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Abstract: This study investigated different bacterial communities in three intestinal parts (foregut,
midgut and hindgut) of Xylocopa tenuiscapa to understand the roles of gut bacteria. Our phylogenetic
analysis revealed that X. tenuiscapa is closely related to Xylocopa latipes. The 16S rRNA gene in the
genomic DNA samples from the gut was examined by illumina (Solexa) and a total of 998 operational
taxonomic unit (OTUs) clusters were found. Taxonomic classification identified 16 bacterial phyla
and unclassified bacteria. The dominant bacteria taxa in the three parts of X. tenuiscapa gut were
Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria. In the foregut, Lactobacillales and
Enterobacteriaceae were predominantly found. The population in the midgut was similar to that in
the foregut, with the addition of Gilliamella, which was also abundant. The most dominant bacteria
identified in the hindgut were similar to those in the midgut and Lactobacillales, Enterobacteriaceae,
Gilliamella, Bifidobacteriaceae and Flavobacteriaceae appeared in abundance. Moreover, our results
suggest that a community structure of bacteria in different parts of X. tenuiscapa’s gut may be an
important indicator of carpenter bees’ health. This functional study of bacterial communities revealed
significant differences among the three intestinal parts and is the first report of the gut bacteria
structure in solitary bees.
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1. Introduction

Carpenter bees are insect pollinators that play an important role in the sexual reproduction of
plants in tropical ecosystems. They are more efficient than honey bees because of the larger body size
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that allows for more pollens to adhere. Previous research reported that carpenter bee Xylocopa olivacea
can increase the pollination efficiency of Phaseolus vulgaris [1]. Moreover, X. varipuncta is an important
pollen carrier for mangroves in Setiu Wetland, Terengganu [2]. Hongjamrassilp et al. (2014) analyzed
the pollen composition on the body of X. nasalis in Ratcha Buri province, Thailand, and found that the
pollens were mostly native to the region of Southeast Asia, suggesting that X. nasalis is highly valuable
for crop pollination [3]. Furthermore, stingless bees, Apis honey bees and Xylocopa carpenter bees are
major pollinators in highly populated, tropical cities such as Bangkok [4].

The study of the gut microbiota of bees is an area that has received attention because the gut
contains microorganisms that affect bees’ health. Microorganisms such as lactic acid bacteria (LAB)
and actinobacteria support bees in digesting and providing nutrients, aiding against pathogens and
strengthening the immune system [5]. For instance, LAB isolates from bees can inhibit Paenibacillus
larvae that cause American foulbrood in bees [6]. They are considered probiotic and produce antibiotics
against bacteria whose biofilm prevents grams and carbohydrate degradation [7–9].

The intestinal tract of a bee has three sections (foregut, midgut and hindgut). The foregut spans
from the mouth cavity to the proventriculus. The midgut is adjacent to the foregut and is responsible
for the digestion and absorption of food. The hindgut contains ileum and rectum. The bacteria
community in an intestinal tract of Apis mellifera has been studied by qPCR and fluorescence in situ
hybridization (FISH) and it was found that there were fewer bacteria in the foregut and midgut than in
the hindgut. Particularly in the ileum, Snodgrassella alvi, Gilliamella apicola, Lactobacillus Firm-4 and
Lactobacillus Firm-5 were dominant while Lactobacillus Firm-4 and Lactobacillus Firm-5 mostly populated
the rectum [10,11]. However, most research studies on bacteria communities in bees focused on highly
social bees in the genus Apis and in bumble bees and none have studied carpenter bees [12–14].

This study aimed to examine the bacterial community in intestinal tracts of carpenter bees.
We utilized next generation sequencing (NGS) to sequence the 16s rRNA gene of bacteria in carpenter
bees’ guts and identified bacterial communities in each section. Classification of bacteria was performed
and phylogenetic trees were constructed. The functions related to the bacterial community cluster were
predicted and we found that the structure of bacteria in the gut may contribute to the health of bees.

