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Simple Summary: Areas of endemism (AoEs) are one of the most important topics discussed in 

biogeography, considering that the analysis of areas of sympatry between endemic species is 

essential to understand species distribution patterns, reconstruct evolutionary events, regionalize 

biogeographical areas, and assess regions of high conservation concern. Here, we propose a 

workflow based on the application of a clustering-based algorithm to identify AoEs and compare it 

to another method, the Geographical Interpolation of Endemism, based on a kernel density 

approach. We apply this framework to the flea beetles of the whole sub-Saharan Africa, identifying 

several AoEs through both methods, but with differences in their delimitation, number and features 

of characteristic species, and surface. Considering that our proposed workflow can be applied to 

any territorial context and sets of endemic species, we also provide a GIS tool that implements all 

the steps into one single toolbox. The identification of AoEs, possibly facilitated by our approach, 

can provide useful spatial information when dealing with several biodiversity-related issues, even 

applied to practical conservation measures, such as protected areas management and landscape 

planning. 

Abstract: Areas of endemism (AoEs) are a central area of research in biogeography. Different 

methods have been proposed for their identification in the literature. In this paper, a “grid-free” 

method based on the “Density-based spatial clustering of applications with noise” (DBSCAN) is 

here used for the first time to locate areas of endemism for species belonging to the beetle tribe 

Chrysomelidae, Galerucinae, Alticini in the Afrotropical Region. The DBSCAN is compared with 

the “Geographic Interpolation of Endemism” (GIE), another “grid-free” method based on a kernel 

density approach. DBSCAN and GIE both return largely overlapping results, detecting the same 

geographical locations for the AoEs, but with different delimitations, surfaces, and number of 

detected sinendemisms. The consensus maps obtained by GIE are in general less clearly delimited 

than the maps obtained by DBSCAN, but nevertheless allow us to evaluate the core of the AoEs 

more precisely, representing of the percentage levels of the overlap of the centroids. DBSCAN, on 

the other hand, appears to be faster and more sensitive in identifying the AoEs. To facilitate 

implementing the delimitation of the AoEs through the procedure proposed by us, a new tool 

named “CLUENDA” (specifically developed is in GIS environment) is also made available. 

Keywords: areas of endemism; density-based clustering; DBSCAN; GIE; Chrysomelidae; 

Afrotropical region; GIS analysis; ArcGIS Pro; Model Builder 

 

1. Introduction 

Endemisms are one of the most important features in the distribution of biodiversity 

on Earth, and their identification is essential to define the biological value of an area and 
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its intrinsic conservation requirements [1–3]. The endemicity of a species is a result of both 

ecological and historical factors [4,5]; while ecology explains how biotic and abiotic factors 

can shape a species’ range, a historical reconstruction can uncover which geological and 

evolutionary events contributed to confine a species to its current distribution [6]. Areas 

of endemism are a widely explored concept in biogeography, as they are identified by the 

spatial overlapping of two or more endemic species [7–11]. In fact, a non-random 

distributional congruence between taxa can identify common evolutionary 

biogeographical processes [12]. Throughout geological time, an assemblage of endemic 

species sharing a common space might have responded differently to the same ecological 

factors: this is the reason why each area of endemism usually has fuzzy edges [11,13], 

making it more difficult for biogeographers to define its exact borders. 

There is still a high level of disagreement over what the areas of endemism actually 

represent, and what the correct way to identify them is [7,14]. Despite this, all authors 

agree that these spatial units are dynamic entities, representing a current snapshot of the 

evolution of species, or groups of species, sharing a common history [15]. Therefore, it is 

essential to identify areas of endemism not only to infer the history of biogeographical 

units [16,17], but also to lay the groundwork for suitable conservation plans within a 

specific study area [3,18]. Different methods have been proposed to detect areas of 

endemism: Parsimony Analysis of Endemicity (PAE) [8,19,20], Cladistic Analysis of 

Distributions and Endemism (CADE) [21], Endemicity Analysis with Optimality Criterion 

[22–24], and Network Analysis [25] are only a few examples of the numerous techniques 

suggested throughout the years to identify and analyse these historical and ecological 

units. 

