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Abstract: Termites are among the most successful animal groups, accomplishing nutrient acquisition
through long-term associations and enzyme provisioning from microbial symbionts. Fungus farming
has evolved only once in a single termite sub-family: Macrotermitinae. This sub-family has become
a dominant decomposer in the Old World; through enzymatic contributions from insects, fungi,
and bacteria, managed in an intricate decomposition pathway, the termites obtain near-complete
utilisation of essentially any plant substrate. Here we review recent insights into our understanding
of the process of plant biomass decomposition in fungus-growing termites. To this end, we outline
research avenues that we believe can help shed light on how evolution has shaped the optimisation
of plant-biomass decomposition in this complex multipartite symbiosis.

Keywords: carbohydrate-active enzymes; Blattodea; Macrotermitinae; microbiota; social insects;
Termitomyces

1. Introduction

1.1. Plant Substrate Use as Main Nutrient Source

Plant biomass is the largest carbon reservoir on Earth and is used by a wide range of different
organisms as a main food source [1]. A barrier in gaining nutrients from plant material is the inability
of most animals to process plant biomass, due to the complexity of the plant cell wall [1], composed
primarily of cellulose, hemicellulose, pectin and lignin [2]. The plant cell walls form a barrier to
nutrient acquisition, and depending on the developmental stage [3], plant species [4], and degree
of decomposition [5], structural components change in abundance. Breaking down this structural
heterogeneity requires enzymatic, chemical, and/or mechanical reactions [5–8]. The enzymes for
the breakdown, biosynthesis and modification of glycoconjugates, di-, oligo- and polysaccharides,
are known as Carbohydrate-Active enZymes (CAZymes) [9]. No living organism has the complete
metabolic reservoir necessary to convert plant cell wall components into nutrients [1]. To overcome
this challenge, many organisms obtaining their nutrition from plant biomass engage in symbioses with
diverse lignocellulolytic microorganisms [10–14].

1.2. Termites Have Relied on Symbiotic Digestion of Lignocellulose for Millions of Years

Among the insects, termites have achieved an outstanding ecological success, with more than 3000
extant species in 281 genera and eight families [15–18] that are widely distributed around the globe,
including in tropical, subtropical and warm temperate regions. Termites evolved from a cockroach
ancestor (Blattodea) [17] and are broadly divided into the lower (families: Mastotermitidae, Stolotermitidae
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Hodotermitidae, Archotermopsidae, Kalotermitidae, Serritermitidae and Rhinotermitidae) and higher
(family: Termitidae) termites based on the respective presence or absence of intestinal flagellates [19,20].

Termites ingest lignocellulosic substrates at different degrees of decomposition [16,21] and have
been classified in feeding groups based on their substrate use: Group I: lower termites feeding on
wood, grass, and litter; Group II: higher termites feeding on wood, grass, and litter, including the
fungus feeders (Macrotermitinae) in the sub-group IIF; Group III: highly-degraded wood and soil with
a high organic content; and Group IV: the true soil-feeders [22]. Termites are among the few animals
capable of producing endogenous cellulolytic enzymes [23,24], but this capacity alone is insufficient
to decompose plant biomass [1]. Thus, they rely on their symbiotic gut microflora to depolymerize
lignocellulose with subsequent fermentation, resulting in the production of short-chain fatty acids that
can be oxidized by the host [25,26].

The wood-feeding lower termites associate with cellulolytic flagellates and gut bacteria, of which
the most abundant are in the phyla Spirochaetes and Proteobacteria [25,27,28]. Approximately 60 million
years ago (MYA), the ancestor of the higher termites lost the gut flagellates [29,30] and associated with
an almost exclusively bacterial gut microbiota [31–33]. Spirochaetes, Fibrobacteres, and members
of the TG3 phylum dominate higher termites feeding on sound wood or grass, while humus, soil,
and fungus feeders have more similar gut communities, dominated by Firmicutes, Bacteroidetes and
Proteobacteria [34]. However, they differ in the abundance of Spirochaetes, which is lower in soil feeders
and almost absent in the fungus feeders [34].