2. Materials and Methods

2.1. Collection of Carpenter Bees

A total of six pollinating carpenter bee samples were collected around the Thao Kham Wang
temple area (18.70◦ N, 98.92◦ E) (Figure 1a) in October 2018 in Chiang Mai Province by an aerial
net. Samples were collected in a box. Carpenter bee specimens were morphologically identified as
X. tenuiscapa using identification keys of Hurd and Moure (1963) [15]. Individual carpenter bee samples
(Figure 1b) were surface sterilized [16] with 70% NaClO for 1 min, 95% ethanol for 1 min, 70% ethanol
for 30 s and sterile water for 3 min. Three parts of each gut were dissected under a stereomicroscope
(Figure 1c) [17]. The foregut spanned the esophagus and crop to the proventriculus. The midgut
contained the ventriculus. The hindgut extended from the pylorus and small intestine to the end of
the rectum (before the sting apparatus) [10,18]. Then, individual parts of the intestinal tract (foregut,
midgut and hindgut) (Figure 1c) were separated from the body and put in 500 µl PBS buffer in a 1.5 mL
centrifuge tube to culture LAB and for NGS.
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Figure 1. The old wooden church in Thao Kham Wang temple where carpenter bees live (a), carpenter 
bees that were collected from the church (b) and three sections of a carpenter bee’s intestinal tract, 
FG—foregut, MG—midgut and HG—hindgut, with details of EP—esophagus, CR—crop, PV—
proventriculus, MT—malpighian tubule and ER—end of rectum (c). 

2.2. Classification of Carpenter Bee Samples 

Genomic DNA of samples were extracted by DNaeasy Blood & Tissue Kit (QIAGEN, 
Germantown, MD, USA) and amplified the COI gene by forward primer LepF (5′-ATTCAACC 
AATCATAAAGATAT-3′) and reverse primer LioR (5′-CCAAAAAATCAAATAAATGTTG-3′) [19]. The 
PCR condition was as follows: denaturation at 94 °C for 30 s, annealing at 55 °C for 30 s, extension at 72 °C 
for 45 s and final extension at 72 °C for 7 min. DNA samples were sequenced by sanger sequencing. A 
phylogenetic tree was constructed using the unweighted pairs group method with arithmetic mean 
(UPGMA) on MEGA 7 [20]. 

2.3. DNA Extraction and NGS of Gut Sections 

DNA extracts from gut sections were used as templates to amplify the 16S rRNA gene by primers 
S-D-BACsT-1494-A-S-20 (GTCGTAACAAGGTAGCCGTA) and L-D-BACT-0035-A-A-15 (CAAGGC 
ATTCACCGT) [21]. The PCR condition was as follows: initial denaturation at 95 °C for 5 min, denaturation 
at 95 °C for 30 s, annealing at 53 °C for 2 min, extension at 72 °C for 2 min and final extension at 72 °C at 10 
min. PCR products were stored in −20 °C. 

2.3.1. Next Generation Sequencing 

Figure 1. The old wooden church in Thao Kham Wang temple where carpenter bees live (a), carpenter
bees that were collected from the church (b) and three sections of a carpenter bee’s intestinal
tract, FG—foregut, MG—midgut and HG—hindgut, with details of EP—esophagus, CR—crop,
PV—proventriculus, MT—malpighian tubule and ER—end of rectum (c).

2.2. Classification of Carpenter Bee Samples

Genomic DNA of samples were extracted by DNaeasy Blood & Tissue Kit (QIAGEN,
Germantown, MD, USA) and amplified the COI gene by forward primer LepF (5′-ATTCAACC
AATCATAAAGATAT-3′) and reverse primer LioR (5′-CCAAAAAATCAAATAAATGTTG-3′) [19].
The PCR condition was as follows: denaturation at 94 ◦C for 30 s, annealing at 55 ◦C for 30 s, extension
at 72 ◦C for 45 s and final extension at 72 ◦C for 7 min. DNA samples were sequenced by sanger
sequencing. A phylogenetic tree was constructed using the unweighted pairs group method with
arithmetic mean (UPGMA) on MEGA 7 [20].

2.3. DNA Extraction and NGS of Gut Sections

DNA extracts from gut sections were used as templates to amplify the 16S rRNA gene by primers
S-D-BACsT-1494-A-S-20 (GTCGTAACAAGGTAGCCGTA) and L-D-BACT-0035-A-A-15 (CAAGGC
ATTCACCGT) [21]. The PCR condition was as follows: initial denaturation at 95 ◦C for 5 min,
denaturation at 95 ◦C for 30 s, annealing at 53 ◦C for 2 min, extension at 72 ◦C for 2 min and final
extension at 72 ◦C at 10 min. PCR products were stored in −20 ◦C.
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2.3.1. Next Generation Sequencing

NGS of each intestinal section (foregut, midgut and hindgut) was performed for 16S amplicon
(V3-V4 regions) using illumina (solexa) by Macrogen (Macrogen Inc., Seoul, Korea). The sample
preparation protocol for 2 × 300 bp paired-end reads was applied, with a number of read average
ranging from 150k to 260k bp.

