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Simple Summary: The Ephemeroptera is an ancient lineage of insects, among which the Hepta-

geniidae is one of the most species-rich families although its phylogenetic relationships have been 

controversial. The mitogenomes of Heptageniidae were found gene rearrangements of CR-I-M-Q-

M-ND2 and a conserved intergenic gap between trnA and trnR. Thus, 15 complete and two nearly 

complete mitogenomes of Heptageniidae were used to explore mitogenome structures and clarify 

the disputes of phylogenetic relationships among Heptageniidae. Additionally, the Heptageniidae 

samples collected from habitats with significant temperature differences were applied to investigate 

the adaptive evolution of mitochondrial PCGs under low temperature stress. 

Abstract: We determined 15 complete and two nearly complete mitogenomes of Heptageniidae be-

longing to three subfamilies (Heptageniinae, Rhithrogeninae and Ecdyonurinae) and six genera (Af-

ronurus, Epeorus, Leucrocuta, Maccaffertium, Stenacron and Stenonema). Species of Rhithrogeninae and 

Ecdyonurinae have the same gene rearrangement of CR-I-M-Q-M-ND2, whereas a novel gene rear-

rangement of CR-I-M-Q-NCR-ND2 was found in Heptageniinae. Non-coding regions (NCRs) of 25-

47 bp located between trnA and trnR were observed in all mayflies of Heptageniidae, which may be 

a synapomorphy for Heptageniidae. Both the BI and ML phylogenetic analyses supported the mon-

ophyly of Heptageniidae and its subfamilies (Heptageniinae, Rhithrogeninae and Ecdyonurinae). 

The phylogenetic results combined with gene rearrangements and NCR locations confirmed the 

relationship of the subfamilies as (Heptageniinae + (Rhithrogeninae + Ecdyonurinae)). To assess the 

effects of low temperature stress on Heptageniidae species from Ottawa, Canada, we found 27 pos-

itive selection sites in 8 protein-coding genes (PCGs) using the branch-site model. The selection 

pressure analyses suggested mitochondrial PCGs underwent positive selection to meet the energy 

requirements under low temperature stress. 

Keywords: Heptageniidae; Mitochondrial genome; Gene rearrangement; Phylogenetic relationship; 

Non-coding region (NCR), Selective stress analysis 

 

1. Introduction 

As a primitive group of winged insects, Ephemeroptera is comprised of 40 families, 

460 genera and 3,700 species [1-3]. Ephemeroptera is characterized by multiple ancestral 

signs including extra appendages (seven pairs of gills on larvae along with the forceps 

and long tails of adults), unique prometamorphosis development pattern and wings that 
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do not fold flat over the abdomen, which have been intensely studied in phylogeny and 

historical processes [4-6]. As one of the most species-rich families among Ephemeroptera, 

Heptageniidae consists of 3 subfamilies (Ecdyonurinae, Heptageniinae, and Rhithrog-

eninae), 37 genera, and 606 described species [1,3,7]. Much effort has been made to figure 

out the taxonomy and phylogeny of Ephemeroptera using morphology features, molecu-

lar proofs and combined data [8-12]. Nonetheless, the phylogenetic relationships within 

Heptageniidae remain controversial [7,13]. The phylogenetic systems of both McCafferty 

[9] and Kluge [10,11] supported Heptageniidae as belonging to Branchitergalia (Hepta-

genioidea) with a close relationship to Isonychiidae. The phylogenetic relationship devel-

oped using combined data of morphological characters and several nuclear genes by Og-

den et al. [12] was different from the former hypotheses, and supported Heptageniidae as 

a monophyletic group but its phylogenetic position still remained uncertain. According 

to the newly published study by Ogden et al. [15], the phylogenetic results supported 

Heptageniidae as s sister group to Isonychiidae using over 440 targeted genomic protein 

coding regions (exons). In addition, the internal phylogenetic relationships within Hepta-

geniidae were divided into three subfamilies (Heptageniinae, Rhithrogeninae and Ec-

dyonurinae) and their relationship was shown as (Ecdyonurinae + (Heptageniinae + 

Rhithrogeninae)) by Wang & McCafferty [13] and Webb & McCafferty [7]. By contrast, the 

phylogenetic analysiss was presented as (Rhithrogenidae + (Ecdyonurinae + Hepta-

geniinae)) by Ogden et al. [15]. In addition, the genera Stenonema was redefined to include 

Maccaffertium via two mitochondrial genes (COX1 and 16S rRNA) and two nuclear genes 

(Wingless (Wg) and histone H3) by Zembrzuski & Anderson [16]. 

The typical mitochondrial genome (mitogenome) of insects is a 14-20 kb double-

stranded circular piece of DNA [17-19]. It encodes 37 genes including 13 protein-coding 

genes (PCGs), two ribosomal RNAs (rRNAs, 16S rRNA and 12S rRNA), 22 transfer RNAs 

(tRNAs), and the A+T-rich region (control region, CR). Since the mitogenome has features 

like rapid evolution rates, small genome sizes, relatively low recombination and maternal 

inheritance, it is considered to be an excellent molecular marker for studies in phylogeny, 

evolution and comparative genomics [18,20-22]. Although most insect mitogenomes are 

conservative, gene rearrangements and long non-coding regions (NCRs) have been vari-

ously reported in Coleoptera, Hemiptera, Lepidoptera, Mantodea, Orthoptera, Thysanop-

tera, etc. [19,23-31]. According to published reports, gene rearrangements of tRNA genes 

including duplication, translocation and pseudogenization were mainly concentrated in 

the regions of CR-I-Q-M-ND2, COX1-K-D-ATP8 and ND3-A-R-N-S-E-F-ND5 [31,32]. 

