine FBS, which suggests that a sizeable
amount of wear debris may have been generated, although it was not possible to identify it by the
gravimetric method (Figure 4).

Hydrodynamic size distribution, DH and Z-average values of wear particles in FBS of all the
tribopairs are displayed in Figure 6.

Pristine FBS was employed as a reference from which a single peak with a maximum at ca.
7 nm and Z-average of 16.7 nm were observed. The DH distribution of FBS for CoCrMo/CoCrMo
pairs (Figure 6a) showed the favourable effect of laser remelting in the wear-resistant properties
of CoCrMo by showing that the peaks for large DH, including the peak at ca. 50 nm and another
broad peak from 200 to 5000 nm, disappeared after laser remelting. In addition, Z-average value was
reduced by ca. 16% (from 180.9 nm to 151.9 nm). However, it should be also noted that compared to
pristine FBS, the Z-average increased enormously, namely to ca. 983% and 809% for CoCrMo/CoCrMo
and CoCrMo*/CoCrMo*, respectively. This is consistent with more turbid colours of FBS after the
tribological tests (Figure 5a). For UHMWPE/CoCrMo pairs (Figure 6b), the increase of the Z-average
after laser remelting is the largest (ca. 78%). In contrast, this pair presented the smallest increase of
the Z-average compared to that of pristine FBS (to ca. 223% and 475% for UHMWPE/CoCrMo and
UHMWPE/CoCrMo* pairs, respectively), and this is consistent with the least magnitude of colour
change after the tribostress (Figure 5b). Moreover, the DH distribution of FBS for UHMWPE/CoCrMo*
was nearly overlapped with those of UHMWPE/CoCrMo or pristine FBS, supporting the generation
of the least wear debris from this pair. Lastly, for the case of FBS with the CoCrMo/UHMWPE pair
(Figure 6c), the appearance of larger peaks in the distribution of DH compared to pristine FBS is clear.
In addition, Z-average values were in the order of FBS (16.7 nm) < UHMWPE/CoCrMo* (181.6 nm) <
UHMWPE/CoCrMo (218.2 nm), which supports the favourable tribological effect of laser remelting, as
shown in Figure 3. Overall, DLS results were more sensible than gravimetric wear analysis, especially
when UHMWPE was involved.
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Figure 6. Distribution of hydrodynamic dimeter (DH) and Z-average values of FBS before and after
tribological experiments with various tribopairs: (a) CoCrMo/CoCrMo and CoCrMo*/CoCrMo*
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CoCrMo*/UHMWPE pairs.

3.4. Surface Roughness Measurements

The 2D surface profile of the laser-treated CoCrMo disc is measured and shown in Figure 7a.
The surface profile of the untreated surface is provided in Figure 7b to indicate the change in surface
texture caused by laser remelting.
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Regarding the surface profile, noticeable peaks and troughs can be identified from the laser-treated
surface in Figure 7a. Comparing with the untreated surface (in Figure 7b), the peak-to-trough amplitude
of the laser-treated surface was greater. To quantify the results, the surface roughness parameters,
namely Ra (arithmetical mean deviation) and Rz (maximum height), are extracted from the surface
profile and plotted in Figure 8a,b.

The results in Figure 8 indicated that laser remelting significantly roughened the CoCrMo surface.
Both the Ra and Rz values of the surface increased more than ten-fold after laser remelting. It is widely
accepted that surface roughness played a significant role in determining the friction, as it directly
controlled the actual contact area between the touching surfaces during sliding [45]. It should be
noted that while laser remelting of the CoCrMo surface demonstrated a friction-reducing effect for
all the tribopairs (Figure 2), wear properties displayed diverse effects depending on the tribopair
(Figures 3–6). Thus, overall tribological effects of laser remelting of the CoCrMo surface cannot be
simply accounted for by the increased Ra and Rz alone, which only describe the amplitude information
of the surface profile after laser remelting.
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3.5. Vickers Microhardness Tests

Hardness of metals/alloys has been long considered as one of the most important mechanical
properties in wear and has been widely adopted as an indicator to determine the wear resistance [46].
In order to understand the effect of laser remelting on the wear behaviour of the CoCrMo alloy,
the hardness of the laser-treated surface was measured. The micrograph in Figure 9 shows the
existence of a laser-formed coating and the three indentation marks left in the cross-section surface
after the hardness test. It can be observed in Figure 9 that Indentation Mark 1 had an unsymmetrical
shape with the upper half area smaller than the lower half, whilst Indentation Marks 2 and 3 exhibited
a typical symmetrical diamond shape.
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Figure 9. Optical micrograph image of the indentation marks left in the laser-treated CoCrMo at
different locations.