Approximately 30 MYA, the higher termite subfamily Macrotermitinae engaged in an obligate
co-dependent mutualism with basidiomycete fungi in the genus Termitomyces (Agaricomycetes,
Lyophyllaceae) [35–37]. Fungus-growing termites comprise 11 genera with approximately 330 described
species [33,35] that associate with ca. 40 described Termitomyces species [37,38]. In addition to the
mutualism with Termitomyces, the termites maintain complex gut microbial communities [32,34,39–42].
The evolution of fungiculture involved the consequential origin of a dual decomposition strategy
with complementary contributions to plant-biomass decomposition between the externally-maintained
fungal gardens and bacterial contributions during two gut passages (Figure 1). This strategy appears
to have allowed the subfamily to obtain near-complete decomposition of plant biomass, possibly
contributing to their dominance as decomposers in the ecosystems they inhabit [5,43].

2. The Tripartite Fungus-Growing Termite Symbiosis

2.1. The Symbiosis Between Fungus-Growing Termites and Termitomyces

Prospective queens and kings are produced in mature nests. Then, during the mating flight, they
leave their natal nests, pair-up, shed their wings and dig into the ground to establish a new colony [36].
Shortly thereafter, they begin to produce the first cohort of workers, who feed on soil and build pillars
comprised of faecal pellets [44–46]. These first foragers also collect plant substrate, first turning these
pillars greenish and a few days later they will be covered in Termitomyces hyphae [44,45,47]. Workers
thus appear to obtain Termitomyces spores when foraging for plant substrates [48] and these spores are
released into the environment from fruiting bodies (mushrooms) on mature nests [37,49]. This means
that the transmission of Termitomyces is predominantly horizontal (environmental acquisition), but two
exceptions to this pattern exist: the termite species Macrotermes bellicosus and the genus Microtermes
transmit Termitomyces vertically (from parent to offspring colonies) [37,48,50].

The established fungus gardens appear as a cork-like structure termed the “fungus comb”. This
comb is composed of termite primary faeces, which is a blend of plant material and asexual Termitomyces
spores that pass through the guts of young workers [51] (Figure 1). The termites provide the fungal
symbiont with optimal growth conditions (e.g., controlled temperature and humidity and inhibition
of other fungi), and constant inoculation of plant substrate [52]. In return, Termitomyces decomposes
plant material that cannot be digested by the termites themselves and provides nutrient-rich nodules
formed by a conglomerate of conidiospores [47,51] (Figure 1).
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Figure 1. (A) The process of plant biomass incorporation and symbiotic complementary decomposition
in the fungus-growing termites Macrotermes and Odontotermes species [5,46,51,53]. (B): Macrotermes
natalensis soldier and nodules within the fungus comb (photo by M.P.). (C) Macrotermes bellicosus
nymphs and workers in the fungus comb (photo by Nicky P.M. Bos). (D) Odontotermes sp. fungus
comb with workers (photo by M.P.).

Despite predominant horizontal transmission, phylogenetic analyses of Macrotermitinae and
Termitomyces indicate some degree of interaction specificity, i.e., species of termites are restricted
to associate with certain Termitomyces species [37]. At lower levels, specificity differences also
remain; e.g., Macrotermes natalensis colonies associate with a single biological species of Termitomyces,
whereas individual Odontotermes species may associate with several Termitomyces species [54–57].
Geographical isolation, synchronised dispersal of winged reproductives [56], and substrate use have
been proposed to help explain these patterns [57–59]. Specificity in the light of horizontal transmission
might appear counterintuitive, as vertical transmission often leads to a higher degree of interaction
specificity and co-evolution [60]. However, it is often observed that traits of a symbiont are lost
because their functions become redundant if the other partner reliably provides the resources [61,62].
This bilateral specialization between symbionts favours obligate associations, potentially leading to
co-cladogenesis even in the absence of vertical transmission [56], as appears to be the case of the
Macrotermitinae-Termitomyces association [37,51].

