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Simple Summary: Insect reproduction is an important and complicated process required for pro-
ducing healthy individuals and maintaining their population abundance. Thus, it could become a
valuable target for insect biological control. To date, many factors and pathways have been revealed
to be involved in this reproductive process, but it is still far from a full understanding of the molecular
network underlying this process. We herein investigated a RNA helicase, DEAD-box protein 6 (DDX6)
in Locusta migratoria, a global, destructive pest, and found that knockdown LmDDX6 downregulated
expression levels of juvenile hormone receptor gene methoprene-tolerant and its target genes 78-kDa
glucose-regulated proteins, thus reducing vitellogenin expression and ultimately impairing the ovary
development and oocyte maturation. These results demonstrate that LmDDX6 is a key player in
female locust reproduction, providing, thus, a novel target for locust biological control.

Abstract: DEAD-box protein 6 (DDX6) is a member of the DDX RNA helicase family that exists in all
eukaryotes. It has been extensively studied in yeast and mammals and has been shown to be involved
in messenger ribonucleoprotein assembly, mRNA storage, and decay, as well as in miRNA-mediated
gene silencing. DDX6 participates in many developmental processes but the biological function of
DDX6 in insects has not yet been adequately addressed. Herein, we characterized the LmDDX6
gene that encodes the LmDDX6 protein in Locusta migratoria, a global, destructive pest. LmDDX6
possesses five motifs unique to the DDX6 subfamily. In the phylogenetic tree, LmDDX6 was closely
related to its orthologs in Apis dorsata and Zootermopsis nevadensis. RT-qPCR data revealed high
expression of LmDDX6 in the ovary, muscle, and fat body, with a declining trend in the ovary after
adult ecdysis. LmDDX6 knockdown downregulated the expression levels of the juvenile hormone
receptor Met, and genes encoding Met downstream targeted Grp78-1 and Grp78-2, reduced LmVg
expression, and impaired ovary development and oocyte maturation. These results demonstrate that
LmDDX6 plays an essential role in locust female reproduction and, thus, could be a novel target for
locust biological control.

Keywords: DEAD-box helicase; DDX6; oocyte; vitellogenesis; Locusta migratoria

1. Introduction

Reproduction is an essential and complicated process required for producing healthy
individuals and maintaining the population abundance of organisms. Insect female repro-
ductive system is composed of two ovaries, containing a number of ovarioles, connected
directly to the oviduct. The ovariole is the functional unit for egg production, and the num-
ber of ovarioles in each ovary varies widely, depending on the particular insect species [1,2].
In brief, the ovariole consists of the apical terminal filament, the germarium region linked
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to the terminal filament, and the vitellarium in the basal part [1]. Insects of different
orders adopt distinct reproductive strategies. Thus far, three types of oogenesis have been
described based on the presence and position of the nurse cells: (1) panoistic, (2) telotrophic
meroistic, and (3) polytrophic meroistic [3,4]. Proper ovary development and oocyte
maturation in insects are prerequisites for successful reproduction. Many intrinsic and
extrinsic factors are involved in this process, including hormones, nutrition, and growth
conditions [5–8].

Juvenile hormone (JH), one of the classical endocrine hormones produced by the
corpora allata, a pair of endocrine glands in the retrocerebral complex behind the brain, has
been long known to regulate female reproduction in many insects, exerting a central role in
vitellogenesis, an indispensable process of ovary development and oocyte maturation [8].
As a gonadotropin, JH promotes female reproduction mainly by inducing the expression
of Vg [8–10]. Vg is a key gene expressed largely in the fat body during vitellogenesis
that encodes vitellogenin, a major precursor of the yolk protein, which is secreted into the
hemolymph and taken up by maturing oocytes [11]. Besides the induction of Vg expression,
JH enhances Vg uptake and promotes oocyte maturation [12]. In Locusta migratoria, several
downstream genes of JH and its receptor complex have been found to regulate fat body
polyploidization, including mini-chromosome maintenance 4/7 (Mcm4/7), cell division
cycle 6 (cdc6), cyclin-dependent kinase 6 (Cdk6), and adenovirus E2 factor 1 (E2f1), reducing
LmVg expression level and ultimately impairing oocyte growth and maturation [13–15].
Very recently, it has been found that JH promotes the expression of Cdc2 and origin
recognition complex subunit 5 (Orc5) via the LCMT1-PP2A-FoxO pathway, mediating
fat body ploidy, and reduces the expression of LmVg [16]. In Tribolium castaneum, JH
induces the expression level of the gene encoding insulin-like peptides in the fat body,
phosphorylating fork head transcription factor FOXO, and promoting Vg expression [10].
In the American cockroach, it has been recently reported that the insulin/IGF signaling
and targeting of rapamycin induce the expression of Jhamt and Cyp15a, the enzymes of
the last two steps of JH biosynthesis, thus activating JH biosynthesis, eventually affecting
vitellogenesis and oocyte maturation [17]. In D. melanogaster, JH enhances Vg uptake and
promotes oocyte maturation [18].