Within the order Ephemeroptera, most species retain the same 37 genes as the hy-

pothesized ancestral mitogenome of insects except for Siphluriscidae, Baetidae, Lepto-

phlebiidae, Ephemerellidae and Heptageniidae [32-41]. The mitogenome of Siphluriscus 

chinensis (Siphluriscidae) encoded an extra trnK located between trnS and trnE in the mi-

nor coding strand [36]. The trnC and trnY in Alainites yixiani (Baetidae) translocated from 

a position between trnW and COX1 into the gene cluster of I-Q-M and the gene order was 

rearranged as I-C-Q-Y-M. Furthermore, one copy of inversion and translocation of trnI 

was detected in Ephemerella sp. Yunnan-2018, Ephemerella sp. MT-2014, Serratella zapekinae, 

Serratella sp. Liaoning-2019 and Serratella sp. Yunnan-2018 along with three duplicate cop-

ies of inversion and translocation of trnI in Torleya grandipennis and T. tumiforceps 

(Ephemerellidae) [32]. The trnA and trnR genes switched positions in Habrophlebiodes zi-

jinensis (Leptophlebiidae) resulting in a gene arrangement R-A-N-S-E-F. Within the family 

Heptageniidae, an extra trnM was observed in the location between trnQ and ND2, thus 

the gene arrangement was arranged as I-M-Q-M in Epeorus herklotsi, Epeorus sp. JZ-2014, 

Epeorus sp. MT-2014 and Parafronurus youi [33-35]. Surprisingly, no gene rearrangements 

were found in Paegniodes cupulatus (Heptageniidae), showing that its gene order was con-

servative and different from other Heptageniidae species. 

Despite the fact that mitogenomes are generally considered to be under neutral or 

nearly neutral selection [42], several studies have pointed out that positive selection acted 

on mitochondrial PCGs linked to environmental adaptations [43-45]. In this way, as a 
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potential target associated with energy metabolism under environmental selection pres-

sure, the mitogenome may be suitable for studying positive selection or natural selection. 

Based on the mitochondrial PCGs of flying and flightless grasshoppers, a significant pos-

itive selection was found in several genes including ND2, ND4, ND4L, ND5, ND6, ATP8 

and COX3 in flying lineages [45]. Hence, this indicated that positive selection stimulated 

mitochondrial genes to better suit the energy demands of flight in grasshoppers. Likewise, 

the mitochondrial PCGs were affected by positive selection from the last common ances-

tor of Pterygota and flying insects, which illustrated that those mitochondrial PCGs re-

lated to energy metabolism had undergone adaptive evolution during the evolution of 

flight capacity in insects [45]. As aquatic insects, mayflies spend most of their develop-

mental stages in the water. Among various environmental factors, the water temperature 

was shown to be crucial to the morphology, behavior, growth and life cycle of mayflies 

[46,47]. Therefore, mayflies were proposed as appropriate models to investigate the adap-

tive evolution of aquatic insects in a low-temperature environment. 

To explore the characteristics of gene rearrangements and the phylogenetic relation-

ship of subfamilies in Heptageniidae, we determined the mitogenomes of seventeen spe-

cies from all three subfamilies and six genera of Heptageniidae. The phylogenetic rela-

tionship within Ephemeroptera was constructed with gene rearrangements and the loca-

tion of NCRs to clarify the phylogenetic controversies. Moreover, samples of several Hep-

tageniinae (Maccaffertium, Stenacron and Stenonema) and Leucrocuta were collected from 

Ottawa,  Canada. The climate there is so cold that the lowest temperature is below 0 °C 

and water temperature is below 10 °C for eight months of the year [48]. Thus, these mayfly 

nymphs had to be exposed to low water temperature for a long time. Other samples of 

Epeorus and Afronurus were from southern provinces (Zhejiang and Yunnan) of China 

where the mean annual water temperature was about 24-26 °C. Accordingly, Hepta-

geniidae samples collected from habitats with significant temperature differences were 

suitable materials to assess adaptive evolution of mitochondrial PCGs under low temper-

ature stress. In brief, our research not only provided a novel insight into the gene rear-

rangements and phylogenetic relationship within Heptageniidae, but also inquired into 

the evolutionary mechanisms of aquatic insect mitochondrial PCGs under low tempera-

ture stress. 

2. Materials and Methods 

2.1. Sampling collection and DNA extraction 

Six specimens were collected from the Rideau River, Ottawa, Canada in July, 2017. 

