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Abstract

:

Simple Summary


Phosphine is one of the most widely used fumigants for the control of stored grain pests in quarantine. However, PH3 resistance to many stored pests has been reported. In this study, the fumigation activity of carbonyl sulfide was researched as an alternative fumigant to control PH3-resistant pests. In PH3 treatment, there was a clear difference in the fumigation activity of domestic strain Tribolium castaneum and resistance strain T. castaneum, but both the d- and r-strains of T. castaneum showed similar results in the carbonyl sulfide (COS) treatment. Furthermore, both PH3 and COS showed no significant difference in fumigation activity in Oryzaephilus surinamensis.




Abstract


Phosphine resistance is occurring among stored-grain pests worldwide. This study investigated the fumigation activity of phosphine (PH3) and carbonyl sulfide (COS) against domestic strain (d-strain) Tribolium castaneum, resistance strain (r-strain) T. castaneum and Oryzaephilus surinamensis. All developmental stages of the pests were exposed to two fumigants (PH3 and COS), and the fumigation activity according to the dose and exposure time was evaluated in a 12-L desiccator and 0.5 m3 fumigation chamber. The rice sorption rate and quality following exposure to thetwofumigants were evaluated. The mortality was 2.9% in r-strain T. castaneum, 49.5% in d-strain T. castaneum and 99.2% in O. surinamensis when 2 mg/L PH3 was used in a 12-L desiccator for 4 h. However, all pest developmental stages showed 100% mortality after 24 h of exposure in the 0.5 m3 fumigation chamber, except for the r-strain T. castaneum. A mortalityof 100% was observed in all of the r-strain T. castaneum developmental stages at an exposure time of 192 h. For COS applied at 40.23 mg/L and 50 g/m3 in the 12-L desiccator and the 0.5 m3 fumigation chamber, respectively, 100% mortality was observed across all developmental stages regardless of species and strain. The sorption of COS was 10% higher than that of PH3, but there was no significant difference in rice quality compared to that in the control. Therefore, this study suggests that COS can be used for controlling T. castaneum resistant to PH3.
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1. Introduction


Various methods are used in quarantine to prevent the inflow of foreign pests due to increased trade among countries. Fumigation, heat treatment, low-temperature treatment and ionization energy have been researched and used for pest control during quarantine [1,2,3,4,5]. Of these methods, fumigation is widely used in quarantine, especially against stored-product pests, because it is an effective and economical method [6,7]. Methyl bromide (MB) and phosphine (PH3) are widely used in pest control for grains and stored foods, but the availability of MB is limited because it is an ozone-depleting substance, and thus PH3 has been used to control pests in quarantine as an alternative [8,9]. However, PH3 resistance has been reported in Rhyzopertha dominica, Tribolium castaneum, and Sitophilus zeamais, which requires a long treatment time [10,11,12]. Therefore, due to the increase in PH3-resistant pests, an alternative control agent or control method is necessary. Carbonyl sulfide (COS) was developed in Australia as a fumigant to replace MB and PH3 and was patented and registered as a grain fumigant in 1993 [13,14,15,16]. COS has been studied in regard to its efficacy in controlling Amyelois transitella, Oryzaephilus surinamensis, Carpophilus hemipterus, Lasioderma serricorne,and Tribolium confusum as a substitute for MB and PH3 to control stored-grain pests [8,17,18,19].



The red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae), is one of the most important insect pests found in stored foods and grains worldwide [20,21], causing food deterioration and contamination through the production of debris and feces [22,23]. The sawtoothed grain beetle, Oryzaephilus surinamensis (Coleoptera: Silvanidae), is also one of the most common pests affecting stored-food products worldwide, causing problems associated with mechanically damaged grains during harvesting and drying [24,25]. In particular, O. surinamensis are pests that cause the most serious damage to stored grains and flour [24,26].



T. castaneum and O. surinamensis are important grain pests, damaging 10–40% of stored crops [27]. Recently, a resistant strain to PH3 has appeared in various stored pests, and many studies on the diagnosis and characterization of PH3-resistant pests have been conducted, with Tribolium castaneum and Oryzaephilus surinamensis among the investigated pests [28,29,30,31,32,33,34]. Korea is one of the world’s top five grain importers, accounting for 90% of wheat and corn imports [35]. Therefore, even if the PH3-resistant pest populations have not yet been found in Korea, there is a high possibility of an influx of stored-product PH3-resistant pests from abroad.



