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Simple Summary: Based on a CRISPRa approach, activating endogenous fibroin heavy chain (FibH)
gene expression in Bombyx mori embryonic (BmE) cells, which was driven by a combination of
the dCas9-VPR (a tripartite activator, composed of VP64, p65, and Rta) and the sgRNA targeting
to the promoter of FibH gene, was performed for investigating the biological roles of FibH in the
development of silk gland cells. The activation of the endogenous FibH gene lead to up-regulation of
cellular stress responses-related genes, which suggested a significant positive correlation between
activated FibH gene expression and cellular stress responses. Moreover, the present findings might
provide a potential model for studying the cellular stress responses caused by silk secretion disorder
and lay a foundation for the understanding of silk gland development in silk-spinning insects.

Abstract: The silkworm Bombyx mori is an economically important insect, as it is the main producer
of silk. Fibroin heavy chain (FibH) gene, encoding the core component of silk protein, is specifically
and highly expressed in silk gland cells but not in the other cells. Although the silkworm FibH gene
has been well studied in transcriptional regulation, its biological functions in the development of silk
gland cells remain elusive. In this study, we constructed a CRISPRa system to activate the endogenous
transcription of FibH in Bombyx mori embryonic (BmE) cells, and the mRNA expression of FibH was
successfully activated. In addition, we found that FibH expression was increased to a maximum at
60 h after transient transfection of sgRNA/dCas9-VPR at a molar ratio of 9:1. The qRT-PCR analysis
showed that the expression levels of cellular stress response-related genes were significantly up-
regulated along with activated FibH gene. Moreover, the lyso-tracker red and monodansylcadaverine
(MDC) staining assays revealed an apparent appearance of autophagy in FibH-activated BmE cells.
Therefore, we conclude that the activation of FibH gene leads to up-regulation of cellular stress
responses-related genes in BmE cells, which is essential for understanding silk gland development
and the fibroin secretion process in B. mori.

Keywords: Bombyx mori; CRISPR; dCas9-VPR; cellular stress response; BmE cells

1. Introduction

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-
associated protein 9 (Cas9), a bacterial adaptive immune system, has been harnessed as
a highly efficient genome editing platform and widely used to generate target mutations
in an increasing number of organisms, including bacteria [1,2], plant [3–5], insect [6–8],
zebrafish [9,10], and human [11–13]. In our previous studies, the CRISPR/Cas9 was
successfully used as a genome editing tool in both Bombyx mori (B. mori) individuals and
cultured cells [14–16]. Meanwhile, the dCas9, a mutant of Cas9 lacking detectable nuclease
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activity, has been developed to interfere or activate the gene expression instead of complete
knockout, by fusing to a transcriptional repressive or activating domain [17]. The VPR
activating domain is a tripartite activator composed of the VP64, p65, and Rta activators,
which has also been fused to dCas9 [18]. Our previous work indicated that dCas9-VPR is
sufficient to activate the expression of target genes in B. mori embryonic (BmE) cells [19].

The silkworm B. mori is an economically important insect, as it is the main producer
of silk and a model organism for lepidopterans [20]. The silk gland is the unique organ
for producing, storing, and processing silk fibers. The development of silk glands and
the synthesis of silk proteins are two important processes to study in silkworm [21–23].
Silkworm cocoons are made of sericins and fibroins [23,24]. The sericins are a family of
adhesive proteins that account for 25–30% weight of a cocoon, the rest are fibroins. The
fibroin unit consists of six sets of disulfide-linked fibroin heavy (FibH, 350 kDa) and light
(FibL, 25 kDa) chains with a fibrohexamerin protein (P25, 30 kDa) at a molar ratio of
6:6:1 [25,26]. Additionally, studies have revealed that the formation of disulfide linkage
between FibH and FibL is important for the efficient secretion of fibroin from silk gland
cells into the lumen [27–29]. Additionally, once the FibH fails to form a complete fibroin
unit, it cannot be secreted out of the cells, and then leads to a silk gland atrophy [26,30].