2.2. The Symbiosis between Fungus-Growing Termites and Gut Bacteria

The external primary decomposition of plant material in fungus gardens substantially changed
the need for internal cellulose digestion, reflected in the marked difference between the gut microbiota
of other higher termites and the fungus-growing termites, who host gut bacteria with reduced
capacity for digestion of cellulose and other complex polysaccharides [39,63]. The possible roles
of gut bacteria in fungus-growing termites include decomposition of other parts of the ingested
plant substrates [32,39,63,64], inhibition of pathogens [65], amino acid synthesis [66], and nitrogen
fixation [64,67]. The guts of fungus-growing termites also have a greater abundance of enzymes
targeting chitin [39,64,68] and other fungal cell wall components [39,63,68], possibly in part contributed
by the bacteria dominating fungus-growing termite guts [39,63,67].
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Since fungus-growing termite species have many traits in common (e.g., plant substrate processing
and a fungal diet), it is unsurprising that many bacterial taxa are shared across fungus-growing termite
genera [42,69–71]. This ‘core’ microbiota is dominated by Bacteroidetes and Firmicutes and is more
similar to cockroach gut communities than to those of most other termites [69–72]. Within colonies, gut
microbial assemblies can also reflect specific termite colony member roles, with quantitative differences
in bacterial relative abundances between castes and ages of workers and soldiers [41,42,73]. The most
divergent microbiota is those in queens and kings, which are greatly reduced in bacterial diversity
compared to workers and soldiers, being dominated by a few bacteria that are absent or only present
in very low abundances in sterile (non-reproducing) castes [39,42,43,69]. This suggests that if male
and/or female alates bring the bacterial inocula for the first workers in incipient nests, most of these
are lost as the royal pair matures, likely due to changes in bacterial roles and the royal pair diet [42].

2.3. Substrate Use by Different Fungus-Growing Termite Species

Fungus-growing termites play important roles in recycling of nutrients in their environments.
Macrotermitinae may harvest 20%–30% of the annual litter production and up to 65% of dry litter,
while 80% of the carbon ingested by the Macrotermitinae may be digested by Termitomyces [74].
In some arid tropical environments, fungus-growing termites may recycle up to 90% of all dead plant
material [75], benefitting natural ecosystems [76], but also causing serious damage and economical
loss in agriculture [77–82].

Figure 2 provides an overview of known substrate use from studies on fungus-growing termite
species in natural and in agricultural areas (for a full list, see Table S1). Based on this, fungus-growing
termites are best-characterised as generalists [18,83,84], with wood and grass being the most frequently
used substrates. However, some termite species may preferentially forage on certain substrate
types [85]. The size of plant biomass fragments [85] and seasonal variation [37] may also affect
foraging preferences, which could also be driven by plant community composition affecting substrate
availability. For example, fungus combs of Macrotermes michaelseni in Kenya were composed of 30%
wood and 70% grass in one area and 64% wood and 36% herbaceous species in another area [84]. Such
geographic variation suggests dietary flexibility, which may well contribute to termite abundance and
their prominent role in nutrient recycling in African savannah ecosystems.

2.4. Plant Biomass Processing and Breakdown

The major components of plant cell walls, cellulose, hemicellulose, and lignin require mechanical,
enzymatic or chemical reactions to break. Cellulose is a polymer of glucose linked with β-1-4 bonds and
three types of enzymes are needed for its complete degradation: endo-cellulases cut the long cellulose
chains into smaller chains, thereby forming ends that exo-cellulases can act on [24]. Exo-cellulases cleave
to form disaccharides (cellobiose) from the longer cellulose chains, and cellobiases or glucosidases
cleave this cellobiose into glucose, which can be taken up and utilised by the organism [24]. In contrast
to recalcitrant cellulose, hemicelluloses are more easily hydrolysed either chemically or enzymatically
and many enzymes (hemicellulases) contribute to doing so [24]. Lignin is a complex of phenolic rings,
which are very difficult to cleave, leaving only white-rot fungi and some bacteria able to do so [24].
These organisms employ oxidizing enzymes (peroxidases and laccases) that create chain reactions,
turning the aromatic rings into reactive free radicals [86]. Lignin does not contain nitrogen and the
process likely also does not generate much energy, so cleaving lignin is likely mainly to improve access
to the cellulose and any nitrogen within in the woody substrate [24,86].