This study investigated the effective control of d- and r-strain T. castaneum and O. surinamensis, which are pests of stored grains, by evaluating the effects of PH3 and COS fumigation. Therefore, the objective of this study was to provide basic data regarding the use of fumigants to control PH3-resistant stored-grain pests.




2. Materials and Methods


2.1. Insects


Individuals of domestic strain T. castaneum (d-strain) and O. surinamensis were collected from rice mill buildings in Okcheon and Ochang, Chungbuk Province, Republic of Korea. Individuals of the resistant strain T. castaneum (r-strain) were provided by the Plant Quarantine Technology Center, Republic of Korea; this strain originated at Murdoch University, Australia. These stored-grain pests were reared in the laboratory at 26 ± 1 °C and 60–70% relative humidity with a 16:8 h (L:D) photoperiod. Flour (800 g), wheat bran (200 g) and dry yeast (70 g) were mixed to serve as a food source, and the beetles were reared in plastic containers (20 cm W × 7 cm L × 8 cm H).




2.2. Fumigants


Phosphine (2% PH3 + 98% CO2) and carbonyl sulfide (97.5% COS + 2.5% CO2) were purchased from Korea Nano Gas Co. (Yeoju, Korea).




2.3. Fumigation Experiments


The fumigation activities against all developmental stages of T. castaneum (d- and r-strain) and O. surinamensis were investigated using PH3 and COS in a 12-L desiccator and 0.5 m3 fumigation chamber modified according to Kyung et al. [36].



Twenty individuals of each developmental stage of the 3 kinds of stored-grain pests were placed in a Petri dish (5 cm i.d. × 1 cm) containing 0.05 g of food in a 12-L desiccator. PH3 and COS were injected using 100 mL and 500 mL gastight syringes (Hamilton, NV, USA), respectively. The d-, and r-strain T. castaneum and O. surinamensis were exposed to PH3 at various doses for 4 h, while the r-strain T. castaneum were exposed to PH3 at 2 mg/L for 24 h to 250 h of exposure. The COS treatment was conducted with 24 h of exposure to all stored grain pests. The fumigation treatment was applied at 20 ± 1 °C, and the dishes were incubated at 26 ± 1 °C and 60–70% relative humidity with a 16:8 h (L:D) photoperiod after treatment. The controls were not treated with any fumigants.



Each Petri dish (5 cm) containing each developmental stage of the stored-grain pests was placed in a 0.5 m3 fumigation chamber (125 × 50 × 80 cm) at a loading ratio of 50% with rice. The Petri dishes were placed in the top, middle and bottom parts of the chamber, respectively. The PH3 and COS treatments were administered at 2 g/m3 and 50 g/m3, respectively, with 24 h of exposure, except in the case of r-strain T. castaneum, which was exposed to PH3 for 192 h.



All experiments were repeated 3 times, and mortality was evaluated 13 days after treatment for larvae, pupae and adults and 20 days after treatment for the egg stage.




2.4. Gas Concentration and Sorption Measurements


The gas concentration in each fumigation chamber was measured with a Tedlar gas sampling bag (1 L, SKC, Dorset, UK) using a gastight syringe (100 µL, Hamilton, NV, USA). The collected gas concentration was analyzed with gas chromatography (GC) (Agilent Technology 6890N, and 7890A, Santa Clara, CA, USA). The detector used for PH3 was a nitrogen phosphorus detector (NPD), and that used for COS was a flame photometric detector (FPD). The GC conditions were as follows: The GC NPD injector temperature was 250 °C, the oven temperature was 240 °C, the detector temperature was 320 °C, and the column was an HP-5 (0.53 mm × 15 m, Agilent Technology, Santa Clara, CA, USA) operating in splitless mode. The FPD had an injector temperature of 200 °C, detector temperature of 200 °C and oven temperature of 200 °C, and the column was a DB-Sulfur SCD (0.53 mm × 70 m, Agilent Technology, Santa Clara, CA, USA).



