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Abstract: For a tribological experiment involving a steel shaft sliding in a self-lubricating bronze
bearing, a semi-supervised machine learning method for the classification of the state of operation
is proposed. During the translatory oscillating motion, the system may undergo different states of
operation from normal to critical, showing self-recovering behaviour. A Random Forest classifier
was trained on individual cycles from the lateral force data from four distinct experimental runs in
order to distinguish between four states of operation. The labelling of the individual cycles proved to
be crucial for a high prediction accuracy of the trained RF classifier. The proposed semi-supervised
approach allows choosing within a range between automatically generated labels and full manual
labelling by an expert user. The algorithm was at the current state used for ex post classification of
the state of operation. Considering the results from the ex post analysis and providing a sufficiently
sized training dataset, online classification of the state of operation of a system will be possible. This
will allow taking active countermeasures to stabilise the system or to terminate the experiment before
major damage occurs.

Keywords: condition monitoring; semi-supervised learning; random forest classifier; self-lubricating
journal bearings

1. Introduction

Predictive maintenance has been a topic of increasing interest in research and industry
over the past few years [1]. As part of predictive maintenance techniques, condition
monitoring [2–4] is used to detect anomalies and to predict the health of machinery in real
time. It uses both sensor data and monitoring software to establish whether a component
failure is likely. While some types of failure occur gradually and can be prevented by
routine examinations, sudden failures are of course very difficult to forecast. This is the
reason why artificial intelligence (AI), especially machine learning (ML) techniques, has
gained increasing popularity in the recent years. ML algorithms are trained to learn from
the available data and help identify certain behaviours or parameters that contribute to
failure with high accuracy. ML algorithms can be divided into two main groups, namely
supervised and unsupervised learning [5], differing in whether prior knowledge on the
expected output is considered or not. The prerequisite for supervised learning is a set of
labelled training data, while unsupervised learning aims at uncovering features on its own.

In tribology research, AI has already been applied to various fields, including in-
process tool condition monitoring [3], anomaly detection [6–8], failure prediction [9],
classification of the lubrication regime [10], optimisation of tribological performance of
copper composites [11], as well as AI-based lubricant design [12]. Deshpande et al. [13]
give a good summary of the most common machine learning algorithms used in the
classification of tribological states of operation and prediction of wear, depending on the
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application. Classical ML techniques, such as Support Vector Machine (SVM) [3,6,14],
Random Forest (RF) [9,15] and Radial Base Function (RBF) methods [16] are widely used.
An approach for fast bearing fault diagnosis in rolling elements, combining traditional
pattern recognition methods with meta-heuristic search and ML, was presented by Sun
et al. [17]. Additionally, deep-learning techniques based on Artificial Neural Networks
(ANN) have gained increased popularity over the past few years [10,18,19]. The recently
published article by Rosenkranz et al. [20] gives a comprehensive overview of the various
application fields and methods in tribology and shows the extended use of AI and ML
techniques in the field of tribology as a future perspective.

Acoustic emission (AE), both airborne [8] and structure-borne [9,14], have proven to
provide well-suited datasets for training ML algorithms. Other datasets used in tribology-
related applications include torque [10] and force [2] data, accelerometer signals [21], as well
as images of worn tool surfaces [22]. Thermal imaging has also been applied successfully
to fault diagnosis [23].

RF classifiers may have a slightly lower prediction accuracy compared to ANN-based
classifiers. However, ANN algorithms require careful parameter tuning and large training
datasets. RF classifiers already give good prediction accuracy without or with little fine
tuning of their hyperparameters. This makes RF models very suitable for industrial use, as
they are easier to adopt for specific applications [24].

In general, self-lubricating sliding elements are composed of porous sintered materials
filled with a lubricant [25]. Often, the bearing itself is made out of a porous material, such
as sintered metal compounds [26–28] or oil-bearing self-lubricating layers [29], as well as
polymer composites [30]. Another variant of self-lubricating elements is the use of solid
lubricants as coatings, e.g., PTFE in roller bearings [31].

In contrast, the bearings used in this study consist of a base material equipped with a
grid of bores, which are filled with a porous polymer compound infiltrated with lubricant.
This kind of bearing is common in industrial applications. However, scientific literature
on these specific systems is not very widely available; e.g., [32,33], information on this
topic is often restricted to company-owned empirical know-how. Consequently, precise
knowledge of the main acting mechanisms has not been reported publicly. It is assumed
that the variety of commercially available products is based on proprietary know-how and
engineering experience.