In this paper, two different approaches to infer areas of endemism independent of 

grid cells (“grid-free”) are compared and discussed: the Density-Based Spatial Clustering 

of Application with Noise (DBSCAN), applied here for the first time to identify areas of 

endemism, and the Geographic Interpolation of Endemism (GIE), recently proposed by 

Oliveira et al. [26]. Both these methods, instead of dividing the study area into grid cells, 

use the species’ distribution points as raw data to detect areas of endemism. DBSCAN, 

proposed by Ester et al. [27], is a density-based clustering algorithm that works on the 

assumption that clusters are higher-density regions in space separated by regions of lower 

density (noise). The DBSCAN measure of density uses the distances between data points 

and applies local or global density criteria to separate out clusters from noises, represented 

by the not allocated points. This approach does not rely on a pre-defined number of 

clusters, such as the several variants of K-Means Clustering or Fuzzy C-means and can be 

made flexible for different shapes and varying densities of points. 

GIE, instead, is based on a modified kernel interpolation function [26]. The kernel 

estimator has been widely used in ecology to estimate the density of species occurrence 

and consequently draw species range probability maps [28]. With this method, an area of 

influence is defined for each species range, and its radius is used to categorize species into 

different classes sharing areas of influence of similar size. A Gaussian function is applied 

for each occurrence, obtaining a homogeneous circular area of influence in which the 

function values decrease when moving away from the occurrence record (which has the 

highest value). Then, a kernel density function (an algorithm that expresses the spatial 

density of features in a geographic space) calculates the occurrence of endemism by 

identifying the overlap between different areas of influence, weighted by the degree of 

overlapping [29]. 

DBSCAN and GIE are here applied to a database of flea beetle species 

(Chrysomelidae, Galerucinae, Alticini) endemic to the Afrotropical region. Due to their 

high number of species and habitat specificity, often entailing a restricted geographic 

distribution, the insects are generally considered adequate candidates for biogeographical 

studies on endemism [30]. The leaf beetles (Coleoptera Chrysomelidae) represent a large 

portion of the herbivorous insect fauna for many habitats [31–33] and are considered a 

useful tool to analyse insect community structure [34–36]. In particular, the Alticini are a 
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tribe of Chrysomelidae comprising over 534 genera and about 8000 species [37,38], 

occurring all over the world. Members of this tribe are commonly defined as flea beetles 

because of the presence of a metafemoral extensor tendon that enables them to jump 

[39,40]. Adult and larval stages mainly feed on stems, leaves, or roots, although rarely on 

flowers, of almost all the higher plant families, generally with high levels of specialization 

and in different environments [31,41–43]. The Afrotropical flea beetle fauna includes 

about 1600 known species in 103 genera, of which over 80% are endemic to sub-Saharan 

Africa and/or Madagascar [44–46]. 

2. Materials and Methods 

2.1. Study Area and Species Database 

The study area (Figure 1) comprises the Afrotropical region as defined by Udvardy 

and Udvardy [47]. The analyses were performed on a dataset including 337 well-known 

species of flea beetles (Chrysomelidae, Galerucinae, Alticini) occurring in the Afrotropical 

region, with a total of 3296 records of presence. Distribution data (database available from 

the authors upon request) were collected from peer-reviewed literature (Supplementary 

File S1), and the species identification of every specimen was confirmed by the authors 

(MB and PD). Geographic coordinates possibly missing were retrieved using Google 

Earth. 

 

Figure 1. Study area and occurrence localities used for analysis (see text). 

2.2. Abbreviations Used 

AMM: Amber Mountain; ANR: Antananarivo region; AoE: area of endemism; BER: 

Betsiboka region; DBSCAN: Density-Based Spatial Clustering of Application with Noise; 

dc: maximum distance between the centroids; dd: maximum diameter of the distribution 

of the species; DKM: Drakensberg Mountains; GIE: Geographical Interpolation of 

Endemism; KAR: Katanga region; KIL: Kilimanjaro region; KLR: Kivu Lake region; KWN: 

KwaZulu-Natal; LI: Limpopo; MP: Mpumalanga; WCP: Western Cape Province. 
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2.3. Geographical Interpolation of Endemism (GIE) 

This analysis was performed using the tool “GIE” in the BioDinamica package [48]. 