The concentration and time (CT) values were determined by collecting gases at 30 min and 1, 4, 8, 12, and 24 h after treatment with PH3 and COS, and gas was collected until 48, 96, and 192 h had passed for PH3 in 0.5 m3 fumigation chamber (AFHB/ACIA, 1989).



The sorption rates of PH3 and COS were determined using a 12-L desiccator with 0% and 50% loading ratios (w/v) with rice. PH3 and COS were applied at doses of 2 mg/L and 50 mg/L, respectively, at 20 °C for 24 h. The gas concentration for sorption was determined at 1, 4, 8, 12, 18 and 24 h after treatment and analyzed following the GC conditions described above. C/C0 (%) values were calculated as the concentration at each time after treatment (C) divided by the initial concentration 30 min after treatment (C0) and multiplied by 100. A 12-L desiccator without rice was used as the control.




2.5. Rice Quality Evaluation


The rice quality was evaluated to determine the effects of the two fumigants on rice. Either 2 g/m3 PH3 or 50 g/m3 COS was applied in the 0.5 m3 fumigation chamber at a loading ratio of 50% with rice for 48 h of exposure, and then rice quality was measured 24 h after treatment. The control was not treated with any fumigants.



Rice quality was analyzed by collecting 1 kg of rice from each treatment. As a component analysis, the protein and amylose content in 300 g of rice were measured using an InfratecTM1241 grain analyzer (Foss, Hilleroed, Denmark). Measurement of the physical change ratio (%) was carried out with 1000 grains of head rice, broken rice, chalky kernels, and damaged rice using a Single-Grain Rice Inspector, model RN-600 (Kett Electric Laboratory, Tokyo, Japan). All measurements were conducted at Chungcheongbuk-do Agricultural Research and Extension Services (Cheongju, Korea).




2.6. Statistical Analysis


The fumigation activities of PH3 and COS against T. castaneum (d-strain and r-strain) and O. surinamensis were analyzed statistically according to the doses and locations, and the exposure times of the r-strain T. castaneum were also compared using Tukey’s test [37]. The differences in rice quality between the fumigant-treated and untreated rice were analyzed using a t-test [37].





3. Results


3.1. Fumigation Activities of PH3 and COS in a 12-LDesiccator


The fumigation activities were investigated after the exposure of d-strain T. castaneum, r-strain T. castaneum and O. surinamensis to PH3 for 4 h (Figure 1). Exposure for 4 h was not sufficient to control 100% of d- or r-strain T. castaneum. Specifically, the r-strain T. castaneum showed very low susceptibility across all developmental stages. However, the r-strain did not show 100% mortality after 24 h of exposure (data not shown), but the d-strain T. castaneum exhibited 100% fumigant activity across all developmental stages under these conditions (Figure 2). In particular, the egg stage showed the lowest mortality of 2.9% after 24 h of exposure to 2 mg/L, and all r-strain T. castaneum developmental stages showed 100% mortality only when exposed to this amount for 192 h. The egg and pupal stages did not show 100% mortality in the 1 mg/L PH3 treatment, but all developmental stages of O. surinamensis showed >98% mortality (99.2% in egg, 98.3% in pupa, and 100% in larvae and adult stage, respectively) when exposed to 2 mg/L of the PH3 treatment for 4 h.



After 24 h of exposure to various doses of fumigation with COS, mortality was evaluated in d-strain T. castaneum, r-strain T. castaneum and O. surinamensis (Figure 3). Treatment with COS had similar results in both d-strain and r-strain T. castaneum. The d-strain T. castaneum adults and larvae showed 100% mortalities at 14 mg/L and 25 mg/L, respectively, and the same percentage of activity was observed in r-strain T. castaneum at 12 mg/L and 17 mg/L. The eggs and pupae of both strains showed 100% mortality only when 30 mg/L of COS was used. Although the fumigation activity detected in COS-treated eggs and pupae was lower than that in other developmental stages, fumigant activity was observed regardless of the strain. O. surinamensis showed 100% mortality in adult, larva and pupa stages at 20 mg/L, but 100% mortality was observed in the egg stage at 40 mg/L.