Eleven specimens were collected from Wu River, Jinhua, Zhejiang province, and Chuan 

River, Jingdong, Yunnan province, China (Table 1). The specimens were all identified 

based on a combination of nymph morphology and the alignment of COX1 genes. Because 

some new species and genus were found in this study, we only identify those species at 

the genus or family level (Table 1). Samples were stored in 100% ethanol at -40°C in Dr. 

JY Zhang’s lab, College of Life Science and Chemistry, Zhejiang Normal University, 

China. Our study included seventeen specimens representing all three subfamilies, nine 

specimens from the subfamily Ecdyonurinae (Afronurus and Leucrocuta), five specimens 

from Heptageniinae (Maccaffertium, Stenacron and Stenonema), and two specimens from 

Rhithrogeninae (Epeorus). Total DNA was extracted from legs or half of the whole indi-

vidual of every species using Ezup Column Animal Genomic DNA Purification Kit (San-

gon Biotech Company, Shanghai, China).  

2.2. PCR amplification and sequencing 

This study used both normal polymerase chain reaction (PCR) and long-and-accurate 

PCR (LA PCR) methods with Takara Taq or Takara LA Taq DNA polymerase (Takara, 

Dalian, China). Normal PCR (product length <3,000 bp) or LA PCR (product length >3,000 

bp) reaction conditions were as in Gao et al. [49]. The mitogenomes were amplified in 700-
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2000 bp short fragments with universal primers according to the method of Simon et al. 

[50,51] and Zhang et al. [33]. Afterwards, we designed specific primers (Table S1) with 

Primer Premier 5.0 [52] according to the obtained sequences. All PCR products were ob-

tained in both forward and reverse directions using the primer-walking method and 

AB13730XL by Sangon Biotech Company (Shanghai, China). 

 

Table 1. Information on specimen sources of the samples used in this study and NCBI Genbank accession numbers. 

Subfamily Species Specimen No. Sampling localities Accession number 

Heptageniinae Maccaffertium mediopunctatum (McDunnough, 1926) 03FY33 Ottawa, Canada MK642302 

Maccaffertium modestum (Banks, 1910) 03FY62  Ottawa, Canada MK642303 

Maccaffertium vicarium (Walker, 1853) 03FY39  Ottawa, Canada MK642304 

Stenacron interpunctatum (Say, 1839) 03FY34 Ottawa, Canada MK642305 

Stenonema femoratum (Say 1823) 03FY36 Ottawa, Canada MK642306 

Ecdyonurinae Leucrocuta Aphrodite (McDunnough, 1926) 03FY51 Ottawa, Canada MK642301 

Afronurus furcata (Zhou & Zhen, 2003) 08BF03 Zhejiang, China MK642293 

Afronurus rubromaculata (You, Wu, Gui & Hsu, 1981) 08BF02 Zhejiang, China MK642294 

Afronurus sp1. YW01BF06 01BF06 Zhejiang, China MK642295 

Afronurus sp2. LS53BF04 53BF04 Zhejiang, China MK642296  

Afronurus yixingensis (Wu & You, 1986) 06BF03 Zhejiang, China MK642297 

Afronurus sp. 07BF85 07BF85 Yunnan, China MW450876 

Afronurus sp. 07BF86 07BF86 Yunnan, China MW450877 

Afronurus sp. 07BF96 07BF96 Yunnan, China MW450878 

Rhithrogeninae Epeorus dayongensis (Gui & Zhang, 1992) 18BF01 Zhejiang, China MK642298 

Epeorus sp. LA03FY06 03FY06 Zhejiang, China MK642299 

/ Heptageniidae sp. YW03BF02 03BF02 Zhejiang, China MK642300 

2.3. Mitogenome annotation and sequence analyses 

We inspected and assembled mitochondrial sequences using DNASTAR Package 

v.7.1 [53]. All tRNA genes and their secondary structures were identified by MITOS 

(http://mitos.bioinf.uni-leipzig.de/index.py) [54]. Two rRNA genes (12S and 16S rRNA) 

and thirteen PCGs were determined by alignments with homologous mtDNA sequences 

from several species in Heptageniidae using Clustal X [55,56]. The nucleotide composi-

tion, codon usage, and relative synonymous codon usage (RSCU) were calculated by 

Mega 7.0 [56]. The GC skews and AT skews were separately calculated using the follow-

ing formulae: AT skew = (A-T)/(A+T), and GC skew = (G-C)/(G+C) [57]. Ttandem repeats 

in CRs were detected via Tandem Repeat Finder V 4.09 [58]. The secondary structures of 

NCRs were found and mapped via RNAstructure Web Servers [59]. 

2.4. Phylogenetic analyses 

Forty-nine species from Ephemeroptera, including fourteen families (Table 2), were 

used in phylogenetic analyses of Heptageniidae and Ephemeroptera [32-41]. The taxon 

Siphluriscus (Siphluriscidae) was recovered as a sister clade to all other mayflies and, 

therefore, S. chinensis from the family Siphluriscidae was selected as the outgroup [12,36]. 