The maximum value of centroid distance was chosen as a parameter to define species 

classes. To compare the results of GIE with those of DBSCAN, the species database was 

divided into 3 classes, with the first class (Class 1) having a radius of the distance between 

centroids equal to or less than 100 km, the second one (Class 2) equal to or less than 150 

km, and the third one (Class 3) equal to or less than 200 km. The analyses of the three 

classes considered (Class 1, Class 2, and Class 3) were performed separately due to unclear 

results obtained whether a single analysis including the three classes altogether is 

performed. 

2.4. Density-Based Spatial Clustering of Application with Noise (DBSCAN) 

As also stated in the Introduction, it is important to highlight that other existing 

clustering methods, such as K-means and its variants, or Fuzzy C-means, require setting 

an a priori number of clusters to carry out the analysis. Thus, these algorithms are not 

indicated in our case, considering that the number of endemic areas should be a result of 

an appropriate analysis, and not a parameter pre-determined by the operator. 

The DBSCAN algorithm was preferred to HDBSCAN (Hierarchical Density-Based 

Spatial Clustering of Applications with Noise) [49], because this last one does not select 

clusters based on a global “epsilon” threshold (distance between centroids in our case) but 

creates a hierarchy for all possible epsilon values and thus only requires “minPts” 

(number of sinendemisms in our case) as single input parameter. The epsilon parameter 

used by DBSCAN is instead useful to discover all the clusters (AoEs) of variable densities 

with a definite value of epsilon (distance between centroids). 

This analysis was performed using the tool Density-based Clustering implemented 

in the Spatial Statistics toolset of ArcGIS Pro 2.8. For ease of reference, in the workflow 

reported after, we name as “sp” (species name), “x” (longitude), and “y” (latitude) the 

fields of the input table hosting the species’ occurrence data; during the steps proposed, 

dummy names also will be assigned to intermediate files. 

Step 1: Implementation of the dataset 

Set the fields of a table in the order: sp, x, y; longitude and latitude are reported in 

decimal degrees. Then, load and display the occurrences (points) from the table in GIS 

environment. 

Step 2: Selection of species 

Use, as the first algorithm, the tool “Minimum Bounding Geometry” in ArcGIS Pro. 

It is necessary to implement the whole process, setting Geometry type = Circle, Group 

option = List and Group Field = sp (to group the output of this tool based on the species); 

furthermore, check the “Add geometry characteristics as attributes to output”. Then, the 

output features with a Minimum Bounding Geometry value (MBG_Diameter) equal to or 

less than the chosen diameter (in our case: ≤1.00 for species with a maximum distribution 

range width equal to or smaller than 100 km; ≤3.00 for species at 300 km; ≤5.00 for species 

at 500 km) were selected and exported to new files, named, for instance, “species_100 km”, 

“species_300 km”, or “species_500 km”, respectively. This step permits creating three 

selections of species with a distribution range width limited to 100, 300, or 500 km, 

respectively, avoiding the chance of including species with broad or disjunct distributions, 

which could cause a disturbing factor in the analysis. 

Step 3: Calculation of the centroids 

Calculate the centroids of the files obtained through the previous distribution range 

filtering (i.e., “species_100 km”) and convert this information, together with the 

corresponding species name, to a point-geometry file named, for instance, “centroids_100 

km”. Apply the Density-based Clustering tool, using the different distance between 

centroids (“Defined Distance” = 100, 150, 200 km, similar to the distances used in GIE), 

with the option “Minimum Features” ≥2, depending on the number of sinendemisms one 
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wants to consider (five in our case). This parameter could also be used “backwards”, 

starting from a high number of sinendemic species to infer the highest number of 

sinendemisms by which the areas of endemism start to form. Then, use the Intersect tool 

between the DBSCAN file (i.e., DBSCAN_100 km_50 km_5 sin) and the corresponding 

centroid data used for the analysis (i.e., centroids_100 km), to obtain the information about 

the names of the species included in the clusters identified by DBSCAN. 

Step 4: Developing Areas of endemism 

As the last step, after having to discard in the attribute table all records reporting the 

−1 value (noise species not allocated into a specific cluster), use the tool “Create buffer” to 

definite the areas of endemism around the clusters obtained by the DBSCAN, setting the 

following parameters: Buffer Type = Distance, Buffer Distance = 80 km (in our case, but 

this distance is depending by the scale of the referring area), Dissolve Option = List, 

Dissolve Fields = Cluster ID (to define the buffers based on the clusters). 