In 2007, Jisa [34] performed a fundamental review and studied sliding elements in the
shape of plates and bearings with different copper-based alloys forming the supporting
structure. Jisa has shown that the thermal expansion of the liquid lubricant in the gap
between the two sliding components, assisted by capillary effects of the pore and surface
topography structures, determine friction levels and lifetime. Generally, the lubricating
effect is assisted by a moderate rise of temperature, as the bearing is most likely to operate in
boundary or mixed friction conditions. This made a stepwise increase of loading necessary
during the run-in phase of the experiment, as a too-high temperature would lead to inferior
lubrication due to lower oil viscosity, resulting in adhesive wear and finally end of lifetime
by increase of the friction force up to the limit of the specific machine.

For axial sliding operation conditions as studied in the current work, wear is predomi-
nantly taking place at the bearing edges and at the edges of the lubricant macrodepots. The
wear debris generated at these positions causes abrasive wear in the whole contact zone,
leading to gradually growing grooves. As long as the lubricant macrodepots are in contact
with the counterbody, these grooves are no lifetime-limiting feature, and most of the wear
debris particles are quickly transported out of the contact zone. The re-disposition of wear
debris particles into the lubricant macrodepots may lead to a temporary strong increase of
the friction force. These events occur rather statistically, accompanied by friction peaks, but
they do not result in permanent damage of the lubricant macrodepots and eventually the
removal of the loosened wear debris from the sliding contact. Due to these mechanisms,
this type of bearings shows self-recovery effects [34].
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The judgment of critical operation and useful remaining lifetime in industrial appli-
cations relies on specific experience and empirical data exhibiting large variance. The
system studied in this work is interesting for application of ML techniques to explore the
opportunities of ML for a self-recovering complex tribological system.

2. Materials and Methods
2.1. Experimental Setup

The experiments were performed on a laboratory-built tribometer setup for bidi-
rectional, translatory movements with high normal loads, and large sliding amplitudes
(Figure 1a). In this setup, a self-lubricating journal bearing made of a bronze alloy with
polymer lubricant macrodepots is horizontally mounted on the tribometer and held in a
fixed position. The counterpart, a shaft made of hardened and polished Cr-steel, slides
inside this bearing in a translatory oscillating movement driven by a pneumatic cylinder.
Two adjustable electronic switches define the reversal points of the oscillating movement.
The normal load is applied by a second pneumatic cylinder. The executed force is trans-
mitted via a parallelogram structure, which ensures that the horizontal position of the
bearing is always maintained even in the event of wear-induced lowering (Figure 1b). The
pressure applied on the bearing was calculated as the normal force acting on the nominal
cross-section, according to engineering standards for journal bearings.
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Figure 1. (a) Translatory oscillating tribometer setup, (b) lateral force measurement, (c) position
measurement, (d) bearing temperature measurement, and (e) normal force measurement.

The tribometer is equipped with several sensors to monitor and document the defined
experimental parameters, the environmental situation, and the reactions of the tribometer
to the different friction conditions. The instrumentation of the setup is described in detail
below. In the current study, the focus lies on the data generated by the lateral force sensor.

A commercially available linear inductive position sensor (Turck Li300P0-Q17LM0-
LiU5X2) measures the oscillating movement of the shaft. The applied normal load and
the lateral force, i.e., the force in sliding direction, are recorded by two load sensors



Lubricants 2021, 9, 50 4 of 18

(HBM Type U2B and HBM U9C, respectively). The wear of the journal bearing can be
qualitatively monitored by the vertical movement of the cantilever, which is measured by a
laser triangulation sensor (Keyence IL-030). The temperature of the bearing is measured
by a thermocouple (type K, diameter 0.5 mm), which is mounted inside a drilled hole at
the top point of the bearing’s front face, where the highest contact pressure and therefore
the highest temperature is to be expected. Figure 1 indicates the mounting positions of the
force, position, and laser triangulation sensors as well as the thermocouple.

In addition, several sensing techniques are used to detect friction-induced vibrations.
Two acoustic emission sensors (NF-Corporation AE-900M-WB), one mounted at the shaft
and one mounted at the bearing holder, measure high-frequency structure-borne noise in
the range between 100 kHz and 5 MHz. Three MEMS (micro-electro-mechanical system)-
acceleration sensors (Analog Devices ADXL1002) are mounted at the bearing holder and
detect low-frequency vibrations up to 11 kHz in all spatial directions. The emitted airborne
noise is measured in the frequency range between 20 Hz and 20 kHz using a high-precision
microphone (Brüel & Kjaer 4189-A-021).

Furthermore, the ambient air temperature and humidity is monitored in the vicinity
of the experiment by a TE Connectivity HTM 2500 LF sensing module and the supply air
pressure of the pneumatic drive by a Telemecanique XMLP016BC71V pressure transducer.