B. mori fibroin-deficient mutants are valuable resources for studying the process of
fibroin synthesis and secretion in the silk gland [20]. In a previous study, we found that
deficient FibH perturbed the cellular homeostasis and caused posterior silk gland (PSG) cell
atrophy in the fibroin-deficient naked pupa (Nd) mutant [31,32]. However, the molecular
mechanism remains unclear. The FibH is a single copy gene in the B. mori genome, and over
90% of its encoding region is a highly repetitive GC-rich sequence, making it extremely
hard to clone and to implement transgenic manipulation. The expression of FibH gene
was completely closed in normal BmE cells. In this study, we used the CRISPRa system
to specifically activate FibH gene expression in BmE cells. Then, we investigated the
cellular stress responses caused by the ectopic activation of FibH through qRT-PCR and
cell staining. The results show that cellular stress responses were significantly triggered in
the FibH-activated BmE cells, which provided novel insight into the understanding of silk
gland development and silk secretion process in silkworm B. mori.

2. Materials and Methods
2.1. Vector Construction

The dCas9 expression vector (pUC57-hr3/A4-dCas9) and sgRNA backbone vector
(pUC57-U6-sgRNA) were produced by our laboratory. Codon-optimized effector domain
VPR (1602 bp) was synthesized and inserted into pUC57-T-simple by a commercial service
(Genescript, Nanjing, China). Transcriptional activator VPR was then fused to the C-
terminal of dCas9 (4194 bp) via SphI and HindIII digestion and T4 ligation as described
previously [18,19,33]. The dCas9-VPR was driven by an hr3/A4 promoter (1711 bp) to
construct the pUC57-A4-dCas9-VPR expression vector (8002 bp). Three sgRNA targeting
the FibH promoter and a negative control sgRNA targeting an EGFP exon were synthesized
as oligomers, then annealed and cloned into the sgRNA expression vector pUC57-U6-
sgRNA (3678 bp) by using BbsI digestion and T4 ligation. Sequences of sgRNAs are listed
in Table S1.

2.2. Cell Transfection

BmE is a B. mori embryonic cell line [34] cultured in Grace medium supplemented with
10% fetal bovine serum at 27 ◦C. pUC57-A4-dCas9-VPR and pUC57-U6-sgRNA expression
vectors (a total of 2.0 µg plasmids) were co-transfected into BmE cells, at a density of
2 × 105 cells/well, using X-treme GENE Transfection Reagent (Roche, Basel, Switzerland).
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2.3. Western Blot Assay

Forty-eight hours after transfection, proteins were extracted from BmE cells with
NP-40 lysis buffer (Beyotime, Shanghai, China) containing the protease inhibitor phenyl-
methanesulfonyl fluoride (PMSF). The protein concentration was measured using the BCA
assay (Beyotime, Shanghai, China). Protein samples (20 µg) were separated using 8%
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) protein gel, and
then transferred to a polyvinylidene fluoride (PVDF) membrane (GE Healthcare, Pitts-
burgh, USA). Subsequently, samples were treated with primary antibodies (Cas9/tubulin-
specific antibody, 1:10,000) for 120 min at 37 ◦C before incubation for 60 min at 37 ◦C
with a horseradish peroxidase (HRP)-coupled secondary sheep anti-mouse IgG antibody
(1:20,000). Finally, the signal was detected with Pierce enhanced chemiluminescence (ECL)
reagents (Thermo Fisher Scientific, New York, NY, USA).

2.4. Total RNA Extraction

Total RNA was extracted from the BmE cells using TRIzol reagent (Invitrogen, Carls-
bad, CA, USA). Reverse transcription was performed on total RNA (1 µg) using a random
primer (N6), an oligo (dT) primer, and the PrimeScript RT reagent Kit using gDNA Eraser
(Takara, Kyoto, Japan) according to the manufacturer’s protocols.