2.5. The CLUENDA Tool 

To implement the identification of areas of endemism using DBSCAN as described 

above, a new tool was developed in GIS environment through the Model Builder of 

ArcGIS Pro. The tool, named CLUENDA (Figure 2 and Supplementary File S2), aims to 

speed up data processing and ensure the comparability of maps of endemism areas 

obtained from species databases. The framework combines several geoprocessing tools in 

the ArcGIS Pro 2.8 environment to generate the necessary factors to identify the areas 

based on the clusters of sinendemisms. ArcGIS Pro Model Builder combines several GIS 

operations and runs these modules on a single spatial dataset (point features). Each model 

consists of three fundamental elements: the input parameters, the geoprocessing tools, 

and the output data. Model parameters are model-specific inputs that must be user-

defined (e.g., species occurrences, to which a geographic projection should be applied; 

instead, chordal distances will be used). The geoprocessing tools produce output data in 

a defined sequence using the input datasets until areas with clustered sinendemic species 

are obtained. With the CLUENDA tool, we have mapped the areas of endemism inferred 

based on: (a) three different selections of species with maximum diameter of the distance 

to 100, 300 and 500 km, respectively; (b) three different distances between centroids up to 

100, 150, and 200 km, respectively. 

To investigate possible differences in computation performances, execution times 

were measured for both GIE and CLUENDA. A 4-core Intel i7 processor (2.80 GHz), 

equipped with 32 GB of RAM (Windows 10) was used for this purpose. 

The analyses were run with the dataset described above, as well as with a 10-times-

bigger dummy dataset (generated based on the original dataset used, thus containing 

32,960 points for the whole sub-Saharan Africa) to stress-test the two software used. 
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Figure 2. Scheme of the CLUENDA toolbox, developed in ArcGIS Pro 2.8. 

3. Results 

3.1. Areas of Endemism (AoEs) 

The execution times needed for the identification of the AoEs for the “regular” 

dataset were 75 s for GIE and 5 s for CLUENDA; the dummy “10-times bigger” dataset 

took 96 s and 6 s for the computation in GIE and CLUENDA, respectively. 

The AoEs identified by both GIE and DBSCAN are listed below in alphabetical order: 

- AMM (Amber Mountain): this refers to the Amber Mountain, a famous protected 

area in the Diana region of Northern Madagascar. AMM is well known for its 

endemic flora and fauna. AMM is a part of the “Madagascar and the Indian Ocean 

Islands” biodiversity hotspot [50]. 

- ANR (Antananarivo region): this AoE is located in Central Madagascar and mainly 

includes Anamalanga, Bongolava, Itasy, and Vakinankaratra regions. ANR is a part 

of the “Madagascar and the Indian Ocean Islands” biodiversity hotspot. 

- BER (Betsiboka region): this AoE is located in Northern Madagascar and includes, in 

addition to the Betsiboka, the Sofia and Analanjirofo regions. BER is a part of the 

“Madagascar and the Indian Ocean Islands” biodiversity hotspot. 
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- DKM-KWN (Drakensberg Mountains–KwaZulu Natal): this AoE comprehends the 

Drakensberg Mountains, which are main mountain range in southern Africa, and the 

coastal areas of KwaZulu Natal. The Drakensberg Mountains rise to more than 3475 

m a.s.l., extending roughly from northeast to southwest for over 1100 km parallel to 

the southeastern coast of South Africa. They are part of the Great Escarpment and 

separate the extensive highlands of the South African interior from the lower lands 

along the coast. In the Drakensberg Mountains, alpine grasslands and small pockets 

of Afromontane Forest are present. The coastal regions of KwaZulu-Natal typically 

have subtropical thickets and deeper ravines; steep slopes host small spots of 

Afromontane Forest. The midlands have moist grasslands. The northern area has a 

primarily moist savannah habitat. DKM-KWN is a part of the “Maputaland–

Pondoland–Albany” biodiversity hotspot. 