The oscillation frequency of the shaft was set to a nominal value of 1 Hz and a stroke
amplitude of 30 mm, which ensured that each contact point of the shaft was moved out of
the contact completely in each stroke. It has to be noted that the oscillation frequency was
not constant during the experiment but varied with the resistance the pneumatic cylinder
had to overcome to move the shaft. During the first 1.5 h of the experiment, the normal
load was gradually increased until a nominal bearing pressure of 8 N/mm2, corresponding
to a normal load of 6 kN, was reached. The experiments were performed until at least one
of two thresholds was exceeded. The first threshold was set for the bearing temperature at
150 ◦C and the second one was set for the uncorrected lateral force at ±3.5 kN. However, it
should be noted that the temperature threshold was never exceeded, and all experiments
were stopped after exceeding the lateral force threshold.

In total, data from 9 experiments performed under the described conditions were used
for this study.

2.2. Data Preprocessing

As mentioned above, the sensor measuring the lateral force FL is part of the lever
system. In order to obtain the coefficient of friction (µ), the geometry of the lever system
has to be taken into account, resulting in the following relation:

µ =
100 FL − 2 FN

175 FN
. (1)

Before feeding the algorithm, several data preprocessing steps were necessary. This
was done using the programming language Python in the form of interactive Jupyter
notebooks [35], using NumPy arrays [36] and pandas DataFrame objects [37] for effi-
cient computing.

The time-series signals acquired by the force, acceleration, and supplementary sensors,
sampled at rates of up to 5 kHz, were stored in the hdf5 file format [38] on a file server
dedicated to the storage of large amounts of raw measurement data. Since the amount of
raw data was too large for efficient processing on a conventional workstation, data were
directly read from the server and downsampled to 100 Hz, thereby carefully retaining the
main characteristics of the sensor data.

In a second step, noise was removed from the lateral force and position signals
by smoothing with a third-degree Savitzky–Golay filter [39] with a window length of
25 samples.

Due to the oscillating nature of the setup, periodic patterns repeating with the os-
cillation frequency of the system are present in the lateral force data. Each one of these
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patterns describes the evolution of the lateral force during one cycle. Deviations from the
normal state of operation can be seen as distortions of the individual cycle shapes, which
are discussed in more detail in Section 3.1. This leads to an increase in the cycle periods as
well as the lateral force levels and maxima.

The zero position of single-cycle curves were triggered using the zero-crossings of the
normalised position signal in negative stroke direction. Thus, the length of the extracted
curves was normalised to 100 data points per curve using linear interpolation. In the
end, an m × 100 matrix, with m being the number of individual cycles of the respective
experiment, was obtained as input for the Random Forest classifier.

2.3. Random Forest Classifiers

The RF algorithm was first described in detail by Breiman [40]. RF is an ensemble
learning algorithm and is based on the aggregation of a large number of independent
decision trees. When used for classification, the class votes of each tree determine the
classification by majority vote [5], resulting in enhanced classification accuracy and reduced
overfitting. Each tree within this RF is grown using random feature selection; each new
training set being drawn with replacement from the original training set. This method is
known as bootstrap aggregation or bagging [40,41].

In RFs, bagging is combined with a randomised selection of the p input features to be
considered for splitting an internal node. At each node, a random subset of k features is
selected, from which only the best split is determined [42]. For classification, the default
value for k is typically set as the square root of p. At each split, the total reduction in the
split criterion, usually measured by the Gini index [43], can be used as an importance
measure for the corresponding splitting feature. The feature importance is obtained by
accumulating this importance measure over all trees separately for each feature [5]. The
size of an individual tree is typically controlled by predefined parameters, such as the
terminal node size and tree depth. As a consequence, for every tree in the RF ensemble, a
set of observations exists that are not used for growing the tree. These so-called out-of-bag
observations (OOB) can be used to estimate the prediction accuracy of the individual
decision trees [43].

Generally speaking, the larger the number of estimators, the better the prediction
accuracy becomes. However, beyond a critical number of trees, there is no significant
performance gain in adding more trees, at the cost of increasing computing demand.
Numbers available in the literature include 128 [44], 200 [5], or 250 [45] trees.

In order to assess the prediction quality of the trained RF algorithm, a series of
classification metrics is used [46,47].

The most straightforward metric is the accuracy (qa), which is defined as the ratio
between the number of correct predictions (NT) and the total number of samples (N), i.e.,

qa =
NT
N

. (2)

If a sample that has been labelled as positive is also predicted as positive, the classifi-
cation is counted as a True Positive (NTP). If it is predicted as negative, the classification is a
False Negative (NFN). True Negatives (NTN) and False Positives (NFP) are defined analogously.
These four numbers can be displayed as a 2 × 2 confusion matrix C. In the present study, we
follow scikit-learn’s implementation [48]; other sources may use the transposed version,
e.g., [46].