2.3.2. Data Analysis

A library construction was performed and edited by Mothur V 1.41.1 [22]. Briefly, we used
“make.contigs” to merge paired-end sequences and cut poor sequences using “screen.seqs” with
average quality control of read >q30; non 16S sequences were filtered out and chimeric sequences were
removed by “chimera.uchime”. We clustered sequences into operational taxonomic units (OTUs) using
“dist.seqs” and “cluster” 97% identity sequence to operational taxonomic unit (OTU) clustering by
the Greengenes 13.8 database. OTUs were subjected to BLAST against the NCBI database nucleotide
collection for alpha diversity. The Simpson diversity index, Shannon diversity index and principle
coordinated analysis (PCoA) were performed by Past V.3 and non-metric multidimension scaling
(NMDS) were performed by R program V.3.6.0. Lastly, multivariate analysis of variance, PCoA test
and one-way permutational multivariate analysis of variance (PERMANOVA) were performed by Past
V.3 and NMDS test two-way PERMANOVA was performed by R program V.3.6.0.

The representative sequences (Table S1) were obtained from the Mothur results using “get.oturep”
with cut off = 0.03. Then, a representative sequence of each taxon was aligned against the HoloBee
database V.2016.1 [23], and the four top-hit species were added to the pre-multiple sequence alignment
(MSA) sequence list. The pre-MSA sequence list contained representative sequences which were used
as the input of webPRANK [24] and for MSA analysis to build the phylogenetic tree. The tree was
exported as a newick file. Python 3.6 base was used for re-visualizing the phylogenetic tree, as shown
in Figure 6.

2.3.3. Prediction and Analysis of Functions of the Bacterial Microbiota

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt)
1.0.0 (http://picrust.github.io/picrust) was used to predict the predictive functional profiling of microbial
communities using 16S rRNA marker gene sequences. The functions were analyzed based on clusters
of orthologous groups (COGs) [25].

2.3.4. NGS Data Accession Number

The results from this study have been submitted to the NCBI database with the SRA
accession PRJNA525318.

3. Results

3.1. Classification of Carpenter Bee Samples

Six sequences of genomic DNA from carpenter bee samples were aligned with six sequences
of Xylocopa spp. genomic DNA identified as closely related references in MEGA 7. We used the
genomic DNA sequence of Apis cerana as an out group. Phylogenetic analysis with 1000 bootstrap
resamplings indicated that the six samples were in the same group, with 98% sequence identity to
X. latipes (Figure 2).

http://picrust.github.io/picrust
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sequences were constructed by unweighted pairs group method with arithmetic mean (UPGMA). 
Bootstrap values (based on 1000 resamplings) higher than 50 were indicated at the nodes. 

3.2. Sequencing Results 
We investigated bacteria in the gut of six Xylocopa (six sets of foreguts, midguts and hindguts). 

All 18 samples were sequenced by the illumina MiSeq platform using the 16S rRNA gene. A total of 
998 OTUs clusters were found. Taxonomic classification identified 16 bacterial phyla and unclassified 
bacteria in the carpenter bee gut. The majority of sequences were those of the Proteobacteria, 
Firmicutes, Bacteroidetes and Actinobacteria (Figure 3). The results showed that the dominant 
bacteria identified in the foregut were Firmicutes (77.17%), most of which belonged to the order 
Lactobacillales (48.44%) and family Carnobacteriaceae (2.08%), followed by Proteobacteria (18.20%), 
most of which were in the family Enterobacteriaceae (9.03%), and 0.28% were in the genera Gilliamella. 
The most dominant bacteria identified in the midgut were similar to those in foregut. The prominent 
phyla were Firmicutes (53.7%), most of which belonged to order Lactobacillales (40.93%), followed 
by Proteobacteria (37.47%), most of which belonged to family Enterobacteriaceae (25.05%), and 6.37% 
were from genera Gilliamella. Moreover, Bacteroides (6.23%) were also more abundant in the midgut, 
most of which were of genera Porphyromonas (2.27%). The most dominant bacteria identified in the 
hindgut were similar to those in the midgut but somewhat different to those in the foregut. The 
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Lactobacillaceae (7.13%) as the most abundant, followed by Proteobacteria (28.37%), most of which 
belonged to family Enterobacteriaceae (13.43%), family Pseudomonadaceae (5.53%) and 11.27% of 
genera Gilliamella. In addition, the members of Bacteroides (14.32%) and Actinobacteria (1.40%) were 
more abundant in the hindgut, and these mostly were of family Flavobacteriaceae (6.16%) and 
Porphyromonas (2.23%), and 1.80% of genus Dysgonomonas belonged to phylum Bacteriodetes and 
9.7% of family Bifidobacteriaceae belonged to phylum Actinobacteria (Figure 3 and Table S1). 
  