Thirteen PCGs of mayfly mitogenomes were used to construct BI and ML phylogenetic 

trees. The nucleotide sequences of the 13 PCGs were used for DNA alignment by MAFFT 

v 7.475 [60] and the conserved regions were detected by Gblock 0.91b using default set-

tings [61]. The program PartionFinder 1.1.1 was employed on the basis of Bayesian infor-

mation criterion (BIC) to identify the best partitioning scheme and substitution model and 

all twelve partitions were observed (Table S2) [62]. ML analysis was run in RAxML 8.2.0 

with a GTRGAMMAI model and branch support for each node was evaluated with 1,000 

replicates [63]. BI analysis was performed in MrBayes version 3.2 using a GTR+I+G model. 

Each of four chains ran for 10 million generations and sampling every 1,000 generations 

was used for phylogenetic relationship reconstruction [64]. The convergence was evalu-

ated using Tracer version 1.5 and trees from the first 25% of the samples were removed as 

burn-in during BI analysis.  
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Table 2. List of Ephemeroptera mitogenomes used to construct phylogenetic trees. 

Family Genus Species Length (bp) GenBank No. References 

Ameletidae Ameletus Ameletus sp. MT-2014 15,141 KM244682 [35] 

Baetidae Baetis Baetis sp. PC-2010 14,883 GU936204 Unpublished 

Takobia Alainites yixiani 14,589 GU479735 Unpublished 

Caenidae Caenis Caenis sp. JYZ-2018 15,254 MG910499 [33] 

Caenis sp. JYZ-2020 15,392 MN356096 [37] 

Caenis sp. YJ-2009 15,351 GQ502451 Unpublished 

Ephemerellidae Ephemerella Ephemerella sp. MT-2014 14,896 KM244691 [31] 

Ephemerella sp. Yunnan-2018 15,256 MT274127 

[32] 

Serratella Serratella sp. Liaoning-2019 15,523 MT274128 

Serratella sp. Yunnan-2018 15,134 MT274129 

Serratella zapekinae 15,703 MT274130 

Torleya Torleya grandipennis 15,523 MT274131 

Torleya tumiforceps 15,330 MT274132 

Ephemeridae Ephemera Ephemera orientalis 16,463 EU591678 Unpublished 

Ephemera sp. XL-2019 15,314 MK951659 [35] 

Heptageniidae Afronurus Afronurus furcata 15,420 MK642293 This study 

Afronurus rubromaculata 15,519 MK642294 This study 

Afronurus sp. 07BF85 15,473 MW450876 This study 

Afronurus sp. 07BF86 15,696 MW450877 This study 

Afronurus sp. 07BF96 15,491 MW450878 This study 

Afronurus sp. YW01BF06 15,360 MK642295 This study 

Afronurus sp. LS53BF04 15,866 MK642296 This study 

Afronurus yixingensis 15,883 MK642297 This study 

Epeorus Epeorus dayongensis 15,337 MK642298 This study 

Epeorus herklotsi 15,502 MG870104 [30] 

Epeorus sp. JZ-2014 15,338 KJ493406 Unpublished 

Epeorus sp. MT-2014 15,456 KM244708 [31] 

Epeorus sp. LA03FY06 15,514 MK642299 This study 

Leucrocuta Leucrocuta aphrodite 15,428 MK642301 This study 

Maccaffertium Maccaffertium mediopunctatum 15,319 MK642302 This study 

Maccaffertium modestum 15,324 MK642303 This study 

Maccaffertium vicarium 15,324 MK642304 This study 

Paegniodes Paegniodes cupulatus 15,715 HM004123 [104] 

Parafronurus Parafronurus youi 15,481 EU349015  [29] 

Stenacron Stenacron interpunctatum 15,330 MK642305 This study 

Stenonema Stenonema femoratum 15,332 MK642306 This study  
Heptageniidae sp. YW03BF02 15,663 MK642300 This study 

Isonychiidae Isonychia Isonychia ignota 15,105 HM143892 Unpublished 

Isonychia kiangsinensis 15,456 MH119135 [34] 

Leptophlebiidae Choroterpides Choroterpides apiculata 15,199 MN807287 [36] 

Habrophlebiodes Habrophlebiodes zijinensis 14,355 GU936203 Unpublished 

Potamanthidae Potamanthus Potamanthus sp. MT-2014 14,937 KM244674 [35] 

Siphlonuridae Siphlonurus Siphlonurus aestivalis 15,120 MT862395 Unpublished 

Siphlonurus immanis 15,529 FJ606783 Unpublished 

Siphlonurus sp. MT-2014 14,745 KM244684 [31] 

Siphluriscidae Siphluriscus Siphluriscus chinensis 16,616 HQ875717 [32] 

Teloganodidae / 
Teloganodidae sp. 