C =

(
NTP NFN
NFP NTN

)
. (3)

Using above four definitions, the number of correct predictions is given by

NT = NTP + NTN . (4)
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The precision (qp) or confidence is defined as the fraction of all positively predicted
samples (NPP), which are actually labelled as positive (NTP), i.e.,

qp =
NTP
NPP

=
NTP

NTP + NFP
. (5)

Conversely, the recall (qr) or sensitivity gives the fraction of all positively labelled
samples (NPL), which are correctly identified as positive, i.e.,

qr =
NTP
NPL

=
NTP

NTP + NFN
. (6)

In the case of multi-label classification, precision and recall values are calculated
separately for each class, with ‘positives’ meaning samples belonging to the respective class.
Each row in the confusion matrix represents a ‘true’ class, with the ‘predicted’ class labels
as columns. In this case, the confusion matrix contains the number of correct predictions of
each class in the diagonal, and false predictions are contained in the respective off-diagonal
elements. Given a classification with N labels, the precision and recall can be calculated
separately for each class (denoted by index i, i = 1 . . . N) from the coefficients of the
N × N confusion matrix as follows:

q(i)p =
Cii

∑N
j=1 Cji

(7)

and
q(i)r =

Cii

∑N
j=1 Cij

. (8)

2.4. Labelling of Datasets and RF Model

In this and the following sections, the term ‘state’ refers to the current state of operation
on the basis of individual cycles. The term ‘phase’ denotes a longer period of time, in which
the system is in a certain state of operation. The term ‘class’ describes a specific categorical
label in a set of labels that is assigned to the individual cycles of the dataset during the
training period of the RF algorithm, based on their state. Thus, each class consists of a set
of individual cycles belonging to one state of operation.

As manual labelling of tens of thousands of cycles would be a very tedious and time-
consuming task, a pre-labelling of the cycles via clustering methods was performed. Given
the large size of the data, Principal Components Analysis (PCA) was applied to reduce the
dimensionality of the input and visualise the general shape of the data. After selecting an
appropriate number of principal components, based on the amount of variance covered, a
k-means clustering algorithm was applied to the reduced dataset. Each cycle was assigned
to a cluster such that the squared Euclidean distances within each cluster were minimised.
The implementations of these two steps were performed in R using the prcomp and kmeans
functions [49].

The results of this pre-labelling stage are given in Table 1. Before applying PCA, the
datasets were centred and scaled to have unit variance. For the k-means clustering, the
first two principal components were selected, showing cumulative proportions of variance
between 0.79 and 0.93. The number of clusters for the k-means algorithm was set to 5, based
on the expected tribological regimes of the studied tribological experiment. The resulting
cluster sizes for each experiment are unevenly distributed, as can be seen in Table 1.
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Table 1. Overview of k-means clustering results.

Experiment
No.

Cumulative
Variance

Total Number of
Cycles

Number of Cycles in Each Cluster
(in Ascending Order)

Experiment 1 0.79 46,485 66 1447 10,029 16,271 18,672

Experiment 2 0.83 44,265 458 1992 4075 15,684 22,074

Experiment 3 0.89 38,605 364 2690 5553 12,467 17,531

Experiment 4 0.86 57,516 4532 8075 13,281 14,484 17,144

Experiment 5 0.87 44,944 2043 3279 9904 10,905 18,813

Experiment 6 0.80 35,388 38 2569 5214 13,443 14,124

Experiment 7 0.80 39,822 245 1918 6411 12,718 18,530

Experiment 8 0.84 54,782 1368 3359 9603 19,197 21,255

Experiment 9 0.85 35,734 1193 5678 8896 9920 10,047

The clusters were subsequently assigned to tribological states of operation: ‘Steady1’,
‘Steady2’, ‘Pre-critical’, and ‘Critical’. The first 5000 cycles were defined ‘Run-in’ and
discarded due to the high variability of the data. The preliminary labelling was refined in a
second step by closer inspection of the data, taking into account distinctive features in the
other sensor signals, e.g., sudden temperature increases or distortions of the position signal.
This resulted in the inclusion of additional ‘Pre-critical’ areas–typically before and after
short-term (‘Critical’) anomalies or before critical operation at the end of the experiments
as well as physically meaningful merging of regions fragmented into various states of
operation by the clustering algorithm. Figure 2 shows the comparison of the classification
obtained by k-means clustering and the final labelling for one of the experiments used
for training the RF algorithm. Here, single cycles or groups of cycles that did not differ
significantly from their surroundings, which were marked as ‘Pre-critical’ (cluster 4) by
the k-means clustering, were assigned to the respective steady state. Furthermore, the
area preceding the final critical state was labelled as ‘Pre-critical’ in its entirety, while the
k-means result switched between ‘Pre-critical’ and ‘Steady2’ in this region. This led to
an overall increase of cycles labelled as ‘Pre-critical’ after manual adaptation (see Table 2).
The ‘Steady1’ state is reduced in size after manual adaptation, as the first 5000 cycles
were discarded.
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Table 2. Number of cycles for one experiment (Experiment 2 in Table 1) as classified by k-means
clustering before and after manual adaptation.