2.5. Quantitative RT-PCR

The qRT-PCR was performed using SYBR Premix Ex Taq II (Takara, Kyoto, Japan)
according to the manufacturer’s protocols and a qTOWER 2.0 real-time PCR system (An-
alytik Jena, Jena, Germany). The silkworm housekeeping gene ribosomal protein L3 (Rpl3:
GenBank accession number NM_001043661.1) was used as the internal control for RNA
normalization. Primer sets for qRT-PCR are listed in Table S2. Three independent replicates
were analyzed.

2.6. Autophagy Assay

Cell autophagy was assessed using 200 µM monodansylcadaverine (MDC, Sigma,
USA) staining for 60 min at 27 ◦C and 200 nM Lyso-Tracker Red DND-99 (Life technologies,
Carlsbad, CA, USA) staining for 30 min at 27 ◦C. Confocal images were captured using an
FV1000 confocal microscope (Olympus, Tokyo, Japan).

2.7. Statistical Analysis

Statistical differences were evaluated by Student’s t-test for unpaired samples. The
level of statistically significant difference was set at * p value < 0.05, ** p value < 0.01, and
*** p value < 0.001.

3. Results
3.1. Construction of dCas9 and sgRNA Expression System

The nuclease-null dCas9 protein was obtained by mutating spCas9 protein at two sites,
D10A and H840A [17]. In a previous study, we tested both CRISPR activation and CRISPR
interference vector system in silkworm cells [19,35]. As shown in Figure 1A, the codon-
optimized dCas9 with a nuclear localization signal (NLS) and a tripartite activator (VPR;
composed of VP64, p65, and Rta) at the C-terminus was driven by the promoter hr3/A4.
We designed three single guide RNAs (sgRNAs) targeting the early upstream of the FibH
gene which followed the GN(19)NGG sgRNA designing principle [11,12,36,37], and then
the sgRNAs were cloned into the pUC57-U6-sgRNA vector. In this vector, U6 promoter was
used to initiate the transcription of sgRNA scaffold (Figure 1B). The expression of dCas9-
VPR in BmE cells at 48 h after transfection was confirmed using Western blot (Figure 1C),
suggesting that the dCas9-VPR protein was successfully translated in BmE cells.
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Figure 1. CRISPRa system in BmE cells. (A) CRISPR/dCas9 gene activation system. The codon-
optimized dCas9 was initiated with hr3/A4 promoter. A nuclear localization signal (NLS) and a
tripartite activator (VPR; composed of VP64, p65, and Rta) were fused to the C terminal of dCas9.
(B) Single guide RNA (sgRNA) target site in the FibH promoter region. The sgRNA scaffold was
under the control of a U6 promoter. TSS, transcription start site; BmE, Bombyx mori embryonic cells.
(C) Western blot analysis of dCas9-VPR protein. The VPR activation domains was fused to dCas9
and tubulin was used as control.

3.2. The Endogenous FibH Gene of BmE Cells Was Activated by CRISPRa System

The transcription of FibH gene was extremely low in normal BmE cells (Figure 2A). To
activate the FibH gene’s expression, we first designed three sgRNAs for the transcription
start site (TSS) of FibH gene, where sgRNA-FibHT1, sgRNA-FibHT2, and sgRNA-FibHT3
were located at −392 to −370, −42 to −21, and −12 to +10 positions, respectively (Table S1).
Then, two plasmids (dCas9-VPR vector and one of the sgRNA vectors) were co-transfected
into BmE cells, and we found that sgRNA-FibHT1 exhibited the highest target gene (FibH)
activation effect compared with sgRNA-FibHT2, sgRNA-FibHT3, and sgRNA-EGFP (neg-
ative control) on the basis of dCas9-VPR expression (Figure 2A). Next, BmE cell were
transfected with different ratio of sgRNA and dCas9-VPR (9:1, 3:1, 1:1, 1:3, and 1:9), and
the FibH expression increased to the maximum level at the ratio of 9:1 (Figure 2B).
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Figure 2. Transcriptional activation of FibH gene in BmE cells. (A) Relative mRNA levels of FibH
gene at the 48 h after transient transfection of the combination of dCas9-VPR with sgRNA-FibHT1,
sgRNA-FibHT2, sgRNA-FibHT3, sgRNA-FibHT1 + 2 + 3, and sgRNA-EGFP, respectively. (B) Relative
mRNA levels of FibH gene at the 48 h after transient transfection of a combination of sgRNA-FibHT1
with dCas9-VPR in the transfection ratios of 9:1, 3:1, 1:1, 1:3, and 1:9, respectively. Expression
of the silkworm housekeeping gene ribosomal protein L3 (Rpl3) was used as a control. Values are
means ± SD (n = 3). Asterisks represent significant differences determined by a Student’s t-test at
p value < 0.01 (**).
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3.3. Cellular Stress Responses-Related Genes Were Significantly Up-Regulated