12,435 KM244703  
[31] 

2,817 KM244670 

Vietnamellidae Vietnamella Vietnamella dabieshanensis  15,761 HM067837 Unpublished 

Vietnamella sp. MT-2014  15,043 KM244655 [31] 

2.5. Positive selection analysis 

The software EasyCodeML [65] was used to evaluate the selective pressure on the 

PCGs of Heptageniidae mitogenomes. Due to the significantly lower environment tem-

peratures experienced by the Heptageniidae species from Ottawa, Canada, these were se-

lected as the foreground branch to investigate the molecular evolution trends of mito-

chondrial PCGs under low temperature stress. Both the branch model and the branch-site 

model were employed to explore whether positive selection occurred on specific branches 

and specific sites at the branch [66,67]. The branch models were performed under the one-

ratio model (M0) presuming that ω was fixed over all of the tree or the two-ratio model 

presuming that ω in specific branches was different from the rest of the tree, respectively. 
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Also, the branch-site models were combined with heterogeneous ω across sites and 

branches, which allows positive selection along specified branches (Model A) and can be 

compared against a null model (Model Anull) that allows neutral evolution and negative 

selection. Likelihood ratio tests (LRTs) and Bayes Empirical Bayes (BEB) were used to as-

sess these models and evaluate the posterior probability of positive selection sites, respec-

tively. Additionally, information on the structure and function of the positively selected 

genes was acquired using UniProt [68] and 3D structures of the corresponding proteins 

were built by SWISS-MODEL Workspace [69]. 

3. Results 

3.1. General features of the mitogenomes  

The seventeen mitogenomes of Heptageniidae used in this study ranged in length 

from 15,319 bp in Maccaffertium mediopunctatum (McDunnough, 1926) [70] to 15,883 bp in 

Afronurus yixingensis (Wu & You, 1986) [71] (Tables S3-S4) and encoded 13 PCGs, two 

rRNA genes, 22 or 23 tRNA genes (containing an extra trnM gene in some species), and 

one CR (Fig. 1). Most of the genes were encoded on the major strand which also called J 

strand, whereas the minor strand (N strand) carried the remaining genes (4 PCGs and 8 

tRNAs). The A+T content, AT-skew and GC-skew of corresponding regions (mitoge-

nomes, PCGs and rRNAs) were separately calculated for each mayfly species and shared 

conserved characteristics with others (Table 3). The tRNAs of these mayflies all showed 

the classical cloverleaf secondary structures.  

  

Figure 1. Circular visualization and organization of the complete mitogenome. External genes on the circle are encoded 

by the positive strand (5'→3') and internal genes are encoded by the negative strand (3'→5'). (A) the mitogenomes in the 

subfamily Ecdyonurinae (Afronurus and Leucrocuta) and Rhithrogeninae (Epeorus), (B) the mitogenomes in the subfamily 

Heptageniinae (Maccaffertium, Stenacron and Stenonema). 

All these mitochondrial PCGs used conventional invertebrate ATN as start codons, 

except that COX1 started with CCG in seven species:  Afronurus (A. furcata (Zhou & Zhen, 

2003) [72], A. rubromaculata (You, Wu, Gui & Hsu, 1981) [73], Afronurus sp. LS53BF04, Af-

ronurus sp. YW01BF06, Afronurus sp. 07BF85, Afronurus sp. 07BF86 and Afronurus sp. 

07BF96). ATP8 started with GTG in most mayflies except for M. mediopunctatum (McDun-

nough, 1926) [70], M. modestum (Banks, 1910) [13], M. vicarium (Walker, 1853) [74], 

Stenacron interpunctatum (Say, 1839) [75], Stenonema femoratum (Say 1823) [76] and Afronurus 

sp. YW01BF06. ND2 started with GTG except for Epeorus dayongensis (Gui & Zhang, 1992) 
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[77], Epeorus sp. LA03FY06 and Afronurus sp. 07BF96. ND5 started with GTG except for 

Leucrocuta aphrodite (McDunnough, 1926) [70] and ND6 started with GTT in S. interpunc-

tatum. Typical stop codons TAA and TAG were observed in the majority of PCGs, whereas 

incomplete stop codons T or TA were assigned in Cyt b (M. mediopunctatum, M. modestum, 

M. vicarium and S. femoratum), COX2 (all species), ND4 (all species) and ND5 (all species). 

The codon number and RSCU in mitochondrial PCGs were conservative among these spe-

cies (Table S5). 

Table 3. Base composition of seventeen mayfly mitochondrial genomes. 

Species name 
Mitogenome-PGC-rRNA-CR  

A+T (%) AT-skew  GC-skew  

Afronurus furcata 64.5 64.4 64.9 56.9 0.005 -0.198 -0.024 0.23 -0.215 -0.004 0.339 -0.16 

Afronurus rubromaculata 64.5 64.6 65.0 65.9 0.009 -0.193 -0.025 0.23 -0.218 -0.010 0.327 -0.11 

Afronurus sp. 07BF85 63.3 62.8 65.5 60.0 -0.03 -0.210 0.032 0.02 -0.16 -0.012 0.284 0.05 

Afronurus sp. 07BF86 64.0 64.4 65.7 54.1 -0.006 -0.191 0.02 0.13 -0.202 -0.017 0.310 0.02 

Afronurus sp. 07BF96 62.9 62.4 65.3 / -0.027 -0.213 0.035 / -0.16 -0.010 0.288 / 

Afronurus sp. YW01BF06 64.6 64.7 64.4 / 0.012 -0.186 0.002 / -0.225 -0.010 0.317 / 

Afronurus sp. LS53BF04 63.3 63.3 64.7 60.1 0.012 -0.198 -0.022 0.16 -0.227 -0.010 0.329 -0.30 