Figure 2. Phylogenetic tree of Xylocopa spp. COI gene sequences and closely related reference sequences
were constructed by unweighted pairs group method with arithmetic mean (UPGMA). Bootstrap
values (based on 1000 resamplings) higher than 50 were indicated at the nodes.

3.2. Sequencing Results

We investigated bacteria in the gut of six Xylocopa (six sets of foreguts, midguts and hindguts).
All 18 samples were sequenced by the illumina MiSeq platform using the 16S rRNA gene. A total of
998 OTUs clusters were found. Taxonomic classification identified 16 bacterial phyla and unclassified
bacteria in the carpenter bee gut. The majority of sequences were those of the Proteobacteria, Firmicutes,
Bacteroidetes and Actinobacteria (Figure 3). The results showed that the dominant bacteria identified
in the foregut were Firmicutes (77.17%), most of which belonged to the order Lactobacillales (48.44%)
and family Carnobacteriaceae (2.08%), followed by Proteobacteria (18.20%), most of which were in
the family Enterobacteriaceae (9.03%), and 0.28% were in the genera Gilliamella. The most dominant
bacteria identified in the midgut were similar to those in foregut. The prominent phyla were Firmicutes
(53.7%), most of which belonged to order Lactobacillales (40.93%), followed by Proteobacteria (37.47%),
most of which belonged to family Enterobacteriaceae (25.05%), and 6.37% were from genera Gilliamella.
Moreover, Bacteroides (6.23%) were also more abundant in the midgut, most of which were of genera
Porphyromonas (2.27%). The most dominant bacteria identified in the hindgut were similar to those
in the midgut but somewhat different to those in the foregut. The prominent phyla were Firmicutes
(37.75%), with order Lactobacillales (20.47%) and family Lactobacillaceae (7.13%) as the most abundant,
followed by Proteobacteria (28.37%), most of which belonged to family Enterobacteriaceae (13.43%),
family Pseudomonadaceae (5.53%) and 11.27% of genera Gilliamella. In addition, the members
of Bacteroides (14.32%) and Actinobacteria (1.40%) were more abundant in the hindgut, and these
mostly were of family Flavobacteriaceae (6.16%) and Porphyromonas (2.23%), and 1.80% of genus
Dysgonomonas belonged to phylum Bacteriodetes and 9.7% of family Bifidobacteriaceae belonged to
phylum Actinobacteria (Figure 3 and Table S1).



Insects 2020, 11, 497 6 of 14Insects 2020, 11, x FOR PEER REVIEW 6 of 14 

 

 
Figure 3. Bacterial communities in the foregut, midgut and hindgut. Other operation taxonomic unit 
(OTU) bacteria in samples with less than 2% prevalence are included as “other” category. 

The results from the Simpson and Shannon diversity index showed that the microbial 
community in the hindgut was significantly different from that in the foregut and midgut (p < 0.01) 
(Figure 4). However, the results from NMDS and PCoA were different from those of the Simpson 
and Shannon diversity index, which showed that the bacteria diversity identified in the foregut was 
significantly different from that in the hindgut. Moreover, the bacteria diversity in the midgut was 
not significantly different from either the foregut or midgut (Figure 5). Future studies with a more 
diverse population and higher sample number may be able to confirm the findings of this study. 

Figure 3. Bacterial communities in the foregut, midgut and hindgut. Other operation taxonomic unit
(OTU) bacteria in samples with less than 2% prevalence are included as “other” category.