State No. of Cycles after k-Means No. of Cycles after Manual Adaptation

Steady1 22,074 19,120
Steady2 15,684 15,331

Pre-critical 4075 4263
Critical 458 551

In the end, four classes representing the individual states of operation were distin-
guished; see Figure 3. ‘Steady1’ was used for steady operation, typically right after the
run-in period, with little fluctuation and few distortions in the data. ‘Steady2’ typically
occurred after major events. The system stabilises, but higher lateral forces are measured,
and the curve shapes of the cycles are more distorted and variable. After sufficient running
time without major events, the system may reach the ‘Steady1’ state again. ‘Pre-critical’
cycles are typically found before and after cycles labelled as ‘Critical’. The ‘Pre-critical’
label is also associated with short-time events, typically lasting less than 100 cycles. During
these short-time events, maximum lateral force values of 1.5 times the maxima of the
surrounding steady-state cycles or lager were measured. ‘Critical’ cycles show heavily
distorted curves with the lateral force increasing considerably at one or both turning points.
This indicates that the bearing was stuck in its turning position and could only be brought
back into motion when a sufficiently high lateral force was applied. One has to note that the
x-axis in the graphs of Figure 3 corresponds to a relative position in time within each cycle
rather than the actual physical encoder position. The length of the half-cycle, in which the
deadlock occurred (the case for the positive half-cycle is depicted in Figure 3d), is extended,
leading to an overall asymmetric cycle shape. As all cycles were normalised to a length of
100 data points, the steepness of the lateral force curve in the turning points is related to
the cycle duration, which itself depends on the friction in the system at that moment.
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The RF algorithm was developed using the Python ML package scikit-learn [48]. The
workflow for training and application of the algorithm is described in detail below, and the
corresponding flowchart is shown in Figure 4.
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The dataset for training the algorithm was created using labelled cycles from four
experiments, namely the numbers 2, 4, 7, and 9 in Table 1. As mentioned above, the
first 5000 cycles from each experiment were considered as run-in and discarded from the
dataset. Data from multiple experiments were chosen in order to cover the diversity of
cycle shapes within each state and to equalise bias towards a certain state introduced by
manual labelling. This includes, above all, the distortions introduced by pre-critical and
critical operation, which can happen in either positive, negative, or both stroke directions.

As the distribution of the cycles over the classes representing the four states of opera-
tion was highly unbalanced (see Table 3), each class was resampled to a size of 15,000 cycles
by random selection with replacement. That means that the classes ‘Steady1’, ‘Steady2’,
and ‘Pre-critical’ were downsampled, and a random selection of the cycles over all four
experiments was used for training. However, the size of the class representing the ‘Critical’
state was only 1265 cycles and had to be upsampled by a factor of nearly 12, drawing each
cycle multiple times from the dataset. The number of 15,000 cycles was chosen, as it seemed
to be a good compromise between retaining as much information as possible from the three
larger classes and keeping the upsampling factor of the ‘Critical’ class reasonably small.

Table 3. Number of cycles for each class present in the training dataset before resampling.

Class No. of Cycles Resampling Factor

Steady1 51,217 0.29
Steady2 83,678 0.18

Pre-critical 21,177 0.71
Critical 1265 11.86

Before training the RF algorithm, a randomised hyperparameter tuning was per-
formed using scikit-learn’s RandomizedSearchCV function in order to optimise the following
hyperparameters. Randomised hyperparameter tuning has the advantage of a fixed, pre-
defined number of trials, independent of the total number of combinations, which can be
very large. This strategy will find a near-best combination of hyperparameters at the advan-
tage of not spending too much time on unpromising candidates [50]. For the present work,
the number of iterations was set to 100. The following hyperparameters were optimised
using randomised hyperparameter tuning: n_estimators indicates the number of individual
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decision trees in the RF, min_samples_split is the minimum number of samples to split an
internal node, min_samples_leaf is the minimum number of samples required to be in a leaf
node, max_features is the maximum number of features to consider at each split and was
always set to the square root of the total number of features; i.e., 10, max_depth indicates the
maximum number of levels within an individual decision tree and finally, bootstrap = True
means that bootstrap samples are used to build each tree rather than the whole dataset.
Table 4 shows the best obtained set of hyperparameters, which were subsequently used for
training the algorithm.