Ecdysteroid is another classical hormone that controls oocyte development and mat-
uration in insects [19]. The active form of ecdysteroid, 20-hydroxyecdysone, has been
reported to contribute to Drosophila oogenesis, where it tightly controls the developmental
checkpoint at stage 8, which allows the onset of vitellogenesis and egg maturation. Females
with mutation in ecdysone receptor contained abnormal egg chambers [20]. In mosquitoes,
inhibition of the target of rapamycin protein synthesis impeded Vg expression and reduced
fecundity, suggesting that the nutritional signaling pathway contributes to mosquito ovary
development and oocyte maturation [6]. In addition, miRNAs have been shown to be
involved in female reproduction [21]. These data indicate that although there has been
some progress in the elucidation of the molecular mechanism of ovary development and
oocyte maturation in insects, the current body of knowledge is just the tip of the iceberg. To
fully understand the molecular network underlying complicated reproductive processes in
insects, more factors and pathways need to be taken into account.

DEAD-box proteins (DDXs) comprise a large family of RNA helicases that are con-
served from bacteria to eukaryotes. They share nine common, conserved motifs in the
helicase core [22]. Motif II that contains four amino acids (Asp-Glu-Ala-Asp, i.e., DEAD)
is required for ATPase activity. Other motifs are involved in ATP binding and hydrolysis
as well as in RNA binding [23]. Multiple studies have demonstrated that DDXs are in-
volved in almost every aspect of RNA metabolism, from transcription, splicing, transport,
ribosome biosynthesis, and translation to RNA decay, so they have multifaceted biolog-
ical functions in cells. For example, in yeast, 15 of 25 DDXs have been demonstrated to
regulate ribosome biogenesis [24]. DDX20/DP103 in mammalian cells has been shown
to repress transcription [25,26]. Ded1/DDX3 is required for translation initiation [23,27],
and Belle, the DDX3 ortholog in Drosophila, is required for male and female fertility [28,29].
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DHH1/DDX6 is necessary for RNA decay [30]. Vasa/DDX4 is a germ cell marker required
for fertility [31]. Many of these DDXs have been also shown to participate in tumorigenesis,
antiviral reactions, and immune responses [32–34].

In our previous study, we isolated 32 DDX genes from L. migratoria and identified
seven of these LmDDXs that were indispensable for nymph survival [35]. However, their
detailed biological functions remained largely unknown. DDX6, an important translational
repressor [30], has not yet been extensively studied in insects. Herein, we focused on
the LmDDX6 gene and characterized its function in oocyte development and maturation.
Knockdown of LmDDX6 reduced LmVg expression and downregulated expression levels
of the methoprene-tolerant gene (Met) encoding the JH receptor and its downstream target
gene Grp78, which ultimately resulted in oocyte abortion. These results confirmed that
LmDDX6 is a key player in locust female reproduction and, as such, it may be a new target
for locust biological control.

2. Materials and Methods
2.1. Experimental Insects

Nymph locusts were purchased from a locust breeding center (Cangzhou, China) and
reared in a cage with 50% relative humidity at 30 ± 2 ◦C under the 14 h:10 h (light:dark)
photoperiod. Fresh wheat leaves and bran were fed to the locusts twice per day. Adult
locusts after eclosion were used for the following experiments.

2.2. Motif Pattern Analysis

Motif pattern analysis was conducted by using online program MEME (http://meme-
suite.org/tools/meme). The ortholog sequences of DDX6 used in this analysis are listed in
Supplemental File S1. The parameters were as follows: minimum width = 10, maximum
width = 10, and maximum number of motifs to find = 18.