The results from the Simpson and Shannon diversity index showed that the microbial community
in the hindgut was significantly different from that in the foregut and midgut (p < 0.01) (Figure 4).
However, the results from NMDS and PCoA were different from those of the Simpson and Shannon
diversity index, which showed that the bacteria diversity identified in the foregut was significantly
different from that in the hindgut. Moreover, the bacteria diversity in the midgut was not significantly
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different from either the foregut or midgut (Figure 5). Future studies with a more diverse population
and higher sample number may be able to confirm the findings of this study.
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Flavobacteriaceae_unclassified were closely related to two Apibacter spp.; (ii) Gilliamella, 
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closely related to OTUs from honey bees; (iii) two representative Bifidobacterium from Xylocopa were 
closely related to Bifidobacterium aemilianum isolated from Xylocopa in the previous study [26]; (iv) 
Lactobacillus and Lactobacillales_unclassified were related to Lactobacillus kunkeei but were not closely 
related OTUs from honey bees with Carnobacteriaceae_unclassified. 
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Figure 5. Ordination plots showing composition of bacterial communities in the intestinal tracts.
Non-metric multi-dimensional scaling (NMDS) and principle coordinated analysis (PCoA) based on
Bray–Curtis dissimilarity matrix were used for all samples. Calculations of dissimilarity were based on
relative abundances of OTUs. Sample points were shaped by gut composition.

Phylogenetic affiliation of nine core bee gut bacteria within Xylocopa-associated OTUs is shown in
the green highlight in Figure 6. Phylogenetic analyses included additional core bee gut bacteria
from HoloBee database. The sequences revealed the placement of the OTUs in four clusters
(Figure 6): (i) Dysgonomonas, Porphyromonadaceae_unclassified and Flavobacteriaceae_unclassified
in this study had no similarity with the same taxon from core bacteria in bees (80% similarity)
but Flavobacteriaceae_unclassified were closely related to two Apibacter spp.; (ii) Gilliamella,
Enterobacteriaceae_unclassified and Pseudomonadaceae_unclassified OTUs from Xylocopa were closely
related to OTUs from honey bees; (iii) two representative Bifidobacterium from Xylocopa were closely
related to Bifidobacterium aemilianum isolated from Xylocopa in the previous study [26]; (iv) Lactobacillus
and Lactobacillales_unclassified were related to Lactobacillus kunkeei but were not closely related OTUs
from honey bees with Carnobacteriaceae_unclassified.
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The heat map revealed that the most abundant functional gene groups were secondary bile acid
biosynthesis and the phosphotransferase system (PTS) from foregut bacterial communities (Figure 7).
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There were significant differences across all of the functional genes between the foregut and hindgut of
Xylocopa intestinal tracts (p < 0.05; Figure 8). A group of biosynthesis genes was prevalent in the foregut
to hindgut, including those involved in secondary bile acid, phosphotransferase system, fructose and
mannose metabolism and D-alanine metabolism. For the hindgut tract, functions that were related to
protein metabolism and biosynthesis were significantly higher than those from the foregut, including
dibasic acid, lipoic acid metabolism and histidine metabolism and lipopolysaccharide, phenylalanine,
tyrosine, tryptophan and vancomycin group antibiotic biosynthesis (Figure 8).
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4. Discussion

This study demonstrated that there were differences in bacterial diversity in different parts of the
gut of carpenter bees in Thailand. The results showed that dominant phyla of gut microbiota in the
carpenter bee were Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria, which were consistent
with the previous study [27]. Although the gut microbiota mostly consisted of Proteobacteria and
Firmicutes in bees, moths and termites, Bacteroidetes and Actinobacteria were also found in high
abundance [12,28,29].

The bacterial diversity in the carpenter bee’s gut was found to be lower than that in termites and
beetles but higher than that in Lepidoptera [28–31]. However, in comparison to other honey bees
analyzed using culture-independent methods, the diversity in carpenter bees was similar [13,17,32,33].
Moreover, the phylogenetic tree revealed that OTUs from this study were closely related to with OTUs
from other bees (Figure 6). Our results showed that the dominant bacteria from the three gut regions
were from genera Gilliamella, family Lactobacillaceae (most of which were order Lactobacillales), family
Carnobacteriaceae, family Enterobacteriaceae and family Bifidobacteriaceae. Lactobacillaceae and
Bifidobacteriaceae were families of LAB, including genus Lactobacillus and genus Bifidobacterium [34].
Lactobacillus and Bifidobacterium, two of the most important genera within LAB, were commonly found
as commensals and considered probiotics in humans and animals [35]. Lactobacillus and Bifidobacterium
were recently identified in the stomachs of honey bees (Figure 6), A. mellifera [6,13,36,37], and functioned
in carbohydrate breakdown and fermentation [37–40]. Other important roles include defending hosts
from parasites and pathogens, as they have been shown to inhibit other microorganisms on culture
plates, including honey bee pathogenic bacteria Paenibacillus larvae [9,38,41,42]. Therefore, Lactobacillus
and Bifidobacterium have the potential to enhance the immune response and may be important for
honey bees’ health [43].