- KAR (Katanga region): this AoE is located in the Democratic Republic of Congo and 

mainly includes the ridges of the plateaus of Katanga (Shaba) province. They include 

Kundelungu (1600 m a.s.l.), Mitumba (1500 m), and Hakansson (1100 m) mountains. 

The Katanga plateaus reach as far north as the Lukuga River and contain the Manika 

Plateau, the Kibara and the Bia mountains, and the high plains of Marungu. Despite 

the high plant diversity present [51], KAR is not included in any biodiversity hotspot. 

- KIL (Kilimanjaro region): this AoE has the Kilimanjaro region as its central area. 

Towards the southeast, it extends to the Tsavo West National Park in Kenya and 

Mkomazi National Park in Tanzania, while northwards it extends to the Amboseli 

National Park. KIL comprehends both montane and savannah areas. The Kilimanjaro 

area is a part of the “Eastern Afromontane” biodiversity hotspot. 

- KLR (Kivu Lake region): this AoE is located in the area of the Kivu Lake in the 

Albertine Rift Valley and also includes the mountain areas of Birunga, Volcan 

Mikeno, and Volcan Karisimbi, between Uganda, Rwanda, and the Democratic 

Republic of Congo (Kivu Sud). KLR is a part of the “Eastern Afromontane” 

biodiversity hotspot. 

- MP-LI (Mpumalanga–Limpopo): this AoE comprehends part of the Mpumalanga 

and Limpopo provinces. Mpumalanga is divided by the Drakensberg escarpment 

into a westerly half consisting mainly of high-altitude grassland called the Highveld 

and an eastern half situated in low-altitude subtropical Lowveld/Bushveld, mostly 

savannah habitat. The Lowveld is relatively flat with interspersed rocky outcrops. 

The Lebombo Mountains form a low range in the far east, on the border with 

Mozambique. Limpopo contains much of the Waterberg Biosphere, a massif of 

approximately 15,000 km2 which is the first region in the northern part of South 

Africa to be named a UNESCO Biosphere Reserve 

(http://waterbergbiospherereserve.org/why-the-waterberg-is-a-biosphere.html, 

accessed on 12 Oct 2021). MP-LI is partially included in the “Maputaland–

Pondoland–Albany” biodiversity hotspot. 

- WCP (Western Cape Province): this AoE is mainly restricted to South Africa’s 

Western Cape Province. Most of the region is covered with fynbos, a sclerophyllous 

shrubland occurring on acid sands or nutrient-poor soils derived from Table 

Mountain sandstones. This area covers the Mediterranean climate region of South 

Africa in the southwestern corner of the country and extends eastward into the 

Eastern Cape Province. WCP is a part of one of the world’s six floral kingdoms, the 

“Cape Floristic Region” biodiversity hotspot. 

3.2. GIE 

The weighted consensus map obtained by the GIE analysis, setting the “Minimum 

number of endemism” = 5, is shown in Figure 3a. In this map, kernels identify seven AoEs, 

five larger—WCP (32 sinendemisms), DKM-KWN (19), MP-LI (14), and KIL (12) in sub-

Saharan Africa and AMM+BER+ANR (51) in Madagascar—and two smaller—KAR (7) and 



Insects 2021, 12, 1115 8 of 17 
 

 

KLR (5) in Central Africa. There is no significant difference in the results between the 

weighted and the unweighted maps. 

 

Figure 3. (a) Consensus maps of the areas of endemism detected by GIE. (b) Areas of endemism detected by GIE in Class 

1 (100 km), (c) Class 2 (150 km) and (d) Class 3 (200 km). 

As the intrinsic value of an endemic species is weighted by the width of its 

distribution range, the kernel maps of the three classes selected (Class 1, Class 2, Class3) 

are displayed individually (Figure 3b–d), and the endemic species included in each of 

them are listed in Supplementary File S3. The use of different classes was performed to 

identify areas of endemism with a higher degree of specificity based on the different 

distances of the centroids of the species range. In Class 1, which includes only the species 

whose distances between the centroids is equal to or smaller than 100 km, only small and 

fragmented areas were identified and attributed to the main five AoEs (Figure 3b; Table 

1): western part of WCP (20 sinendemisms), MP-LI (13), and KAR (6) for sub-Saharan 