2.3. Phylogenetic Analysis of DDX6

DDX6 protein sequences from different species were obtained from NCBI (National
Center for Biotechnology Information) and a multiple-sequence alignment was performed
by using ClustalW software. The phylogenetic tree was generated by MEGA 6 by using the
neighbor-joining method with 1000 repetitions. The protein accession numbers are shown
in Table 1.

Table 1. List of the genes analyzed in the phylogenetic tree.

Gene Symbol Full-Length
(aa)

N-Termini
(aa)

C-Termini
(aa) Protein ID Species

LmDDX6 449 78 58 QOS47384.1 Locusta migratoria
Me31B 459 76 69 NP_523533.2 Drosophila melanogaster

BmDDX6 440 74 52 XP_012545299.1 Bombyx mori
TcDDX6 441 71 56 XP_015834522.1 Tribolium castaneum
CfDDX6 443 73 56 XP_026461540.1 Ctenocephalides felis
AdDDX6 444 73 57 XP_006610567.1 Apis dorsata
FoDDX6 440 67 59 XP_026291730.1 Frankliniella occidentalis
CdDDX6 450 57 79 CAB3359348.1 Cloeon dipterum
MpDDX6 446 75 57 XP_022182727.1 Myzus persicae
OcDDX6 463 86 63 ODM96281.1 Orchesella cincta
ZnDDX6 429 78 57 XP_021926685.1 Zootermopsis nevadensis
HsDDX6 483 114 54 NP_001244120.1 Homo sapiens
BtDDX6 483 114 54 NP_001137339.1 Bos taurus

MmDDX6 483 114 54 NP_001104296.1 Mus musculus
GgDDX6 483 114 54 NP_001006319.2 Gallus gallus
XtDDX6 481 113 53 NP_001072584.1 Xenopus tropicalis
DrDDX6 484 115 54 XP_684923.1 Danio rerio

http://meme-suite.org/tools/meme
http://meme-suite.org/tools/meme
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Table 1. Cont.

Gene Symbol Full-Length
(aa)

N-Termini
(aa)

C-Termini
(aa) Protein ID Species

Cgh-1 430 61 55 NP_498646.1 Caenorhabditis elegans
DHH1 506 64 128 NP_010121.1 Saccharomyces cerevisiae S288C

CgDDX6 447 69 64 XP_011429888.1 Crassostrea gigas
DjDDX6 503 67 122 BAF57607.1 Dugesia japonica
CtDDX6 458 86 58 ELT97926.1 Capitella teleta
BpDDX6 470 61 95 RNA08982.1 Brachionus plicatilis
AqDDX6 444 63 67 XP_003386052.1 Amphimedon queenslandica
MbDDX6 400 33 53 XP_001749654.1 Monosiga brevicollis MX1
CrDDX6 405 49 42 XP_001692202.1 Chlamydomonas reinhardtii

MpoDDX6 515 159 42 PTQ47051.1 Marchantia polymorpha
PpDDX6 448 92 42 XP_024367950.1 Physcomitrium patens
SmRH8 460 104 42 XP_002987276.2 Selaginella moellendorffii

AcDDX6 443 87 42 MBC9844858.1 Adiantum capillus-veneris
PsDDX6 477 121 42 ABR16163.1 Picea sitchensis
AtRH6 528 172 42 AAK63966.1 Arabidopsis thaliana
AtRH8 505 149 42 NP_191975.2 Arabidopsis thaliana
AtRH12 498 142 42 CAA09203.1 Arabidopsis thaliana
OsRH6 498 142 42 XP_015636229.1 Oryza sativa
OsRH8 508 152 42 XP_015627069.1 Oryza sativa
OsRH12 521 165 42 XP_015614831.1 Oryza sativa