Firstly, we investigated the time-course transcriptional profiling of the FibH gene after
transient transfection of sgRNA-FibHT1 and dCas9-VPR at the ratio of 9:1, every 12 h
over 72 h. Sixty hours after transfection, the FibH expression level increased to maximum,
which is about 160 times that of the control level (Figure 3A). In previous study, we
found that secretion-deficient and high-molecular-weight FibH was able to perturb cellular
homeostasis [31,32], which might actuate cellular stress responses, such as autophagy,
ubiquitin-proteasome proteolysis and heat shock response [38]. Next, we investigated
the mRNA levels of autophagy gene (Atg8, a marker gene of autophagic activity [39]),
ubiquitin-proteasome system-related genes (E2 and E3), heat shock response-related genes
(Hsp19.9 and Hsp70), and apoptosis-related genes (Caspase1, Caspase4, Dredd, Dronc, and
ICE) at 60 h after transfection by qRT-PCR. As shown in Figure 3B, the mRNA levels of
the Atg8 exhibit a tendency of increase from 48 to 72 h, and showed the most significant
difference at the 60 h, the same time when FibH expression level increased to a maximum,
in FibH-activated BmE cells. Consistent with this, the mRNA levels of E2, E3, Hsp19.9 and
Hsp70 were also up-regulated (Figure 3C,D). However, none of apoptosis-related genes
was up-regulated in FibH-activated BmE cells (Figure 3E).
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Figure 3. Expression profiles of FibH and cellular stress responses-related genes. (A,B) Relative
mRNA levels of FibH (A) and Atg8 (B) after transient transfection of a combination of sgRNA-
FibHT1 with dCas9-VPR in the transfection ratio of 9:1, every 12 over 72 h. (C–E) Relative mRNA
levels of ubiquitin-proteasome system-related genes (C), heat shock response-related genes (D), and
apoptosis-related genes (E) at the 60 h in FibH-activated BmE cells. Expression of the silkworm
housekeeping gene ribosomal protein L3 (Rpl3) was used as a control. Values are means ± SD (n = 3).
Asterisks represent significant differences determined by a Student’s t-test at p value < 0.05 (*),
p value < 0.01 (**), and p value < 0.001 (***).

Meanwhile, we activated expression of another endogenous fibroin gene (P25) by
CRISPRa system, when the mRNA level of P25 increased to over 500-fold compared to
control (125-fold compared to FibH maximum) (Figure S1A), the mRNA levels of Atg8
showed no significant difference compared to control (Figure S1B), suggesting that acti-
vation of P25, even at a much higher level of expression than that of FibH, did not lead to
up-regulation of the marker gene of autophagy Atg8.

3.4. Autophagy Was Triggered in FibH-Activated BmE Cells

To confirm whether the activated FibH gene triggered cellular stress responses, we
performed autophagy assay through cell staining. The FibH-activated BmE cells were
positively stained red by lyso-tracker red (a dye used to label acidic lysosomes) (Figure 4A)
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and were also positively stained blue using monodansylcadaverine (MDC, a compound
used to label acidic endosomes, lysosomes and autophagosomes) (Figure 4B). Both staining
results show that autophagy occurred in more than 60% of the cells after FibH activation,
but less than 10% in the control. These results suggest that the autophagy was strongly
triggered in the FibH-activated BmE cells.
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Figure 4. Autophagy assay of FibH-activated BmE cells. (A,B) Lyso-tracker staining (A) and the
monodansylcadaverine (MDC) staining (B) of BmE cells at the 60 h after the condition of transient
transfection of a combination of sgRNA-FibHT1 with dcas9-VPR in the transfection ratio of 9:1. The
lysosome is signaled in red. The autophagic cell is signaled in blue. Values are means ± SD (n = 3).
Asterisks represent significant difference determined by Student’s t-test at p value < 0.01 (**).