3.2. Scale-Up Fumigation Experiment with PH3 and COS in a 0.5 m3 Fumigation Chamber


In the 0.5 m3 fumigation chamber experiment, when d-strain T. castaneum and O. surinamensis were treated with 2 g/m3 PH3 for 24 h at a 50% loading ratio with rice, all developmental stages showed 100% mortality regardless of the location (Table 1). However, the r-strain T. castaneum larvae showed less than 70% mortality only following 24-h exposure to PH3, and the other developmental stages showed very low fumigation activities (<29%). When the time of exposure to PH3 was increased to 192 h, 100% mortality was observed across all developmental stages of r-strain T. castaneum at all locations.



The fumigation activity of COS was investigated after 24 h of exposure in the 0.5 m3 fumigation chamber for d-strain T. castaneum, r-strain T. castaneum and O. surinamensis (Table 2). The d-strain T. castaneum, r-strain T. castaneum and O. surinamensis exposed to 50 g/m3 of COS for 24 h showed 100% mortality regardless of location.




3.3. Rice Quality and Sorption of the Two Fumigants


Six rice quality experiments under exposure to PH3 and COS were conducted in a 12-L desiccator (Table 3). The changes in protein content and amylose, which are components of rice, did not show any statistically significant differences compared to those in the control for both fumigants. The two fumigants did not affect the rice in terms of the four kinds of physical change rates.



The sorption rates of rice following exposure to PH3 and COS for up to 24 h were analyzed (Figure 4). After 5 h of treatment of a 50% loading ratio of rice with 2 mg/L PH3, the concentration began to decrease to 96%, and the concentration was 91% after 24 h of treatment. When the 50% loading ratio of rice was treated with 50 mg/L COS, the concentration began to decrease to 97% after 1 h and decreased to 82% after 24 h. However, PH3 and COS did not show a significant reduction in concentration (97% and 98%, respectively), even after 24 h of treatment, in the control without rice.





4. Discussion


This study evaluated the activity of PH3 and COS against two stored-product pests, T. castaneum (d-strain and r-strain) and O. surinamensis. PH3 shows fumigation activity against various grain pests, T. castaneum, Rhyzopertha dominica, and O. surinamensis, but an increase in the resistant strain of these insects has been reported [11,38,39,40]. This experiment was performed to investigate an alternative fumigant that is effective against PH3-resistant pests, especially T. castaneum. This is because T. castaneum has a very high frequency of strong resistance to PH3, especially in the United States, Southern India and Turkey [11,29,30]. Although it has been reported that sulfuryl fluoride (SF) has the effect of controlling PH3-resistant pests, it is vulnerable to low temperatures and has a disadvantage in that it is not easy to use because there is a change in activity according to sealing techniques during treatment [41]. COS is also toxic to stored-grain pests such as T. castaneum, R. dominica, O. surinamensis, Callosobruchus chinensis, Sitophilus zeamais, Lasioderma serricorne, Cryptolestes pusillus, Callosobruchus maculatus, Trogoderma variable, and Tribolium confusum [14,42]. This experiment also showed fumigation activity against T. castaneum and O. surinamensis. Ther-strain T. castaneum treated with PH3 showed an increasing fumigation effect only when the exposure time was increased because the fumigation effect was much lower than that observed ford-strain T. castaneum, but both the d- and r-strains of T. castaneum showed similar results in the COS treatment. It was also observed that the COS showed higher tolerance to O. surinamensis than in d- and r-strains of T. castaneum at the egg stage. This is because of the difference in the target site where PH3 and COS exhibit toxicity; PH3 is toxic because of the formation of reactive oxygen radicals involved in the electron transport chain, and COS is toxic because of the metabolite action of hydrogen sulfide [43,44,45]. The fumigation activity of both fumigants differed according to the developmental stage exposed. A similar effect has also been observed in association with other pests and fumigants. Under 4 h of exposure, Frankliniella occidentalis eggs showed higher tolerance to the fumigation activity of >16 mg·h/L PH3 at 5 °C and >84.4 mg·h/L ethyl formate (EF) at 5 °C than other developmental stages [36]. In addition, Phthorimaea operculella larvae and eggs showed the highest tolerance during PH3 treatment, and Carposina niponensis and Rhynchophorus ferrugineus showed the highest tolerance in the egg stage [46,47,48]. In this study, a difference in fumigation activity to each developmental stage was also observed, but the fumigation effect decreased in the egg and pupa stage in d- and r-strain T. castaneum and O. surinamensis for both fumigants. Even in the scale-up experiment (0.5 m3) in which the dose was set based on the results of the 12-L desiccator experiment, the PH3 r-strains of T. castaneum showed 100% mortality for 192-h exposure, but all three kinds of stored pests could be controlled 100% at the same dose in the COS treatment. Thus, even when scaling-up at the field level, it is thought that fumigation activity against pests will be observed at the COS dose (50 g/m3) used inthis study.