MaDDX6 426 60 52 WP_162815294.1 Microbacterium arborescens

2.4. RNA Extraction and RT-qPCR

Integument, fat body, ovary, foregut, midgut, hindgut, malpighian tubule, and muscle
tissues of female adults 2 days post-adult eclosion (PAE) were first sampled. Ovaries from
0, 2, 4, 6, and 8 days PAE locusts were also collected. Three individuals were sampled
for one replicate, and three replicates were repeated. Total RNA was extracted by using
RNAiso Plus reagent (Takara, Japan). First-strand cDNA was synthesized with 1 µg of total
RNA by using an RNA HiScript® III RT SuperMix for qPCR (+ gDNA wiper) Kit (Vazyme,
Nanjing, China) according to the manufacturer′s instructions. Real-time quantitative PCR
(RT-qPCR) was performed to measure the relative transcript level by using a LightCycler®

480 Instrument II (Roche, Basel, Switzerland) with 2 × ChamQTM Universal SYBR® qPCR
MasterMix. The RT-qPCR program was conducted at 94 ◦C for 2 min, followed by 40 cycles
of 94 ◦C for 15 s and 60 ◦C for 31 s. The specific primer sequences are summarized in Table
S1. Relative gene expression was calculated by the 2−∆∆CT method. The level of β-actin
mRNA expression was used as internal control.

2.5. RNA Interference (RNAi)

The synthesis of the LmDDX6 double-stranded RNA (dsLmDDX6) was described
previously [35]. In brief, the region (484 bp) for dsLmDDX6 from LmDDX6 gene was
amplified by PCR using the specific dsRNA primers (Table S1), which contain the T7 RNA
polymerase promoter sequence. DsLmDDX6 was synthesized by using T7 RiboMAX™

Express RNAi System (Promega, USA) and dissolved in nuclease-free water. The dsGFP
was synthesized in parallel and served as mock control. Female adult locusts within 12 h
after eclosion (0 PAE) were injected with 10 µg of dsRNA at the second to third segments of
the abdomen. The silencing efficiency of LmDDX6 in the ovary and fat body from female
locusts at 4, 6, and 8 days PAE was analyzed by RT-qPCR.

2.6. Tissue Imaging

Epson Perfection V600 Photo was used for imaging ovary morphology. The morphol-
ogy and length of the ovarioles were analyzed by using a Leica M205C microscope.
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2.7. Data Analysis

The relative expression level of LmDDX6 in various tissues was calculated using one-
way analysis of variance (ANOVA), as appropriate, by using SPSS 16.0 software. The post
hoc Tukey’s test was used if F value in one-way ANOVA reported a significant effect. The
different letters indicate a significant difference. The comparison of the gene expression and
the size of primary oocytes between the dsLmDDDX6- and the dsGFP-treated locusts were
analyzed by the two-sample and two-tail t-test. All statistical analyses were conducted at
the significance level of α = 0.05 (p < 0.05).

3. Results
3.1. Motif Patterns of LmDDX6 and Its Orthologs

LmDDX6 encodes a protein of 449 amino acids (aa) that form the conserved DEXDc
and HELICc domains with the N- and C-terminal regions of 78 aa and 58 aa, respec-
tively ([35]; Table 1). Both the N- and C-terminal sequences are more variable than the
conserved domains among the members of the DDX family or even of the same DDX
subfamily. To search for some motifs that might be present only in the DDX6 subfamily, we
first selected 13 sequences from different phyla, including yeast (Saccharomyces cerevisiae,
DHH1), cnidarian (Hydra vulgaris, HvDDX6), worm (Caenorhabditis elegans, Cgh-1), insects
(L. migratoria, LmDDX6; D. melanogaster, Me31B; Zootermopsis nevadensis, ZnDDX6), verte-
brates (Homo sapiens, HsDDX6; Mus musculus, MmDDX6; Danio rerio, DrDDX6), and green
plants (Chlamydomonas reinhardtii, CrDDX6; Arabidopsis thaliana, AtRH8), as well as se-
quences of two outgroup members, HsDDX39A from H. sapiens and DBP2 from S. cerevisiae.
These sequences were analyzed as one group using MEME program (www.meme-suite.org).
We found six motifs (motifs 14, 13, 12, 7, 1, and 17) in the DDX6 subfamily but not in Hs-
DDX39A or DBP2 among the 18 motifs examined (Figure 1a). We then explored more
sequences (48 as one group) and confirmed five out of the six motifs (motif 17 was re-
moved this time, Figure S1). To obtain further confirmation, 27 sequences from algae,
191 sequences from insects, and 500 sequences from vertebrates, plants, and fungi, re-
spectively, were downloaded and examined manually for the five motifs, one by one
(Supplemental Files S2–S6). Without exception, all five motifs were maintained after this
examination. Therefore, we discovered five new motifs highly conserved in the DDX6 sub-
family, including two motifs (13, KRELLMGIFE and 14, TKGNEFEDYC) in the N-terminal
region, one motif (12, PYEINLMEEL) in the DEXDc domain, one motif (1, YSCYYIHAKM)
in the HELICc domain, and one motif (7, KVHCLNTLFS) in the linker region between the
DEXDc and HELICc domains (Figure 1b,c). The specificities and biological roles of these
motifs are currently unknown.