Efficient plant biomass processing and decomposition in the fungus-growing termite symbiosis
involve intricate steps across space (different locations within colonies) and time (different stages
of biomass break down), including enzyme contributions from all partners in the symbiosis [39,63]
(Figure 1). The enzymes involved in this breakdown have been the focus of many studies over the past
decades; however, it remains unclear how generalisable these patterns are and how 30 million years of
(co)evolutionary change has impacted patterns of symbiotic complementarity.
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Differences in CAZyme profiles and expression across Termitomyces species are likely primarily
driven by what is coded for in their genomes or what is required at a given point in time, i.e., dependent
on what substrates the termites harvest. Johjima et al. [87] identified a wide range of CAZymes in
Macrotermes gilvus-associated Termitomyces and found that most of these enzymes were pectin degrading,
suggesting that foraging by Macrotermes gilvus on mainly fresh plant material influences the fungal
symbiont enzyme potential and/or expression. Consistent with this assertion, da Costa et al. [5] found
high expression of cellulases, laccases, and some hemicellulases in Termitomyces from M. natalensis and
Odontotermes sp. foraging on dead plant material and animal dung [5].
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Figure 2. Forage substrate use by fungus-growing termites found in the literature (for a full list of all
references and their reported findings, see Table S1 [5,74,75,77–85,88–125]) mapped on a schematic
phylogeny of the subfamily [35]. Species given the same species name or labelled sp. or spp. in the
original reports were grouped for clarity. The last columns “Wood” and “Grass” give cases where
authors only mention forage substrate but not whether the plant material was alive or dead. The
annotations “?” or “near” were not explained in the original reports, and the species were, therefore,
treated as unique here.
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Lignin breakdown in the symbiosis has also received attention without reaching a clear conclusion
about how generalisable the process is across termite and fungal species. Termitomyces associated
with M. bellicosus decomposes lignin to facilitate termite access to cellulose [87,126], but laccase
activity, presumably contributing to lignin cleavage, has only been found in Termitomyces fungus
combs associated with some (e.g., Microtermes sp., Odontotermes sp., and Macrotermes gilvus) but not
other (Odontotermes longignathus and Hypotermes sp.) termite species [126]. An active laccase has
further been proposed to be insufficient to cleave lignin, as the enzyme is unable to oxidise lignin by
itself [87], but RNAseq from M. natalensis and Odontotermes spp. found that several enzymes targeting
lignin can be present and expressed in at least Termitomyces species associated with these termite
species [5]. The breakdown of lignin may also be complemented by chemical reactions during the first
gut passage [53]. Given that specific cleavage and removal of lignin has been documented in wood
feeders [127,128], it may not be surprising that the fungus-growing termite symbiosis depolymerizes
lignin structures, even though only a few lignin-targeting bacterial enzymes have been identified in
the termite gut [39,68].

The roles of gut bacteria in plant decomposition may vary with different termite-fungus-bacteria
combinations, possibly in ways where the collective assembly of symbionts complements each other
enzymatically. Liu et al. [64] identified xylanases and β-glucosidases from gut bacteria in M. annandalei
and later complemented this with next-generation sequencing technologies on O. yunnanensis to
identify a broad array of CAZyme genes [63]. These analyses suggested that a large portion of
the bacteria-derived enzymes target oligosaccharides, which was corroborated in a comparison of
M. natalensis and O. yunnanensis gut metagenomes with the dung-feeding termite Amitermes wheeleri
and two Nasutitermes spp. (wood-feeders) [129,130]. The results indicate that enzymes targeting
complex plant polysaccharides are relatively low in abundance in fungus-growing termite gut bacteria,
while enzymes targeting oligosaccharides are relatively more abundant [39]. The enzymatic capacity
of Termitomyces to degrade complex polysaccharides could thus be complemented by gut bacterial
enzymes [39].