In terms of the adsorption rate, that of COS was higher than that of PH3, but it did not affect the fumigation activity in the 24-h exposure treatment. The use of COS did not have obvious side effects, such as water adsorption by rice, the expansion of cooking rice or dry substances in the rice cooking water, but the flavor changed when a COS concentration of more than 100 g/m3 was used [42]. Furthermore, in the rice quality evaluation in this study, both fumigants did not result in any significant difference in quality compared to that ofthe control, even in the treatment of 50 g/m3 COS.



These results indicate that PH3 is a very effective fumigant for the control of stored-grain pests and that COS could be used an alternative for the control of the T. castaneum strain resistant to PH3 and O. surinamensis.




5. Conclusions


In our evaluation of the fumigation activity of PH3 against d- and r-strain T. castaneum and O. surinamensis, it was found that r-strain T. castaneum has very high resistance to PH3. However, in the COS treatment, r-strain T. castaneum showed similar mortality to that of d-strain T. castaneum. Ifr-strain T. castaneum appears during the control of stored-grain pests, it is worth considering the use of COS as an alternative to PH3.
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Figure 1. Mortality of (A), d-strain Tribolium castaneum, (B), r-strain T. castaneum and (C), Oryzaephilus surinamensis eggs, larvae, pupae and adults after 4 h of exposure to the PH3 fumigant in a 12-L desiccator. 






Figure 1. Mortality of (A), d-strain Tribolium castaneum, (B), r-strain T. castaneum and (C), Oryzaephilus surinamensis eggs, larvae, pupae and adults after 4 h of exposure to the PH3 fumigant in a 12-L desiccator.
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Figure 2. Mortality of r-strain Tribolium castaneum across all developmental stages after treatment with 2 mg/L PH3 in a 12-L desiccator according to exposure time. 
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Figure 3. Mortality of (A), d-strain Tribolium castaneum, (B), r-strain T. castaneum and (C), Oryzaephilus surinamensis eggs, larvae, pupae and adults after 24 h of exposure to the carbonyl sulfide (COS) fumigant in a 12-L desiccator. 
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Figure 4. Concentrations of the two fumigants (2 mg/L PH3 and 50 mg/L COS) at 20 °C according to the loading ratio (0% and 50%) of rice for 24 h in a 12-L desiccator. 
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Table 1. Fumigant activity of 2 g/m3 PH3 at each location in a 0.5 m3 fumigation chamber containing rice at a 50% loading ratio.
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Exposure Time(h)

	
Species/Strain

	
Stages

	
n

	
Locate

	
Mortality

	
CT Value (g·h/m3)






	