3.2. Phylogeny of LmDDX6 and Its Orthologs

To understand the relationship between LmDDX6 and other DDX6 subfamily mem-
bers, we generated a phylogenetic tree (Figure 2) by using DDX6 sequences from 32 species
selected from diverse phyla (Table 1). DDX6 sequences from green plants, vertebrates,
and insects were classified into distinct clades. LmDDX6 in the insect clade was closely
related to the orthologs from Apis dorsata and Z. nevadensis. Cgh-1 from worm and a
group of DDX6 orthologs from Mollusca (Crassostrea gigas), Annelida (Capitella teleta), and
Rotifera (Brachionus plicatilis) were more closely related to the insect clades. The flatworm
(Dugesia japonica) and porifera (Amphimedon queenslandica) sequences were closely related to
the vertebrate clade. DHH1, a yeast DDX6 ortholog, was strikingly related to the sequences
from green plants. These data demonstrate that DDX6 appears in unicellular eukaryotes,
such as C. reinhardtii and S. cerevisiae, and is retained by multicellular eukaryotes.

www.meme-suite.org
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Figure 1. Motif analysis of DDX6 orthologs. Thirteen sequences from different phyla, including yeast (Saccharomyces cerevisiae,
DHH1), cnidarian (Hydra vulgaris, HvDDX6), worm (Caenorhabditis elegans, Cgh-1), insects (Locusta migratoria, LmDDX6;
Drosophila melanogaster, Me31B; Zootermopsis nevadensis, ZnDDX6), vertebrates (Homo sapiens, HsDDX6; Mus musculus,
MmDDX6; Danio rerio, DrDDX6), and green plants (Chlamydomonas reinhardtii, CrDDX6; Arabidopsis thaliana, AtRH8), as
well as sequences of two outgroup members, HsDDX39A from H. sapiens and DBP2 from C. cerevisiae, were analyzed using
MEME (www.meme-suite.org) program. The parameters were as follows: minimum width = 10, maximum width = 10,
and maximum number of motifs to find = 18. (a) Motif patterns of the selected sequences. The numbers with different
colors indicate various motifs. The number with the vertical, short line denotes the number of amino acids. (b) Domain
arrangement of LmDDX6 analyzed by SMART (smart.embl-heidelberg.de). (c) Amino acid sequence of LmDDX6, showing
the five unique motifs marked in different colors. The pink and the green underlines indicate the DEXDc and HELICc
domains, respectively.
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Figure 2. A phylogenetic tree of DDX6 orthologs. DDX6 protein sequences from different species
were obtained from NCBI (National Center for Biotechnology Information), and a multiple-sequence
alignment was performed using ClustalW software. The phylogenetic tree was generated by MEGA
6 using neighbor-joining method with 1000 repetitions. The filled, red circle indicates DDX6 from
L. migratoria. Protein accession numbers are shown in Table 1.

Intriguingly, when we searched for LmDDX6-like sequences in the BLAST bacterial
database in NCBI, we found sequence WP_162815294.1 from Microbacterium arborescen,
which showed an overall 90% identity with LmDDX6 and also contained the five motifs
unique to the DDX6 subfamily. Interestingly, when a BLAST search of WP_162815294.1
was performed in NCBI, we found another sequence, from Papilio polytes, with 100% iden-
tity with WP_162815294.1. That sequence was a DDX6 ortholog from P. polytes and in
the reconstructed phylogenetic tree (Figure S2) it was closely related to the sequence of
BmDDX6, a DDX6 ortholog in Bombyx mori. Based on these data, we assume that sequence
WP_162815294.1 from M. arborescen was probably a contamination from the sequence of
P. polytes.