Afronurus yixingensis 65.0 65.1 66.0 63.2 0.003 -0.203 -0.002 -0.01 -0.218 -0.004 0.305 -0.21 

Epeorus dayongensis 64.8 64.2 66.1 73.6 0 -0.191 0.012 0.04 -0.212 -0.024 0.269 0.01 

Epeorus sp. LA03FY06 67.1 66.3 67.6 77.8 -0.014 -0.188 0.02 0.00 -0.24 -0.003 0.307 -0.19 

Leucrocuta aphrodite 65 65.0 65.1 65.4 -0.001 -0.187 -0.001 0.02 -0.186 -0.001 0.284 -0.18 

Maccaffertium mediopunctatum 61.7 61.5 60.7 65.9 -0.002 -0.190 0.015 0.02 -0.178 -0.045 0.234 -0.35 

Maccaffertium modestum 61.3 61.1 60.7 64.0 0.004 -0.191 0.025 0.01 -0.177 -0.038 0.231 -0.33 

Maccaffertium vicarium 62.3 62.3 61.8 65.4 0.005 -0.169 0.013 0.00 -0.172 -0.046 0.253 -0.25 

Stenacron interpunctatum 59.7 59.5 58.8 61.7 0.021 -0.184 0.007 0.05 -0.19 -0.057 0.266 -0.24 

Stenonema femoratum 62.1 61.9 61.1 66.4 0.005 -0.190 -0.011 0.01 -0.166 -0.039 0.234 -0.30 

Heptageniidae sp. YW03BF02 64.2 64.1 64.3 68.5 -0.006 -0.191 -0.011 -0.09 -0.183 0.002 0.27 -0.19 

 

The CRs of Heptageniidae mitogenomes ranged from 487 bp to 1,037 bp, with the 

location between 12S rRNA and trnI. Almost all CRs of these mitogenomes showed the 

highest A+T content compared to other regions (PCGs, rRNA genes and tRNA genes) ex-

cept for A. furcata, A. yixingensis, Afronurus sp. 07BF85, Afronurus sp. 07BF86 and Afronurus 

sp. LS53BF04. The A+T contents of these CRs ranged from 54.1% in Afronurus sp. 07BF86 

to 77.8% in Epeorus sp. LA03FY06. The AT-skew values of the CRs were a little positive 

except for A. yixingensis, Epeorus sp. LA03FY06 and Heptageniidae sp. YW03BF02, 

whereas the GC-skew was strongly negative except for Afronurus sp. 07BF85, Afronurus 

sp. 07BF86 and E. dayongensis. Additionally, tandem repeats were detected in the CRs of 

Afronurus sp. 07BF85, Afronurus sp. 07BF86, Afronurus sp. LS53BF04, A. furcata, A. ru-

bromaculata, A. yixingensis and Heptageniidae sp. YW03BF02 (Fig. S1).  

3.2. Gene arrangements and NCRs 

Two types of gene rearrangements occurred in the I-Q-M tRNA cluster and were 

found in all seventeen freshly sequenced mitogenomes of Heptageniidae (Fig. 2). The ex-

tra trnM was observed in the eleven mitogenomes of the subfamily Ecdyonurinae (Af-

ronurus species, and L. aphrodite) and Rhithrogeninae (Epeorus species). As for the location 

of two trnM copies, one was situated between trnI and trnQ with another between trnQ 

and trnM. Thus, their tRNA cluster was shown as I-M-Q-M. The two copies of trnM genes 

showed high similarity (>70%) and had the same anti-codon (CAU) in nearly all species 

except for the second trnM (UAU) in L. aphrodite (Fig. S2). However, in mitogenomes of 

the subfamily Heptageniinae (Maccaffertium species, S. interpunctatum and S. femoratum), 

a translocation of trnM was found and the trnM gene translocated into the position be-

tween trnI and trnQ. Furthermore, the NCR of 55-57 bp located between trnQ and ND2 

was detected in these species but showed low similarity to adjacent genes. Hence, the gene 

order in the species of Heptageniinae was shown as I-M-Q-NCR and this is the first report 

of this novel gene rearrangement (I-M-Q-NCR) among mayfly mitogenomes. 
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Figure 2. Proposed mechanism of gene rearrangements in the seventeen Heptageniidae mitogenomes. Gene sizes are not 

drawn to scale. Genes encoded by the L-strand are underlined whereas those without underline are encoded on the H-

strand. Different colored boxes represent different genes. The remaining genes and gene orders that were identical to the 

ancestral insect are left out. Horizontal lines, asterisk symbols and crossed-out symbols represent gene duplications, gene 

mutations and gene deletions, respectively. (A) the rearrangement of I-M-Q-M, (B) the rearrangement of I-M-Q-NCR. 

The length, number and distribution of the NCRs in these mitogenomes of Hepta-

geniidae were relatively conservative. The number of NCRs in every mayfly species ranged 

from 7 to 12, whereas the length varied from 1 bp to 57 bp. Excluding the NCRs of short 

length (<15 bp) and the NCR located between trnQ and ND2 (mentioned above), the NCRs 

located between trnA and trnR were observed in all Heptageniidae mitogenomes with 

lengths ranging from 25 bp (M. vicarium) to 47 bp (E. herklotsi). Interestingly, the NCRs could 

be folded as stem-loop secondary structures (Fig. S3) and were highly similar (>70%) to CR 

based on a comparison among the mitochondrial genomic sequences of most species (Fig. 