In the Vickers microhardness test, the hardness of a material is determined by measuring the
length of the diagonal of the indentation mark. The shorter the diagonal, the higher the hardness of
the material. Usually, the average length of the two diagonals is used to calculate the Vickers hardness.
The Vickers hardness is calculated using the equation below:

HV = 1.854 F/d2,

where F is the applied load (kilogram-force or kgf) and d is the average length of the two diagonals (mm).
After calculation, the hardness of the areas Indentation Marks 2 and 3 is determined as 391 and

412 HV, respectively. Given the unsymmetrical shape of Indentation Mark 1, the hardness cannot be
straightforwardly determined using the above equation. Nevertheless, the hardness of the upper and
lower half areas of Indentation Mark 1 can still be analysed qualitatively by comparing the diagonal
of the two areas, namely dupper and dlower (refer to Figure 9), with the half of the average diagonal of
Indentation Marks 2 and 3. These values are given in Table 2.



Lubricants 2018, 6, 24 12 of 17

Table 2. The length of diagonals measured from the indentation marks in Figure 9.

Indentation Mark 1 Indentation Mark 2 Indentation Mark 3

Diagonal of the upper
half area, dupper (µm)

Diagonal of the lower
half area, dlower (µm)

Half of the average diagonal
(d1 + d2)/4 (µm)

12.6 22.4 15.4 15.0

If the dupper (or dlower) is smaller than the half of the average diagonal of Indentation Marks 2 and 3,
it gives an indication that the upper (or lower) half area of Indentation Mark 1 is harder than the
area in Indentation Marks 2 and 3. By using this relationship, it is known that the upper half area is
harder, whilst the lower half area is softer when compared to the hardness of areas in Indentation
Marks 2 and 3. The unsymmetrical shape of Indentation Mark 1 also indicated that the hardness of
the area right below the laser-formed coating (i.e., within the depth of 15 µm) increased while the
hardness decreased in the depth between 15 and 35 µm below the coating. The nearly identical size of
Indentation Marks 2 and 3 indicated that there is only a little change in hardness after the depth of
50 µm below the coating, which can be evidenced by their similar values of hardness.

The findings pointed to the fact that laser remelting created a coating in the surface and a
laser-affected zone underneath the coating. The laser-affected zone can be sub-divided into the
hardened zone and the softened zone. The thickness of the hardened zone was measured as
approximately 20 µm. Figure 10 shows the graphical representation of the laser-treated surface
for the CoCrMo alloy. The impact of the hierarchically-generated hardened zone and softened zone
on the tribological properties of CoCrMo is presently unclear. More importantly, the hardness of
the laser-formed coating, which is expected to play a bigger role in determining the tribological
properties, could not be determined by the current method as the size of indenter was larger than the
coating thickness.
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Figure 10. Graphical representation of the cross-section structure of the laser-treated CoCrMo surface.
The laser-treated surface was composed of three different zones, namely laser-formed coating at the
top, laser-affected zone in the middle, followed by the base metal at the bottom. The laser-affected
zone can be sub-divided into the hardened zone (upper) and softened zone (lower).

3.6. Surface Phase Structure Analysis

Figure 11 shows the XRD profile for the laser-treated and untreated surfaces. It is important
to point out that the penetration depth of the radiation into the material surface is typically a few
µm in the XRD measurement [27]. The penetration depth is between 0.8 and 1.9 µm in our XRD
(refer to Section 2.3). The thickness of the laser-formed coating varied between 5 and 15 µm (refer to
Figure 9). It indicated that the XRD profile of the laser-treated surface reflected the phase structure
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of the laser-formed coating since the X-ray radiation cannot reach the laser-affected zone underneath
the coating.
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Figure 11. XRD profile for the laser-treated and untreated surfaces.

The XRD profile of the untreated CoCrMo surface (in Figure 11) showed the co-existence of the
α phase and ε phase. The α phase is face-centred cubic (fcc), which is metastable (i.e., only stable at
high temperature), whilst the ε phase has the hexagonal close-packed structure (hcp) and is stable at
ambient temperature. The phase peaks of (111) at 43.8◦, (200) at 51◦ and (220) at 75.1◦ indicated the
presence of the fcc α phase in the untreated surface, whilst the presence of the hcp ε phase is evidenced
by the peaks of (100) at 41.1◦ and (101) at 46.9◦. In comparison, the laser-formed coating showed only
the α phase peaks of (111) at 44◦, (200) at 51.2◦ and (220) at 75.3◦, with slight shifts to a higher angle.
It is believed that the α phase formed as non-equilibrium phase during the rapid cooling in the laser
remelting process and that the angle shifts are due to the lattice compression after laser remelting.
The laser-formed coating exhibited a more homogeneous phase structure than the untreated surface
(or base metal).