Table 4. Best hyperparameter grid for the RF after hyperparameter tuning.

Hyperparameter Value

n_estimators 101
min_samples_split 2
min_samples_leaf 1

max_features ‘sqrt’
max_depth 30
bootstrap True

The RF algorithm was trained using 75% of the input dataset as training data and
25% as test data used for determination of the quality estimators described in Section 2.3.
Then, the prediction accuracy of the trained RF algorithm was assessed by a 5-fold cross-
validation with random selection of cycles for the training and test dataset. Data were again
split into 75% training and 25% test data for each run, which were randomly selected from
the input dataset. Finally, the algorithm was validated on a labelled experiment (number 8
in Table 1), which was not used for training.

3. Results
3.1. Frictional Behaviour

The average duration of an experiment until reaching the stop criterion was 14.5 ± 2.6 h,
corresponding to roughly 44,170 ± 7400 cycles.

Although the temporal evolution of the measured signals varied between the experi-
ments, a few characteristic features were observed throughout the experiments. Figure 5
shows the time series of coefficient of friction, temperature, and contact pressure of experi-
ment 4 as an example for characteristic features observed during the series of experiments.
For the coefficient of friction, the arithmetic means of the absolute values of the 10% and
the 90% quantiles are displayed. The 10% quantile gives a characteristic value for the
coefficient of friction in negative stroke direction, whereas the 90% quantile was used for
the positive direction.

After the run-in, the system was operating in a stable condition at a mean coefficient
of friction of around 0.06, with the temperature steadily increasing close to 90 ◦C. After
typically 15,000 to 30,000 cycles, a region of pre-critical and critical operation was observed.
This manifests itself in a sudden increase in the coefficient of friction and the temperature
exceeding 100 ◦C. This may be attributed to locally inferior lubrication and consequently
short-time metal-to-metal contact and adhesion. After a few minutes, the system was able to
loosen the adhesive contact spot or to tear off a machining chip from the edge of a lubricant
macrodepot. After that, the system remained in the pre-critical state, self-healed, and thus
slowly returning to steady operation, albeit at a slightly higher coefficient of friction in
most cases, typically between 0.07 and 0.10. The eventual steady increase of the coefficient
of friction can be attributed to the gradually deteriorating lubricant supply due to capillary
forces, which reduce due to the increasing number and depth of abrasive grooves caused
by wear particles. The short-time critical states with subsequent stabilisation of the system
due to self-recovery could be observed repeatedly in all experiments.
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During the experiment, spikes in the friction curves were observed. In order to
investigate the origin of these spikes, additional experiments were carried out and stopped
manually when the first spike occurred. Investigation of the bearing revealed that these
spikes were most likely caused by wear debris in the form of tiny machining chips detached
from the edge of a lubricant macrodepot and subsequently transported further in the
contact zone to be either embedded within another lubricant macrodepot or transported
out of the contact at the edges of the sliding element; see Figure 6a. Figure 6b indicates
the large extent of the clearly visible wear area on the self-lubricating journal bearing after
the experiment.
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Figure 6. (a) Macro image showing deposition of wear debris on the surface of a lubricant macrodepot,
(b) Macro image of the wear area of a journal bearing after the experiment illustrating typically
occurring grooves and shifting deposit material onto the bronze base structure and vice versa.

Prior to reaching the set threshold criteria of the system by reaching a given lateral
force, four experiments exhibited an extended instable state, which lasted for up to several
thousand cycles. However, in the other five experiments, the stop criterion was reached
almost instantaneously, with instable operation of less than 10 min before termination of
the experiment. Experiment 4, as shown in Figure 5, belongs to the latter category. In
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experiment 6, no intermediary critical operation was observed. The system remained
steady for about 10 h, with a sudden increase of the lateral force in the end, exceeding
the stop criterion. Experiment 3 was manually terminated after about 2 h of pre-critical
operation, before reaching the stop criterion.

3.2. Classification of States of Operation

The prediction accuracy of the trained RF model was determined to be 0.991, corre-
sponding to an OOB score of 0.996. Five-fold cross-validation yielded a mean prediction
accuracy of the model of 0.993 ± 0.001. These values indicate a classification error rate
between 0.5% and 1%.