Africa and AMM (6) and BER + ANR (28) for Madagascar. Instead, considering the species 

with distances between the centroids equal to or smaller than 150 km (Class 2), the seven 

AoEs identified were located (Figure 3c; Table 1): in WCP (+11 sinendemisms), BER + ANR 

(+8), with larger areas, and in MP-LI, KAR, and AMM, unchanged; to these the areas 

DKM-KWN (17) and KLR (5) were added for sub-Saharan Africa. Finally, with distances 

between the centroids equal to or smaller than 200 km (Class 3), the definitive seven AoE 

(Figure 3d; Table 1) were detected similarly to those identified in the consensus maps. The 

correlation values among the maps were calculated for the three classes considered. The 

highest value (r = 0.92525) is between Class 2 and Class 3, while the lesser (r = 0.73043) is 

between Class 1 and Class 3. 
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Table 1. Surface and number of sinendemisms for the AoEs identified by the DBSCAN analysis. dd = maximum diameter of the distribution of the species; dc = maximum distance 

between the centroids; ► indicates the merger of areas. 

AoE → KLR Area KIL Area KAR Area 
DKM-

KWN 
Area MP-LI Area 

DKM-

KWN + 

MP-LI 

Area WCP Area 
AM

M 
Area BER Area ANR Area BER + ANR Area 

dd-dc ↓ syn km2 syn (tot) km2 
syn 

(tot) 
km2 

syn 

(tot) 
km2 syn (tot) km2 syn (tot) km2 syn (tot) km2 

syn 

(tot) 
km2 

syn 

(tot) 
km2 

syn 

(tot) 
km2 syn (tot) km2 

100–100 <5 / <5 / 6 (26) 44295 10 (53) 102354 11 (55) 108354 ꟷ / 21 (57) 146352 6 (12) 43465 
10 

(27) 
91580 

10 

(34) 
85126 ꟷ / 

300–100 <5 / <5 / 6 (26) 44295 13 (53) 114482 11 (55) 108354 ꟷ / 32 (67) 197269 6 (12) 43465 ►   ►   35 (60) 231762 

500–100 <5 / <5 / 6 (26) 44295 16 (54) 143527 11 (55) 108354 ꟷ / 35 (67) 197269 6 (12) 43465 ►   ►   40 (61) 242557 

100–150 5 (31) 80810 8 (35) 127636 6 (26) 44295 13 (58) 151118 14 (59) 148547 ꟷ / 25 (67) 190544 6 (12) 43465 ►   ►   25 (60) 224984 

300–150 5 (31) 80810 11 (36) 144800 6 (26) 44295 17 (58) 175819 14 (59) 148547 ꟷ / 32 (67) 197269 6 (12) 43465 ►   ►   35 (60) 231762 

500–150 6 (31) 82179 17 (39) 221626 6 (26) 44295 ►   ►   38 (94) 379608 35 (67) 197269 6 (12) 43465 ►   ►   40 (61) 242557 

100–200 5 (31) 80810 9 (38) 154709 7 (28) 71240 ►   ►   34 (97) 389194 25 (67) 190544 6 (12) 43465 ►   ►   25 (60) 224984 

300–200 7 (42) 112281 15 (39) 218954 7 (28) 71240 ►   ►   37 (97) 393318 32 (67) 197269 6 (12) 43465 ►   ►   35 (60) 231762 

500–200 7 (42) 112281 17 (39) 221626 7 (28) 71240 ►   ►   41 (97) 419098 35 (67) 197269 6 (12) 43465 ►   ►   40 (61) 242557 
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3.3. DBSCAN 

The results by DBSCAN analysis for identifying AoEs, setting the number of 

sinendemisms to 5, are reported in Figures 4–9, and the endemic species included in each 

of them are listed in Supplementary File S3. The extension, the number of sinendemisms, 

and the ratio “number of endemic species/total of species” for each area are reported in 

Tables 1 and 2 and in Figure 10. 

 

Figure 4. Areas of endemism detected by DBSCAN using species with distribution range up to 100 km and distance 

between centroids of 100, 150, and 200 km. 
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Figure 5. Areas of endemism detected by DBSCAN using species with distribution range up to 300 km and distance 

between centroids to 100, 150, and 200 km. 