More recently, da Costa [5] compared the enzyme diversity and activity in nodules, worker
guts, fresh and old comb in M. natalensis and two Odontotermes species and complemented this with
RNAseq from nodules, fresh and old comb. A wide range of enzymes was identified, with the highest
activity and expression being of cellulases and hemicellulases, and comparable nodule and worker gut
enzyme activities suggest that enzymes within nodules remain active during gut passage [5]. After
normalization of enzyme activities (i.e., enzyme activity/fungal biomass), old workers were most
similar to old comb in their expression and young workers most similar to nodules and fresh comb,
mirroring what differently-aged workers eat (Figure 1). Although enzyme activity was higher in
nodules and fresh comb than old comb, fungus comb RNAseq suggested that the highest expression
of these enzymes is in the old comb. This may imply that enzymes are produced in the mature older
parts of the comb and transported to the nodules via Termitomyces hyphae, allowing for transfer
through worker guts to the fresh comb, where the enzymes are needed to cleave components in the
freshly-incorporated plant substrate (Figure 1). This supports the “ruminant hypothesis” by Nobre
and Aanen [58], who hypothesised that Termitomyces could use the first gut passage to efficiently move
lignocellulosic enzymes from mature to fresh parts of the fungus comb.

3. Research Avenues to Improve Our Understanding of the Evolution of Ancient Symbiotic Plant
Biomass Decomposition

Fungus-growing termites manage an elaborate tripartite symbiosis that appears to have overcome
major challenges for efficiently utilizing plant biomass. The termites process and provide their
microbial symbionts with substrate, and these microbial partners offer the genetic machinery necessary
for complete utilisation of plant substrates. While recent years have provided many novel insights,
our understanding of how evolution has shaped the optimisation of plant-biomass decomposition is
still lacking in many aspects. Albeit not an exhaustive list, we believe that the set of research avenues
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we outline below will be important to improve our understanding of the fungus-growing termite
symbiosis specifically and complex symbioses more broadly.

3.1. How has 30 Million Years of Evolution Altered Symbiotic Contributions to Plant-Biomass Decomposition?

We lack a fundamental understanding of differences in plant-biomass decomposition potential
across different Termitomyces species, and how such differences may be complemented by different
contributions from gut bacteria. Currently, we lack information from the vast majority of the ca. 40
described Termitomyces species, and comparative analyses of their genomes paired with metagenome
studies on gut bacteria symbionts would allow for insights into the co-evolutionary patterns of
CAZyme provisioning and division of symbiont labour in the symbiosis.

3.2. Improving Our Understanding of the Link between Enzyme Targets and the Producing Organisms

A major challenge in understanding functions within complex symbiont communities is
assigning symbiont identities to roles. This is less problematic for the monoculture Termitomyces
fungus maintained by the termites but challenging for the bacterial communities [34,41,42,69,70].
High-quality gut metagenomes would allow for better assemblies and binning of bacteria OTUs.
This could be coupled with bioinformatic predictions of putative functions with e.g., Peptide Pattern
Recognition [131,132], which uses binding-site identification from sequences to improve predicted
enzyme functions. This could both help establish gut bacteria functions and clarify whether variation
in gut bacteria community composition between termite species is relevant to plant biomass processing
and division of labour between the termites, fungal symbiont, and gut bacteria.

3.3. How Variable Is Substrate Use across Termite Species

Our current understanding of substrate use is restricted to very broad categories (e.g., wood,
grass, etc.) without the identification of plant species harvested (Figure 2). DNA metabarcoding of
environmental DNA [133] could be employed on termite guts and fungus combs to establish what
plant families, genera, and even species, termites forage on. This would allow us to establish whether
generalist substrate use is the norm and differences merely reflect plant availability in the environment
or if preferences indeed exist. Laboratory experiments providing the termites with various plant
species or biomass at different degrees of decomposition could complement this to elaborate any
termite preferences. Insights from such work could help inform how foraging affects processes on
ecological (e.g., impacts on the environment) and evolutionary (e.g., how the adoption of new diets
may shape ecological traits) time scales.

3.4. How Flexible Is Enzyme Production in Fungus-Growing Termite-Associated Symbionts?

Substrate preferences between termite species/genera could lead to specialisation in enzymatic
machineries. Alternatively, enzyme production could be plastic depending on plant species availability
and seasonality. These alternative hypotheses could be explored by coupling substrate preference
determination with enzyme assays (e.g., chromogenic substrates, AZCL, lignin-degrading enzyme
assays [5,134–136]) and symbiont CAZyme gene expression in fungus combs and termite guts after
termite foraging on different substrates, either in natural environments over geographical locations
with different plant communities or through laboratory experimentation.