Figure 7 shows the locations of the 20 most important features used for splitting nodes
in the RF model. The x-axis label ‘Relative position’ refers to a relative position in time
during the duration of one stroke rather than an actual physical position. One can see
clearly that the most important areas are located around the two turning points of the
stroke direction of the steady-state cycles, i.e., around 60 for the change between positive
and negative stroke and around 100 or 0 for the change from negative to positive. Another
region, where important features are located, can be found around 80, corresponding to the
location of turning points of the critical cycles in the positive stroke direction. The feature
around 50 may be associated with critical cycles in the negative stroke direction.
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Figure 7. The 20 features with the highest importance are marked as red crosses.

In order to assess the prediction quality of the RF algorithm on other datasets, the
dataset of experiment 8, which was not used for training the RF algorithm, was labelled
according to the procedure described above, and classification metrics were calculated. A
comparison between the labels assigned to each cycle and the labels predicted by the RF
algorithm is shown in Figure 8.

The overall classification accuracy of experiment 8 was 0.939. Table 5 shows the
precision and recall values for the four classes. Both steady states as well as the pre-
critical state were recognised with high precision and recall. Of the cycles classified by the
algorithm as ‘Critical’, only 78% were actually labelled as ‘Critical’. The remaining 12%,
or 188 cycles, had the true label ‘Pre-critical’. However, 88% of the actual states labelled
as ‘Critical’ were identified correctly. The corresponding absolute values are shown in the
confusion matrix in Figure 9. The colour scale indicates the fraction between predicted
labels and the total number of true labels assigned to the respective class, summing up to 1
for each row. For the diagonal elements, this corresponds to the recall. The last row and
column, labelled as ‘None’, indicates cycles, for which the algorithm was not able to issue
a prediction. This was predominantly the case for the two steady states, with about 4.5%
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of the cycles labelled ‘Steady2’ not classified. This is also the reason for the relatively low
recall of 0.9 for this class.
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Table 5. Precision and recall for experiment 8.

Class Precision Recall

Steady1 0.98 0.98
Steady2 0.97 0.90

Pre-critical 0.90 0.95
Critical 0.78 0.88
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Based on the results of the RF classification, Table 6 shows a summary of the lengths
of the pre-critical phases preceding the end of the respective experiment. As already
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mentioned, the experiments could be divided in two distinctly different groups according
to their behaviour towards the end of the experiment. In the first group, an extended
pre-critical phase was observed before the termination of the experiment. This pre-critical
phase was found to last between 60 and 211 min or between 7.4 and 19.2% of the total
running time. Before reaching the stop criterion, individual critical cycles were observed
during the pre-critical phase, with an increasing abundance of critical cycles towards the
end, as shown in Figure 10.

Table 6. Start of pre-critical phase for each experiment.

Experiment No. Total Running Time
(Hours)

Start Pre-Critical
Phase (Minutes

before End)

Fraction of Total
Running Time (%)

Experiment 1 15.4 7.5 0.8
Experiment 2 14.8 73 8.3

Experiment 3 1 12.3 113 15.3
Experiment 4 19.1 2.5 0.2
Experiment 5 14.7 4 0.5
Experiment 6 11.1 1.5 0.2
Experiment 7 13.5 60 7.4
Experiment 8 18.3 211 19.2
Experiment 9 11.7 5 0.7

1 Experiment 3 was stopped manually, before the stop criterion was reached.
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Figure 10. Change between pre-critical and critical operation at the end of experiment 1. Critical
operation started with a pronounced increase in the friction force at one turning point.

The second group shows a pre-critical and critical operation rather suddenly. The stop
criterion was exceeded within less than 10 min. Experiment 6 reached pre-critical operation
as few as 1.5 min before termination of the experiment. This sudden critical behaviour may
be due to a sudden loss of the lubricant supply, resulting in a pronounced increase in the
lateral force, whereas in the first group, lubricant supply was sufficient to keep the system
in an operable state over a longer period.
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4. Discussion

This paper presents a semi-supervised method for the classification of states of opera-
tion during a tribological sliding experiment in oscillating, translatory motion using an
RF classifier.

An RF classifier was selected due to its low complexity regarding implementation, its
good prediction accuracies, and the low requirements for model tuning. The RF model can
be easily trained, validated, and applied on a local machine, with the capability of real-time
classification. RF classifiers are especially well suited for industrial applications, as no AI
expert is required to set up and tune sophisticated ANN-based algorithms [24].

The algorithm was trained on the basis of individual cycles. This is only possible
if the force data are recorded with high temporal resolution. The trained algorithm was
able to classify the state of operation with an accuracy of 0.939 for data of a labelled test
experiment, using samples from four different experimental runs (i.e., four different journal
bearings with otherwise identical experimental setup) as the training dataset.