 

Figure 6. Areas of endemism detected by DBSCAN using species with distribution range up to 500 km and distance 

between centroids to 100, 150, and 200 km. 
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Figure 7. Areas of endemism detected by DBSCAN using the distance between centroids to 100 km and species with 

distribution range up to 100, 300, and 500 km. 

 

Figure 8. Areas of endemism detected by DBSCAN using the distance between centroids to 150 km and species with 

distribution range up to 100, 300, and 500 km. 
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Figure 9. Areas of endemism detected by DBSCAN using the distance between centroids to 200 km and species with 

distribution range up to 100, 300, and 500 km. 

 

Figure 10. Box plots of the ratio “number of endemic species/total of species” for each of the AoEs 

identified by the DBSCAN analysis. Red spot = median. 
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Table 2. Maximum number of sinendemisms for AoE by GIE and DBSCAN. Please refer to paragraph 2.2 for the names 

in full of Areas of Endemism reported in the first row. 

 KLR KIL KAR DKM-KWN MP-LI 
DKM-KWN 

+ MP-LI 
WCP AMM BER + ANR 

AMM + BER 

+ ANR 

GIE syn syn syn syn syn syn syn syn syn syn 

100 km / / 6 / 13 / 20 6 28 / 

150 km 5 / 6 17 13 / 31 6 35 / 

200 km 5 12 7 19 14 / 32 / / 51 

DBSCAN                     

100 km / / 6 16 11 / 35 6 40 / 

150 km 6 17 6 / / 38 35 6 40 / 

200 km 7 17 7 / / 41 35 6 40 / 

In general, it can be observed that as the distribution interval of the species 

considered increases, respectively, with a maximum diameter of 100, 300, and 500 km, the 

identified AoEs are, at the same distance between the centroids, homogeneous in their 

geographical location, although they may be more extensive or merged into larger areas 

(Figures 4–6). 

Considering 100 km as the maximum distance between the centroids of the selected 

species (“defined distance” = 100 km), with the species with distribution up to 100 km (150 

species out of 337 total), the analysis identifies the following seven AoEs (Figure 4, Table 

1): KAR (6 sinendemisms) in Central Africa; DKM-KWN (10), MP-LI (11), and WCP (21) 

in Southern Africa; AMM (5), BER (11), and ANR (10) in Madagascar. With species up to 

300 (181 out of 337) and 500 km (197 out of 337) (Table 1), a general increase in surface is 

observed for the DKM-KWN (+3 sinendemisms) and WCP (+11) areas, as well as a merger 

of the BER and ANR areas (35). On the other side, the areas KAR, MP-LI, and AMM 

remain unchanged. By increasing the “defined distance” in DBSCAN to 150 and 200 km, 

the results are quite different. In the first case, the analysis identifies two new AoEs in 

Eastern Africa—KIL, with 8, 11, and 17 sinedemisms, respectively, and KLR, with 5, 7, 

and 7 sinendemisms—while an area increase is observed for DKM-KWN and MP-LI, 

which merge into a unique area when the range of the species considered is up to 500 km 

(Figure 5, Table 1). By increasing the distance of the centroids to 200 km (“defined 

distance” = 200 km), in all three cases (species up to 100, 300, and 500 km), we observe the 

merger of the DKM-KWN and MP-LI areas and the gradual increase, in terms of surface, 

of KLR and KAR (Figure 6, Table 1). The correlation values (Kendall index) among the 

maps obtained by the different combinations of the widths of the distribution ranges and 

the distance between centroids are reported in Table 3. The correlation index decreases 

quickly as the distance between the centroids increases (100, 150, 200 km) rather than with 

the increase in the width of the distribution ranges (100, 300, 500 km). The non-parametric 

Kendall index was preferred because it uses pairs of observations and determines the 

strength of association based on the pattern of concordance and discordance between the 

pairs, which best fits our analysis. 

Table 3. Kendall rank correlation index between the maps obtained by the DBSCAN analysis. dd = maximum diameter of 

the distribution of the species; dc = distance between the centroids. 