3.3. Expression Profile of LmDDX6 in Female Adults

In our previous study, we detected high expression of LmDDX6 in the testis and
ovary and intermediate expression in the fat body and Malpighian tubules of five-instar
nymphs [35]. To determine LmDDX6 expression in adult females, we collected various tis-
sues from female locusts at 2 days PAE and analyzed them by RT-qPCR. A high expression
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level of LmDDX6 was detected in the ovary and an intermediate level of expression was
detected in the fat body and muscle. Other tissues, including integument, foregut, midgut,
hindgut, and Malpighian tubules showed lower LmDDX6 expression levels (Figure 3a). To
determine the relationship between the expression of LmDDX6 and ovary development, we
sampled the ovaries on different days PAE and conducted RT-qPCR. We observed a high
level of LmDDX6 expression in the first two days PAE, with a declining trend afterwards
(Figure 3b). These expression data suggest that LmDDX6 plays a role in ovary development
and oocyte maturation.
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3.4. Knockdown of LmDDX6 Leads to Oocyte Abortion

To elucidate the function of LmDDX6, we injected dsLmDDX6 and dsGFP into female
locusts within several hours PAE. Then, we dissected the injected locusts on different
days PAE and observed the ovaries carefully. An obvious difference between dsLmDDX6-
treated and control dsGFP-treated locusts first appeared at 4 days PAE. The size of the
ovary was slightly smaller in the dsLmDDX6-injected locusts than in the control, dsGFP-
injected, locusts. Strikingly, primary oocytes were smaller in dsLmDDX6-treated locusts
(Figure 4a,b). Furthermore, this difference dramatically increased at 6 and 8 days PAE. The
sizes of the ovary and primary oocytes in dsGFP-treated locusts increased greatly, with
the latter reaching the maturation size of ~7.6 mm2 at 8 days PAE under our experimental
conditions. In contrast, in the dsLmDDX6-treated locusts, the ovary and primary oocytes
did not change much from 4 to 8 days PAE, with only a slight increase from 0.5 to 0.9 mm2

for the primary oocyte size (Figure 4a,b).

3.5. Downregulation of Vg Expression by LmDDX6 Knockdown

Vitellogenin is synthesized in the fat body and is essential for oocyte development. The
phenotype of the ovaries and oocytes in the dsLmDDX6-treated locusts might be ascribed
to the abnormal expression of LmVg. To investigate the expression profile of LmVg in the
locusts, we first examined the silencing efficiency of LmDDX6 in the fat body and found
that it was high: 93.3%, 97.7%, and 96.7% at 4, 6, and 8 days PAE, respectively (Figure 5a). In
locusts, two vitellogenin genes, A and B, have been described [36]. Therefore, we performed
RT-qPCR for both LmVgA and LmVgB in the dsGFP- and dsLmDDX6-treated locusts at
4, 6, and 8 days PAE. As expected, the expression level of LmVgA significantly decreased
by 64.5%, 91.9%, and 62.4%, respectively (Figure 5b). Similarly, the expression level of
LmVgB at 6 and 8 days PAE was downregulated by 93.5% and 65%, whereas at 4 days PAE,
no significant changes were detected between the dsGFP- and dsLmDDX6-treated locusts
(Figure 5c).
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The Vg receptor (VgR) is highly expressed in oocytes and is indispensable for the entry
of Vg from the hemolymph into the oocyte. To this end, we examined LmDDX6 silencing
efficiency in the ovary and found a slight reduction (4.6%) at 4 days PAE and decreases by
39.4% and 35.7% at 6 days and 8 days PAE, respectively. We then checked LmVgR expression
in the dsGFP- and dsLmDDX6-treated locusts. RT-qPCR results indicated that there was no
significant difference in LmVgR expression between dsGFP- and dsLmDDX6-treated locusts
at 4, 6, and 8 days PAE, respectively (Figure S3). This finding could have two explanations.
First, due to the weak reduction of LmDDX6 expression in the ovaries of dsLmDDX6-treated
locusts, the remaining amount of LmDDX6 expression could be sufficient to maintain the
normal expression of LmVgR. Secondly, it is possible that LmDDX6 indeed has no effect on
the expression of LmVgR.