There is no evidence for the formation of any nitride phases in these data. The detection limit in
XRD under the conditions used is estimated at <0.2%. Adapting the method of Cullity [37] suggests
that 0.2% of the signal from the CoCrMo material would originate from the outermost 5 nm only,
placing a maximum upper limit around this value on the thickness of any nitride layers present.

Although the hardness of the laser-formed layer cannot be directly measured in the Vickers
hardness test as mentioned above, the homogenous phase structure can contribute to increasing the
hardness, which may account for the reduced friction and wear properties from the CoCrMo/CoCrMo
interface after laser remelting (Figures 2 and 4–6), as well as increased wear properties of the
UHMWPE/CoCrMo interface (Figures 4 and 6) after laser remelting. Increased hardness of CoCrMo
due to the laser-induced fine and homogenous microstructure has been reported by a number of
authors [18,19,23,24]. Since no nitride was detected in XRD, the possibility of hardness increment due
to the nitride formation can be ruled out.

On the other hand, it is known that a small amount of carbon is incorporated into the CoCrMo
alloy as carbides, namely M23C6 and M6C (i.e., M = Cr, Mo, Co), during the casting process. These
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carbides can significantly influence the mechanical properties of CoCrMo. It is generally accepted
that the size and location of the carbides in the grains can have different impacts on the strength
of CoCrMo alloy. Fine carbide precipitates within the grains can increase the strength, whereas
coarse carbides at grain boundaries can embrittle the material. Further, the findings of Liao et al.
indicated that the homogeneity of the carbides in CoCrMo is dependent on the cooling rate in the
solidification process, with the higher cooling rate favouring the formation of more homogeneous
and harder carbides [47]. The CoCrMo alloy underwent rapid cycles of melting and solidification
processes during the laser remelting. The cooling rate in laser remelting can reach to 105 ◦C/s,
significantly higher than in conventional processes (i.e., 0.2–50 ◦C/s). It is believed that the increased
hardness in the hardened zone (i.e., situated right below the laser-formed coating) can be related to
the precipitation of homogeneous carbides induced by the rapid cooling rate in the laser remelting.
Likewise, the presence of the softened zone can be associated with carbide precipitation and the
aforementioned carbide-related parameters, such as their size, location and homogeneity. However, it
is inconclusive to determine the mechanisms of how these carbide precipitates affected the mechanical
properties of the laser-affected zones and more importantly how they can lead to the formation
of hardened and softened zones. A more focused and in-depth microstructural study (i.e., TEM)
will be required to provide insight into the relationship between the carbide precipitation and laser
remelting processes.

Overall, we propose that the reduced µ values (Figure 2) and wear (Figures 4–6) for the
self-mated sliding contacts of CoCrMo after laser remelting result chiefly from an increase in
hardness of the top-most layer (i.e., laser-formed coating). On the other hand, reduced µ values
for CoCrMo/UHMWPE or UHMWPE/CoCrMo pairs (Figure 2b,c), yet increased wear for the
UHMWPE/CoCrMo pair (Figure 4) after laser remelting, can be explained by increased transfer
of polymeric material to the metallic side, caused by the increased surface roughness and hardness of
the laser-formed coating.

4. Conclusions

Even though CoCrMo/CoCrMo and CoCrMo/UHMWPE tribopairs are highly popular as
bearing materials for arthroplasty thanks to their reliable tribological performance and excellent
biocompatibility, the generation of wear debris and consequently limited service time is an unsolved
problem to date. In this preliminary study, we have demonstrated that laser remelting of the CoCrMo
surface can lead to improved friction and wear-resistant properties of both tribopairs. The important
results arising from this study can be summarised as follows:

(i) The laser-formed coating exhibited a homogeneous phase structure. The coating showed only
the α phase peaks (i.e., no ε phase detected).

(ii) Laser remelting of the CoCrMo surface demonstrated a friction-reducing effect for all the
tribopairs (namely, (a) CoCrMo pin-on-CoCrMo disc, (b) UHMWPE pin-on-CoCrMo disc and (c)
CoCrMo pin-on-UHMWPE disc).

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4442/6/1/24/s1,
Figure S1: Optical microscopic images of UHWMPE pin (left) and disc (right) before tribological tests. The scale
bars represent 1 mm.
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