Gillamella is another important group of bacteria that was most abundant in the honey bee’s
gut [13,22,31,36] and the Gillamella OTU in this study was closely related to previous OTUs of G. apicola
from other bees [44] (Figure 6). Although Gillamella are not classified as LAB, they provide similar
functions. Studies have reported that Gillamella apicola were fermentative bacteria in the honey bee’s
gut and supported hosts in the utilization, fermentation and uptake of some essential sugars that were
indigestible by bees [45–47]. Similar to Lactobacillus and Bifidobacterium, Gillamella have been shown to
protect hosts from pathogens. In honey bees, Gillamella produce a biofilm on an ileum wall [10,45]
and may provide a barrier to prevent the attachment or entry of gut pathogens. Thus, Lactobacillus,
Bifidobacterium and Gillamella may play similar roles in carpenter bees’ nutrient uptake, digestion and
protection against parasites and pathogens by enhancing the immune system. Another dominant
family of bacteria in the gut of the carpenter bee was Enterobacteriaceae. Most bacteria in this family
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have various metabolic abilities, including fermenting carbohydrates and contributing to nitrogen
intake by nitrogen-fixing activity [48]. Some bacteria in the family Enterobacteriaceae were identified
in honey bees, but their functions in bees have not yet been investigated [13]. In addition, the family
Carnobacteriaceae was also identified in diamondback moths, Plutella xylostella, but their functions are
still unknown [49].

We found that bacteria genus Porphyromonas and family Flavobacteriaceae were dominant in
the midgut and hindgut. Members of this genus are normally identified from greengenes databases.
Porphyromonas gingivalis has been shown to increase the metabolic inflammation risk and autoimmune
disorders in mice [50]. Members of the family Flavobacteriaceae were identified in melon flies,
Zeugodacus cucurbitae [51] as well as in the guts of honey bees [17]. The Flavobacteriaceae_unclassified
OTU from this study (Figure 6) was related to Apibacter mensalis, which was isolated from Bombus
lapidarius [52], and Apibacter adventoris isolated from honey bees and bumble bees [53]. However,
Bifidobacterium, Dysgonomonas and family Pseudomonadaceae were found to be predominant only
in the hindgut. Dysgonomonas had been identified in many insects’ guts [51,54,55]. It is involved in
lignocellulose degradation. Members of the family Pseudomonadaceae were identified in cowpea
beetles, Callosobruchus maculatus [55] and honey bees’ guts [13].

The functional analysis of the 16S rRNA gene based on the COG database suggested that functional
genes involved in the phosphotransferase system (PTS) and fructose and mannose metabolism were
dominant in the foregut compared to the midgut tract. It is possible that the high abundance could
provide an early stage of protein and sugar breakdown, especially pollen and fructose, which are major
components in nectar, to maximize the growth and reproduction of bacteria in other parts of the gut.
These functions correlated with the abundance of the phylum Firmicutes, which plays major roles in
biomass degradation in insects [56].

The comparison of gut bacteria diversity in the foregut, midgut and hindgut showed that the
diversity of bacteria in the foregut and hindgut was significantly different but those in the midgut were
not significantly different to either the foregut or hindgut. This is possibly due to the midgut being
connected to the foregut and hindgut, thus allowing some bacteria to pass through. Moreover, the
similarity in the bacteria diversity may be attributed to the comparable functions of the midgut to both
the foregut and hindgut [57]. The significant difference in bacteria population between the foregut and
the hindgut may be due to the length of the midgut, which may hinder the movement of bacteria from
the foregut to the hindgut. Furthermore, the functions of the foregut are different from those of the
hindgut, and therefore different colonies of bacteria would be needed for their distinct functions.

5. Conclusions

We investigated the bacterial communities in the carpenter bee’s gut. Our results showed that the
core bacteria phyla that were found most abundantly were Firmicutes, Proteobacteria, Bacteroidetes
and Actinobacteria, which were similar to those in honey bees and bumble bees. Most bacteria that
were found in carpenter bees’ guts may be involved in nutrient absorption, protection against parasites
and pathogen modulation. The bacterial communities in each part of the gut may be linked to the
functions of each part and indicative of the health of bees. This study is the first report on the gut
bacterial diversity of carpenter bees found in Asia.
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