 DBSCAN 

dd-dc 

100 

km/100 

km 

300 

km/100 

km 

500 

km/100 

km 

100 

km/150 

km 

300 

km/150 

km 

500 

km/150 

km 

100 

km/200 

km 

300 

km/200 

km 

500 

km/200 

km 

100 km/100 km 1 0.522 0.459 1.000 0.522 0.459 1.000 0.522 0.459 

300 km/100 km 0.522 1 0.920 0.522 1.000 0.920 0.522 1.000 0.920 

500 km/100 km 0.459 0.920 1 0.459 0.920 1.000 0.459 0.920 1.000 

100 km/150 km 1.000 0.522 0.459 1 0.522 0.459 1.000 0.522 0.459 

300 km/150 km 0.522 1.000 0.920 0.522 1 0.920 0.522 1.000 0.920 
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500 km/150 km 0.459 0.920 1.000 0.459 0.920 1 0.459 0.920 1.000 

100 km/200 km 1.000 0.522 0.459 1.000 0.522 0.459 1 0.522 0.459 

300 km/200 km 0.522 1.000 0.920 0.522 1.000 0.920 0.522 1 0.920 

500 km/200 km 0.459 0.920 1.000 0.459 0.920 1.000 0.459 0.920 1 

4. Discussion 

DBSCAN and GIE both return largely overlapping results, detecting the same 

geographical locations for the AoEs, even if their results as a whole result in generally 

different delimitation and surface and the number of the detected sinendemisms (Table 

2), also resulting in very different computation times. The consensus maps obtained by 

GIE are in general less clearly delimited than the maps obtained by DBSCAN, but 

nevertheless allow us to evaluate the core of the AoEs more precisely, as they can be 

displayed with a “stretched” symbology representing of the percentage levels of the 

overlap of the centroids, keeping a sort of hierarchy between the nested areas. DBSCAN, 

on the other hand, appears to be more sensitive in identifying areas of endemism. This 

method, in fact, detects the same areas as GIE but with comparatively shorter distances 

between the centroids. For example, with a “defined distance” of 150 km, regardless of 

the extent of the distribution of the species used in the analysis (100, 300, or 500 km in 

diameter), DBSCAN identifies the position of all the possible areas, including KIL and 

KLR, while with GIE, the KLR area is identified only in Class 2 (radius 150 km) and the 

KIL area in Class 3 (200 km). The same is also true for the DKM-KWN area, identified by 

DBSCAN with a distance between centroids of 100 km and not by GIE. Creating datasets 

of species with different widths of the distribution ranges, such as those up to 100, 300, 

and 500 km here proposed, allows DBSCAN to identify more precise and better-defined 

areas, with a higher number of identified sinendemisms (Table 2). Generally, in DBSCAN, 

the increase in the width of the distribution range of the species selected for the analysis 

does not allow the identification of new AoEs or the disappearance of them, but only 

larger areas, or the merge of areas previously identified using species with more limited 

distributions. New areas are detected only with the increase in the distance between 

centroids. 

From the conservation/landscape planning point of view, it is important to highlight 

the main difference between the two approaches: the DBSCAN produces discrete 

territorial units, while GIE gives a continuous output. Researchers, stakeholders, and 

decision-makers should bear this in mind when searching for AoEs to manage or protect 

them. For instance, if GIE is applied and a specific territory has to be managed, a threshold 

value must be chosen to discretize the GIE’s output. This may introduce subjectivity, but 

also strengthen the results if this choice is supervised by experts. On the other hand, 

DBSCAN was allowed to identify comparable AoEs with shorter distances between 

centroids (with respect to GIE), also detecting a higher number of sinendemisms for each 

of them. Thus, the application of DBSCAN may be suggested when more conservative 

solutions are needed. 

5. Conclusions 

GIE and DBSCAN consider the degree of overlap between species ranges as a pivotal 

parameter. This requirement stems from the necessity to bypass the geometric constraints 

and spatial scale bias imposed by grid cell use. In fact, some authors have previously 

argued that areas of endemism should be modelled by using more “natural” geographical 

units instead of overlapping geometric-sized grid cells onto the study area [52]. 

Additionally, areas of endemism should have irregular edges, and quadrats traditionally 

used in methods grid-based commonly fail to fully describe the dynamic structure of 

species distributions [15]. Therefore, the methodologies here discussed are a promising 

way to implement the research of areas of endemism by taking into account all the 

aforementioned observations. 
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