S4). Notwithstanding, the similarity between the NCR and CR was not exactly high (<70%) 

or the similarity sequence was short (<20 bp) in A. furcata, A. rubromaculata, Afronurus sp.-

07BF86, E. dayongensis, Epeorus sp.-LA03FY06, M. mediopunctatum, M. modestum, M. vicarium, 

S. interpunctatum and S. femoratum. We also observed NCRs located between trnS2 and ND1 

in all mitogenomes of Heptageniidae, which were of 16 bp in length. 

3.3. Phylogenetic analyses 

The BI and ML phylogenetic relationships showed identical topologies (Fig. 3). How-

ever, long-branch attraction (LBA) has been observed in Baetidae (Baetis sp. PC-2010 and 

Alainites yixiani) and Teloganodidae sp. MT-2014 and thus their phylogenetic positions 

still remain uncertain. In general, the monophyly of most families was supported in these 

phylogenetic trees except for Ephemeridae and Siphlonuridae, but the availability of only 

one species in Ameletidae, Polymitarcyidae, and Teloganodidae restricted a discussion of 

their monophyly and phylogenetic relationships. 
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Figure 3. Phylogenetic tree of the relationships among 49 species of Ephemeroptera based on the nucleotide dataset of the 

13 mitochondrial PCGs. Siphluriscus chinensis was used as the outgroup. The numbers above branches specify bootstrap 

percentages from ML (left) and posterior probabilities as determined from BI (right). The GenBank accession numbers of 

all species are shown in the figure. Box images on the right show gene rearrangements and the location of the NCR for the 

various mayfly species. Genes encoded by the minority strand are underlined and those without underline are encoded 

by the majority strand. Different colored boxes represent different genes. The remaining genes and gene orders that were 

identical to the ancestral insect are left out. Gene sizes are not drawn to scale. The asterisks (*) by  Siphlonuridae on the 

far right side mean the separation of these sequences 

Within Ephemeroptera, Isonychiidae was a sister group to the other familiesy, based 

on the phylogenetic topologies. Then, Ameletidae (Ameletus sp. MT-2014) and one branch 

of Siphlonuridae (Siphlonurus aestivalis and Siphlonurus sp. MT-2014) were found to be a 

sister group. Heptageniidae was supported as a sister clade to the remaining Ephemerop-

tera (Baetidae, Caenidae, Ephemerellidae, Ephemeridae, Leptophlebiidae, Potamanthi-

dae, Teloganodidae, and Vietnamellidae). Potamanthidae was the sister clade to 

(Ephemeridae + Siphlonurus immanis), whereas the remaining families formed another 

large clade. (Ephemerellidae + Vietnamellidae) was supported as a sister clade to (Lepto-

phlebiidae + (Caenidae + (Baetidae + Teloganodidae))). 

Concentrating on the phylogenetic relationship within Heptageniidae, the mon-

ophyly of three subfamilies (Ecdyonurinae, Heptageniinae and Rhithrogeninae) and the 

genera Afronurus, Epeorus and Maccaffertium was supported. The branch of Heptageniidae 

was divided into three clades, shown as follows: (Heptageniinae + (Rhithrogeninae + Ec-

dyonurinae)). The first branch of Heptageniinae supported (S. interpunctatum + (S. femora-

tum + Maccaffertium species)). Then Paegniodes cupulatus and Epeorus species formed the 

second branch of Rhithrogeninae. The third branch of Ecdyonurinae supported ((Hepta-

geniidae sp. YW03BF02 + L. aphrodite) + (P. youi + Afronurus species)). 

Significantly, the phylogenetic relationships coincided with the gene order and the 

location of the NCRs. The lineage of Ephemerellidae was consistent with rearrangements 

of the trnI gene. The NCRs located between ND4L and trnT were found in the branch of 

Isonychiidae along with the NCRs located between trnQ and trnM in the branch of 
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Caenidae. Within Heptageniidae, these branches corresponded to different gene arrange-

ments: the gene rearrangement of I-M-Q-NCR in Heptageniinae, and I-M-Q-M in the re-

maining species of Rhithrogeninae and Ecdyonurinae except for I-Q-M in P. cupulatus. 

3.4. Positive selection analysis 

Based on the branch model, 3,722 amino acid sites were used to analyze selective 

pressure based on the alignment of 13 PCGs in 22 species of Heptageniidae. The results 

were as follows: p<0.001, ω0=0.02021, ω=0.02123<1, illustrating that the foreground branch 

(the Heptageniinae species from Ottawa, Canada) were not subject to positive selection 

(Table S6). On the contrary, we observed that 27 amino acid sites were under positive 

selection (p<0.001, BEB value >0.95) in the analyses of the branch-site models, of which 

five amino acid sites were under highly positive selection (BEB value >0.99) (Table 4). The 

27 positive selection sites corresponding to the mitochondrial PCGs were divided into 

eight genes, including COX1 (2 sites), Cyt b (2 sites), ND1 (2 sites), ND2 (5 sites), ND3 (1 

site), ND4 (2 sites), ND5 (6 sites) and ND6 (7 sites). Accordingly, the mitochondrial com-

plex I was the main protein complex under selective pressure, including 23 positive selec-

tion sites. To determine the functional meaning of these positive selection sites, we ex-

plored the feature keys of eight positively selected PCGs from low-temperature branches. 