3.6. Knockdown of LmDDX6 Affects JH Receptor Met Expression and Its Downstream Target Genes

JH is a well-known regulator of vitellogenin synthesis during oocyte development
and maturation [18]. To understand the relationship between LmDDX6 expression and JH
signaling pathway activity in vitellogenin synthesis, we chose to examine mRNA levels of
the JH receptor Met and its downstream target genes Grp78-1 and Grp78-2 [37]. Indeed,
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the expression levels of these three genes were strongly downregulated at 6 d PAE in
the dsLmDDX6-treated locusts with reductions by 91.4%, 90.1%, and 79.2%, respectively.
However, these reductions in expression levels slightly recovered by 8 days PAE. Further-
more, no significant differences in expression levels of these genes were detected at 4 days
PAE between the dsGFP- and dsLmDDX6-treated locusts (Figure 6a–c). These data clearly
indicate a role for LmDDX6 in the regulation of the JH signaling pathway.
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Figure 6. Sensitivity of Met, Grp78-1, and Grp78-2 mRNA expression levels to LmDDX6 knockdown in the fat body of
female adult locusts. (a–c) Effect of LmDDX6 knockdown on mRNA levels of LmMet (a), LmGrp78-1 (b), and LmGrp78-2
(c) in the fat body on days 4–8 PAE compared to the corresponding levels in dsGFP-injected locusts (negative control). Data
are presented as the mean ± standard error of the mean (n = 8–12). Statistical significance of differences is indicated as
follows: * p < 0.05; ** p < 0.01; *** p < 0.001. (d) A proposed model for the role of LmDDX6 in locust oocyte development
and maturation. LmDDX6 regulates the expression of LmVg directly or indirectly via the JH signaling pathway and, thus,
promotes vitellogenesis and oocyte maturation in the locust.

Based on these data, we propose a model for the function of LmDDX6 in ovary
development and oocyte maturation (Figure 6d). LmDDX6 is expressed in the fat body
and its protein product may directly regulate LmVg expression there. Alternatively or
in parallel, LmDDX6 may alter the expression of the JH receptor gene LmMet and its
downstream genes LmGrp78-1 and LmGrp78-2 and thereby indirectly affect the expression
of LmVg. In either case, downregulation of LmVg expression blocks oocyte development
and maturation.

4. Discussion

DDX6 and its orthologs comprise one of the evolutionarily earliest families of DDX
proteins. Most members of this subfamily are composed of 400–600 amino acids. In
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addition to the helicase core of 350–400 amino acids, some have elongated N-terminal
regions, for example, orthologs in the vertebrates, whereas others have long C-terminal
regions, e.g., yeast DHH1 and Ste13 [30]. The sequences of the DDX6 orthologs show
high similarity even in their N- and C-terminal regions. To clarify the motifs that might
be unique to the DDX6 subfamily, we conducted a MEME motif analysis among various
orthologs from the yeast to the mammals and plants. Intriguingly, five such motifs, each
containing 10 residues, were identified in this study (Figure 1). Two motifs (consensus
TKGNEFEDYC and KRELLMGIFE) are located at the end of the N-terminal region and
are closely connected to the Q-motif, which is essential for the ATPase activity of the
DDX family members [22]. The other three motifs are in the helicase core, namely, in
the DEXDc domain (PYEINLMEEL), in the HELICc domain (YSCYYIHAKM), and in the
linker region between the two domains (KVHCLNTLFS). These motifs may determine ATP
binding affinity or specificity of the mRNA and other factors associated with DDX6 and its
orthologs. To this end, information on the detailed structure and residue mutation analysis
as well as related biochemical data are needed.

DDX6 sequence is closely related to that of the translational initiation factor eIF4A,
which contains just the helicase core without the longer N- and C-terminal sequences [30,38].
In S. cerevisiae, two genes, TIF1 and TIF2, encode the same product, eIF4A [39]. Orthologs
of eIF4A are also found in bacteria, e.g., in Acidimicrobiaceae and Magnetococcales
(Supplemental File S7). Curiously, to see whether we could find a direct ortholog of DDX6
in bacteria, we performed a BLAST search using the LmDDX6 sequence in the bacterial
database in NCBI. Interestingly, we found only one ortholog in M. arborescens, but not in
any other bacterial species. However, in the constructed phylogenetic tree, this ortholog
was found to be closely related to that of B. mori (Figure S2), raising the question of the
origin of this sequence. When we reblasted this sequence in NCBI, we found that it had
100% identity to the DDX6 ortholog in P. polytes, a species from Lepidoptera. It was re-
ported that Lepidopteran species have large gut bacterial community and M. arborescens
had been found in the midgut of Spodoptera litura [40]. Therefore, it is possible that this
sequence was a contamination from P. polytes during sequencing of the M. arborescens
genome. In this scenario, DDX6 appears in unicellular eukaryotes and is retained by all
multicellular eukaryotes.