	
O. surinamensis

	
Egg

	
283

	
Top

	
100 ± 0.0a

	
39.40




	
284

	
Middle

	
100 ± 0.0a




	
286

	
Bottom

	
100 ± 0.0a




	
285

	
Control

	
4.9 ± 2.7b




	
Larva

	
290

	
Top

	
100 ± 0.0a




	
268

	
Middle

	
100 ± 0.0a




	
291

	
Bottom

	
100 ± 0.0a




	
278

	
Control

	
3.6 ± 0.9b




	
Pupa

	
271

	
Top

	
100 ± 0.0a




	
281

	
Middle

	
100 ± 0.0a




	
279

	
Bottom

	
100 ± 0.0a




	
280

	
Control

	
5.8 ± 4.0b




	
Adult

	
283

	
Top

	
100 ± 0.0a




	
291

	
Middle

	
100 ± 0.0a




	
290

	
Bottom

	
100 ± 0.0a




	
288

	
Control

	
5.3 ± 0.8b




	
24

	
T. castaneumd-strain

	
Egg

	
296

	
Top

	
100 ± 0.0a




	
296

	
Middle

	
100 ± 0.0a




	
293

	
Bottom

	
100 ± 0.0a




	
294

	
Control

	
9.4 ± 0.8b




	
Larva

	
270

	
Top

	
100 ± 0.0a




	
275

	
Middle

	
100 ± 0.0a




	
280

	
Bottom

	
100 ± 0.0a




	
270

	
Control

	
5.0 ± 1.5b




	
Pupa

	
270

	
Top

	
100 ± 0.0a




	
270

	
Middle

	
100 ± 0.0a




	
270

	
Bottom

	
100 ± 0.0a




	
270

	
Control

	
7.3 ± 1.1b




	
Adult

	
270

	
Top

	
100 ± 0.0a




	
270

	
Middle

	
100 ± 0.0a




	
270

	
Bottom

	
100 ± 0.0a




	
270

	
Control

	
3.3 ± 0.6b




	
T. castaneumr-strain

	
Egg

	
301

	
Top

	
3.3 ± 1.9a




	
292

	
Middle

	
5.5 ± 1.2a




	
276

	
Bottom

	
7.6 ± 1.0a




	
278

	
Control

	
4.7 ± 1.4b




	
Larva

	
279

	
Top

	
61.2 ± 2.8a




	
274

	
Middle

	
67.1 ± 1.9a




	
278

	
Bottom

	
65.8 ± 4.2a




	
281

	
Control

	
3.6 ± 1.6b




	
Pupa

	
297

	
Top

	
25.9 ± 1.8a




	
296

	
Middle

	
24.0 ± 3.5a




	
291

	
Bottom

	
21.7 ± 3.7a




	
291

	
Control

	
7.2 ± 1.2b




	
Adult

	
273

	
Top

	
28.3 ± 5.1a




	
284

	
Middle

	
27.0 ± 4.3a




	
281

	
Bottom

	
23.2 ± 3.9a




	
286

	
Control

	
5.3 ± 1.9b




	
192

	
T. castaneumr-strain

	
Egg

	
285

	
Top

	
100 ± 0.0a

	
261.31




	
277

	
Middle

	
100 ± 0.0a




	
300

	
Bottom

	
100 ± 0.0a




	
279

	
Control

	
1.8 ± 0.8b




	
Larva

	
305

	
Top

	
100 ± 0.0a




	
285

	
Middle

	
100 ± 0.0a




	
281

	
Bottom

	
100 ± 0.0a




	
273

	
Control

	
7.3 ± 3.1b




	
Pupa

	
300

	
Top

	
100 ± 0.0a




	
300

	
Middle

	
100 ± 0.0a




	
300

	
Bottom

	
100 ± 0.0a




	
288

	
Control

	
7.7 ± 1.3b




	
Adult

	
291

	
Top

	
100 ± 0.0a




	
284

	
Middle

	
100 ± 0.0a




	
279

	
Bottom

	
100 ± 0.0a




	
280

	
Control

	
8.1 ± 2.6b








Mortality (%, mean ± SE), followed by the different letter within columns, was significantly different at p < 0.05 by Tukey’s test (SAS Institute 2009).
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Table 2. Fumigant activity of 50 g/m3 COS at each location in a 0.5 m3 fumigation chamber containing rice at a 50% loading ratio.
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Exposure Time(h)

	
Species/Strain

	
Stages

	
n

	
Locate

	
Mortality

	
CT Value (g·h/m3)