3.5. How Do Caste Roles and Caste-Specific Symbionts Interact to Affect Decomposition?

Social insect castes based on individual age and size are important for colony function and the
integration and decomposition of plant biomass. As elucidated above, gut microbial community
compositions differ between fungus-farming termite castes [41,42,70], but the causal reasons for these
differences are as of yet largely unclear. They may merely be driven by differences in diet between
castes (workers eat plant substrate, while soldiers and reproductives do not), which could select
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for different bacteria to flourish within guts or lead to differences in bacterial contributions to the
breakdown of dietary components. Alternatively, community differences may imply that different
bacteria serve important functions that affect caste roles, such as aiding lignin cleavage in workers [53]
or contributing to defensive compounds in soldiers. Work that can shed light on bacterial functions
within gut communities thus has the potential to aid our understanding of the role of symbionts in a
social evolution context.

3.6. Do Differences in Substrate Use Align with the Interaction Specificity between Termite Host
and Symbionts?

The importance of substrate use for patterns of interaction specificity between the termites and
Termitomyces could be tested by providing laboratory colonies with filter paper containing spores
from multiple Termitomyces strains and/or even species. If the termites select their ‘normal’ symbiont
in the presence of multiple symbionts, substrate type may not be the only factor of importance for
interaction specificity. Providing the termites with different plant substrates containing spores of
non-native symbionts could help establish whether termite species with high degrees of interaction
specificity with Termitomyces could establish association with new symbionts, or whether adaptations
and specificity preclude that such novel associations arise [44].

3.7. Does Fenton Chemistry Play a Role in Lignin Depolymerization?

Fenton chemistry (the Fenton reaction) is a process in which hydrogen peroxide (H2O2) in the
presence of e.g., soluble iron is split to generate water and hydroxyl radicals (·OH—a reactive oxygen
species that is a strong oxidizing agent). Non-enzymatic Fenton chemistry has been identified in other
insect [137] and lower-termite [100] guts, where it has been proposed to play a role in gut-mediated
lignocellulose breakdown. Several Auxiliary Activity (AA) families that could initiate Fenton reactions
have been identified in Termitomyces RNAseq data [5] and in a M. natalensis gut metagenome [138],
suggesting the potential for such reactions being of importance. Establishing whether this indeed is
the case would be an exciting research avenue to further improve our understanding of the role of
Fenton reactions in lignin depolymerization.

4. Conclusions

Recent opportunities in -omics approaches have provided substantial and novel insights to
symbiont roles in plant biomass decomposition in fungus-growing termites. A number of pioneering
studies have determined broad substrate use, suggesting that farming termites are generalist rather
than host plant-specific. However, work that goes beyond characterisations of substrate use in these
broad categories (wood, grass, etc.) could help shed light on cryptic specificities. Understanding
substrate use would allow us to better evaluate the role of fungus-farming termites in nature, and to
establish if substrate use plays a role in governing termite-symbiont association specificities.

The symbionts associated with the farming termites do not per se appear to differ substantially
from other plant-biomass degrading microbes, suggesting that it is rather the integration of the
external fungal comb and internal gut passages than novel enzymes for plant biomass decomposition
that enable the symbiosis to digest plant polysaccharides. This makes the symbiosis interesting to
compare to other plant biomass decomposition systems/symbioses (e.g., the cow rumen), which
would allow us to establish how alternative strategies for efficient decomposition have been optimised
by natural selection.

The patterns of specificity over the long evolutionary history of the association provide excellent
opportunities for comparative analyses of substrate use and plant biomass decomposition. This also
applies to the contributions of enzymes from fungal and bacterial symbionts, which currently suffer
from being biased towards a few termite species, being focused on either bacterial communities
or Termitomyces in isolation, and often overlooking termite enzyme contributions. A more holistic
approach with comparative analyses of all partners in a (co)evolutionary context across phylogenies,
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geography, and habitats would improve our understanding of both individual symbiont assemblies
and the evolutionary histories of conserved and derived plant-biomass decomposition strategies.
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Table S1: Studies that have reported forage substrates in fungus-growing termite species, summarized in Figure 2
of the main text. Species names are given as reported in the respective references. The references Eggleton et al. [1]
and Nkunika [2] did not explain what the taxonomical annotations ‘near’ and ‘?’ mean in their studies.
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