The proposed methodology can be extended to similar systems, with different di-
mensions and materials of the involved bodies. However, datasets from these systems are
necessary for training the algorithm. The transfer of an already trained algorithm to other
systems remains an aspect for further investigation.

As a future perspective, online classification of the current status of the system will
help to identify critical operation conditions. This will allow taking real-time countermea-
sures to assist the self-recovering process of the system, such as reduction of oscillation
frequency or normal load, up to stopping the experiment to prevent major damage. The
experiment can be stopped during critical operation for ex post analysis, e.g., material or
surface analysis of the sliding bodies. Detailed knowledge of the system and its history can
be used to define more complex stopping criteria, additionally to simple threshold values.

The presented approach may be extended to applications in industrial machinery,
provided that a continuous force measurement and a sufficient amount of training data
from ex post analysis are available. Examples for potential industrial applications range
from journal bearings mounted in industrial equipment or drive trains to hydraulic presses,
pistons, and manufacturing tools, especially where the accessibility of the system is limited
for optical inspection.

In a further step, the presented algorithm may form a basis for lifetime prediction.
Experimentally determined durations until reaching the stop criteria and thus termination
of the experiment may be used as additional input for training the algorithm. This is a
challenging task, as terminal failure often occurs suddenly without showing progressive
deterioration in advance [9]. In the present work, sudden terminal failure occurred in about
half of the analysed experiments. In the other experiments, terminal failure was preceded
by pre-critical operation of up to 3.5 h. Inclusion of further continuous sensor data, such as
temperature, acceleration, airborne or structure-borne AE, may serve to improve labelling
and provide additional information for lifetime prediction. With a combination of these
sensors, training of a similar RF algorithm is possible, even if no continuous force data
are available.

In contrast to most studies regarding ML in tribological applications, in the current
study, a self-recovering system was analysed. Thus, the system may stabilise after a pre-
critical or even critical phase and return to steady operation. For conventional tribological
systems, pre-critical or critical operation indicates an impending failure of the system, and
stopping the experiment is the only way to prevent major damages. For self-recovering
systems, an online ML algorithm will have to distinguish between transient and terminal
critical operation. To achieve that, additional datasets such as AE or acceleration data have
to be included.

A high quality of the labels assigned to the training dataset has proven to be the
key for a high prediction accuracy of the RF algorithm. The presented semi-supervised
approach—labelling by unsupervised k-means clustering with manual refinement—offers
the flexibility to choose within a range between fully automated, unsupervised labelling
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and entirely manual labelling based on expert knowledge. In order to provide high-quality
labelled training datasets, tribological and engineering expertise have to be included in the
classification process in any case.

There are several papers on friction and wear monitoring as well as failure classifica-
tion using data from AE sensors, e.g., [9,14,51] or image data, including optical [22] and
thermal imaging [23]. In contrast, the proposed method focuses on time-series data from
a force sensor collected at sampling rate of 5 kHz, similar to e.g., [2], as a data source for
training a ML algorithm. This has the great advantage that high classification accuracy can
be reached by using only force data, recorded by default in any tribological experiment.
However, time-series data from other sensors, such as AE or acceleration, and optical
or thermal image data, can provide useful additional information, which can be used to
increase the algorithm’s classification accuracy.

The focus of the current work was set to the overall health condition of the bearing,
which can be characterised by its state of operation, ultimately related to wear and lubrica-
tion in the contact area. As a system of self-lubricating journal bearings exhibits the ability
for self-recovery during usage, it could be shown that the presented RF classifier allows
detecting critical conditions prior to the onset of machine failure, solely based on the lateral
force data. Future research will address the prediction of useful remaining lifetime and
ultimate system failure.

5. Conclusions

In this paper, an oscillating, translatory sliding experiment of a self-lubricating bronze
journal bearing, which provides the system with the ability to self-recover minor damages,
was studied to elaborate a semi-supervised ML algorithm predicting critical operating
conditions. An RF classifier was trained on the basis of single cycles of lateral force signals
acquired with high resolution and including expertise knowledge of tribologists. Four
different states of operation were identified based on the shape of the cycles. The main
findings of the present paper are as follows:

• An RF algorithm, trained with high-resolution force signals of four experiments,
showed a high degree of classification accuracy (0.939) after validation against a
labelled dataset of another experiment.

• The labelling step is essential and preferably includes tribological expert knowledge.
The proposed method offers the flexibility to choose within a range between fully
automated and fully expert-related labelling.

• The application of a pre-trained algorithm to unlabelled data is very efficient and
therefore can be used for immediate countermeasures to assist the self-recovering
process of the system or to prevent major damage.
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