4. Discussion

The development of silk gland cells and regulation of the fibroin gene are two crucial
issues in silkworm studies [21–23]. B. mori fibroin-deficient mutants are well-known
genetic resources to study the silk production process [28,29,31,32]. Deficient fibroin
proteins caused by fibroin gene (FibH or FibL) variations in these mutants interrupt the silk
production process [27–29,32]. To understand how deficient fibroin proteins regulate the
downstream factors and their biological functions in the development of silk gland cells,
we constructed a CRISPRa system to activate the transcription of endogenous FibH gene of
BmE cells. We found that the cellular stress response-related genes and autophagy were
triggered when FibH was activated.

The VPR activating domain used in the study has been reported to have great potential
for its use in regulating gene expression in BmE cells and silkworm individuals [19]. We are
the first to use dCas9-VPR to activate FibH gene expression in BmE cells, and we found a
condition of transfection (sgRNA and dCas9-VPR vectors with a 9:1 molar ratio; cell culture
for 60 h) for maximizing target gene expression (Figures 2A,B and 3A). We proposed that
the reason causing this unequal transfection ratio of sgRNA: dCas9 might be the difference
of driving efficiency between the hr3/A4 and U6 promoters in BmE cells.

Previous studies of silks revealed that terminal domains are highly important for
the assembly of silk proteins [40–42]. The FibH gene, encoding a high-molecular-weight
(350 kDa) structural protein of fibroin with no catalytic or regulatory function, has a tissue-
specific expression pattern in PSG cells and is completely closed in non-silk gland cells [43].
Once the fibroin fails to form the fibroin unit (FibH-FibL-P25 complex), it cannot be secreted
out of the cells, which leads to the PSG atrophy [26,30]. The mutant/misfolded/aggregated
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fibroin proteins can perturb cellular homeostasis and endanger the cells under severe stress
conditions. Therefore, the stressed cells initiate adaptive responses aiming at reducing
damage to the cells, such as a decrease in global protein translation and an increase in
proteins of the proteolytic system [38,44–46]. These cellular stress responses were also
observed in FibH knock-out silkworms using CRISPR/Cas9 system [47]. The loss-of-
function mutation caused an accumulation of abnormal FibH protein and aroused the
activation of proteasomes as well as autophagy process in the silk gland cells [47], which
was consistent with our results for the autophagy assay and suggested that accumulation of
secretion-deficient (abnormal or mutant) FibH protein in the silk gland cells might lead to
more activation of autophagy process to promote the rapid degradation of such abnormal
proteins and in cells. Thus, we suspected that the cellular stress responses might be caused
by the secretion-deficient fibroin protein that is encoded by the CRISPR-activated FibH gene
in BmE cells, further raising the possibility that secretion-deficient FibH was responsible
for the PSG cell atrophy in fibroin-deficient B. mori mutants. Interestingly, none of the
genes related to apoptosis were up-regulated in FibH-activated BmE cells (Figure 3E). We
inferred that there might be two reasons leading to this phenomenon: (i) the amount of
FibH in BmE cells was not sufficient to induce apoptosis; (ii) the FibH-activated BmE cell
had not reached the time needed to induce apoptosis. The detailed mechanism needs to be
further studied.

Our study showed a significant positive correlation between activated FibH gene
expression and cellular stress responses. Importantly, this might provide a potential
model for studying the autophagy caused by a high-molecular-weight protein and lay a
foundation for the understanding of silk gland development in silk-spinning insects.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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