Many studies have demonstrated that DDX6 and its orthologs are involved in the
assembly of messenger ribonucleoprotein (mRNP), RNA storage, translational repression,
and mRNA decay [30]. Xp54, an DDX6 ortholog of Xenopus, is an integral component of
mRNP particles in oocytes: It changes the conformation of the mRNP complex by displac-
ing one subset of proteins to enable recruitment of the next one and thereby is involved in
mRNP remodeling [41,42]. Me31B, Cgh-1, and DHH1, the DDX6 orthologs in Drosophila,
Caenorhabditis, and Saccharomyces, respectively, are the core components of the processing
body (PB) involved in mRNA decay, translational repression, and miRNA-mediated gene
silencing [43–47]. The mRNA decay in the PB involves the central complex CCR4-CAF1-
NOT, the decapping factor DCP1/2, and exonuclease Xrn1 [48]. DDX6 orthologs interact
with the factors in the CCR4-CAF1-NOT complex, and this interaction seems to be con-
served in some species [49]. Translational repression relies on other factors, such as the
repressor protein RAP55 in the vertebrates and CAR-1 in C. elegans [50,51]. DDX6 orthologs
bind to non-translational mRNA during oogenesis and early embryo development, and,
thus, temporarily mask these mRNAs. Later, some of these mRNAs may be reused in later
development [42]. In addition, DDX6 interacts directly with AGO1 and AGO2, which are
involved in miRNA-mediated gene silencing [52].

Yeast Ste13 is necessary for sexual reproduction, whereas DHH1 regulates cell cycle [53,
54]. Me31B, as a component of Drosophila germ granules, plays an essential role in germline
development [55]. Moreover, DDX6 in mice has been shown to function in gametogenesis
and early embryogenesis [56]. Similarly, the DDX6 ortholog Cgh-1 in C. elegans is required
for gametogenesis and protection from physiological germline apoptosis [57]. However,
the function of DDX6 in locusts has not yet been investigated.
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We found that knockdown of LmDDX6 arrested locust oocyte development and matu-
ration, indicating an essential role for LmDDX6 in female locust reproduction. Furthermore,
mRNA expression levels of LmVg and JH receptor Met, as well as of Grp78-1 and Grp78-2,
two downstream genes of the JH receptor complex, were significantly reduced in the fat
body of the dsLmDDX6-injected locusts (Figure 5). Therefore, LmDDX6 likely regulates
ovary development and oocyte maturation by affecting vitellogenesis, at least partially, via
the maintenance of the JH signaling pathway activity (Figure 6d). To determine whether
LmDDX6 is also involved in mRNA decay, translational repression, and miRNA-mediated
gene silencing, as are other DDX6 orthologs [30], we plan to isolate various components of
the CCR4-NOT complex and the decapping factors Dcp1 and Dcp2 from L. migratoria. In
order to understand better the mechanism whereby LmDDX6 controls the key processes
of female locust reproduction, it will be necessary to establish whether LmDDX6 directly
interacts with those factors, including LmAGO1.

5. Conclusions

In this study, we characterized LmDDX6, the DDX6 ortholog in L. migratoria, and
found that it possesses five unique motifs to the DDX6 subfamily. LmDDX6 is closely
related to its orthologs in Apis dorsata and Zootermopsis nevadensis. In adult female, LmDDX6
is highly expressed in ovary, muscle, and fat body. Knockdown of LmDDX6 elicits reduced
expression levels of JH receptor Met and its downstream targets Grp78-1 and Grp78-2,
downregulates LmVg expression, and impairs ovary development and oocyte maturation.
As such, LmDDX6 is a key player in female locust reproduction and thus could be a novel
target for locust biological control.
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