	
24

	
O. surinamensis

	
Egg

	
307

	
Top

	
100 ± 0.0a

	
1264.7




	
308

	
Middle

	
100 ± 0.0a




	
300

	
Bottom

	
100 ± 0.0a




	
324

	
Control

	
9.7 ± 3.0b




	
Larva

	
316

	
Top

	
100 ± 0.0a




	
301

	
Middle

	
100 ± 0.0a




	
328

	
Bottom

	
100 ± 0.0a




	
292

	
Control

	
7.2 ± 2.6b




	
Pupa

	
280

	
Top

	
100 ± 0.0a




	
320

	
Middle

	
100 ± 0.0a




	
319

	
Bottom

	
100 ± 0.0a




	
332

	
Control

	
10.2 ± 2.5b




	
Adult

	
317

	
Top

	
100 ± 0.0a




	
299

	
Middle

	
100 ± 0.0a




	
303

	
Bottom

	
100 ± 0.0a




	
285

	
Control

	
7.1 ± 2.0b




	
T. castaneumd-strain

	
Egg

	
288

	
Top

	
100 ± 0.0a




	
301

	
Middle

	
100 ± 0.0a




	
313

	
Bottom

	
100 ± 0.0a




	
320

	
Control

	
3.0 ± 1.7b




	
Larva

	
300

	
Top

	
100 ± 0.0a




	
300

	
Middle

	
100 ± 0.0a




	
300

	
Bottom

	
100 ± 0.0a




	
300

	
Control

	
4.3 ± 1.2b




	
Pupa

	
270

	
Top

	
100 ± 0.0a




	
270

	
Middle

	
100 ± 0.0a




	
270

	
Bottom

	
100 ± 0.0a




	
270

	
Control

	
8.5 ± 1.6b




	
Adult

	
282

	
Top

	
100 ± 0.0a




	
277

	
Middle

	
100 ± 0.0a




	
274

	
Bottom

	
100 ± 0.0a




	
275

	
Control

	
6.5 ± 2.2b




	
T. castaneumr-strain

	
Egg

	
243

	
Top

	
100 ± 0.0a




	
304

	
Middle

	
100 ± 0.0a




	
347

	
Bottom

	
100 ± 0.0a




	
262

	
Control

	
8.4 ± 2.3b




	
Larva

	
295

	
Top

	
100 ± 0.0a




	
307

	
Middle

	
100 ± 0.0a




	
272

	
Bottom

	
100 ± 0.0a




	
306

	
Control

	
5.9 ± 1.7b




	
Pupa

	
289

	
Top

	
100 ± 0.0a




	
285

	
Middle

	
100 ± 0.0a




	
288

	
Bottom

	
100 ± 0.0a




	
312

	
Control

	
9.1 ± 1.4b




	
Adult

	
343

	
Top

	
100 ± 0.0a




	
329

	
Middle

	
100 ± 0.0a




	
304

	
Bottom

	
100 ± 0.0a




	
278

	
Control

	
2.5 ± 1.3b








Mortality (%, mean ± SE), followed by the different letter within columns, was significantly different at p < 0.05 by Tukey’s test (SAS Institute 2009).
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Table 3. Quality of rice exposed to 2 g/m3 PH3 and 50 g/m3 COS at a 50% loading ratio following 48 h of exposure in a 0.5 m3 fumigation chamber.
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	Quality Criteria a
	Control
	PH3
	p-Value
	COS
	p-Value





	Protein content
	5.60 ± 0.00a
	5.53 ± 0.03a
	0.12
	5.60 ± 0.00a
	-



	Amylose content
	13.77 ± 0.0a
	14.01 ± 0.06a
	0.03
	13.80 ± 0.03a
	0.35



	Head rice ratio
	76.80 ± 1.36a
	76.0 ± 1.20a
	0.68
	76.6 ± 1.37a
	0.92



	Broken rice ratio
	1.37 ± 0.23a
	1.53 ± 0.35a
	0.75
	0.90 ± 0.00a
	0.32



	Chalky rice ratio
	7.07 ± 0.38a
	7.67 ± 0.37a
	0.32
	6.67 ± 0.61a
	0.91



	Damaged rice ratio
	14.83 ± 1.18a
	12.97 ± 0.92a
	0.39
	15.8 ± 0.80a
	0.52







a A t-test was used to compare values (%, mean ± SE) of each rice quality criteria between control and treated fumigants.
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