The majority of the positive selection sites located within or near to the functional domains 

of the proteins were encoded by these genes; 14 of which were situated in the protein 

transmembrane domain of the encoding genes with additionally 6 positive selection sites 

situated in other domains of corresponding genes (Table 5, Fig. S5). 

Table 4. Positive selection analysis of mitochondrial protein-coding genes based on the branch-site model. 

Tree Model Ln L Estimates of parameters 
Model com-

pared 
2ΔL 

LRT P-

value 
Positive sites 

ML 

Model A 

-

121931.169

602 

Site class 0 1 2a 2b 

Model A 

vs 

Model A null 

17.148

7 

0.000044

34 

682 Q 0.988*，749 S 0.979*， 1340 

L 0.977*，1636 V 0.954*， 1827 E 

0.989*，1843 A 0.983*，2118 P 

0.995**，2123 F 0.983*，2167 S 

0.979*，2288 T 0.983*，2311 T 

0.991**，2398 A 0.970*，2613 S 

0.962*，2619 M 0.986*，3001 L 

0.971*， 3005 S 0.964*，3155 S 

0.969*，3313 S 0.984*，3444 S 

0.989*，3466 H 0.978*，3557 L 

0.976*，3566 I 0.996**，3582 C 

0.985*，3664 E 0.996**，3665 Q 

0.984* ，3679 I 0.993**，3712 Q 

0.981* 

Proportion 0.9141 0.0377 0.0463 0.0019 

Back-

ground ω 
0.0137 1.0000 0.0137 1.0000 

Fore-

ground ω 
0.0137 1.0000 2.7648 2.7648 

Model A 

Null 

-

121939.505

555 

/ / 
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Table 5. The features and description of the positive selection sites detected in the mitochondrial PCGs of Heptageniidae 

species. 

Genes Positive selection sites 
Amino acids 

BEB value Feature key* Description 
Foreground Background 

COX1 
408 N Q/K 0.988* Domain COX1 

475 A S 0.979* Domain COX1 

Cyt b 
62 T L 0.977* Domain CYTB_NTER 

358 T/I V/T/I 0.954* Transmembrane Helical 

ND1 
173 Y E/K/Q 0.989* / / 

189 S A/T 0.983* Transmembrane Helical 

ND2 

148 S/G P/S 0.995** Transmembrane Helical 

153 T/S F 0.983* Transmembrane Helical 

197 N S/P/N 0.979* Domain Proton_antipo_M 

318 G/N S/L/T/A 0.983* / / 

341 S S/P/T/L 0.991** / / 

ND3 85 Q A/N/S/T 0.970* / / 

ND4 
183 S G/S/K 0.962* Transmembrane Helical 

189 G M/L 0.986* Transmembrane Helical 

ND5 

25 T L 0.971* Transmembrane Helical 

29 L/A S 0.964* Transmembrane Helical 

179 E/H S/G/T 0.969* Transmembrane Helical 

337 S S/N/I/T 0.984* Domain Proton_antipo_M 

468 L S/V/I/A 0.989* Transmembrane Helical 

490 F N/H/Q/G/S 0.978* Domain NADH5_C 

ND6 

3 T L/F/M 0.976* / / 

12 L T/I 0.996** Transmembrane Helical 

28 I/V C/S/I/V 0.985* Transmembrane Helical 

110 S E/D 0.996** / / 

111 D Q 0.984* / / 

125 P N/T/I/G 0.993** Transmembrane Helical 

158 N Q/N 0.981* Transmembrane Helical 

Note. * and ** indicate BEB values of >0.95 and >0.99, respectively. 

4. Discussion 

4.1. Gene arrangements and NCRs 

The typical gene arrangement occurs in most mayfly mitogenomes, except for Si-

phluriscidae, Baetidae, Leptophlebiidae, Ephemerellidae and Heptageniidae [32-41]. 

Gene rearrangements in these groups are mainly concentrated in the regions of CR-I-Q-

M-ND2 and A-R-N-S-E-F. In our study, the gene rearrangements in the mitogenomes of 

Heptageniidae were divided into two types: a gene arrangement of I-M-Q-M in the sub-

family Ecdyonurinae (Afronurus, Parafronurus and Leucrocuta) and Rhithrogeninae (Epeo-

rus) and a novel gene arrangement of I-M-Q-NCR in the subfamily Heptageniinae (Mac-

caffertium, Stenacron and Stenonema). Moreover, two copies of trnM genes had the same 

anti-codon (CAU) in almost all species excluding the second trnM (UAU) in L. aphrodite. 

The codon AUA is translated as Met in the invertebrate mitochondrial genetic code, like 

the normal codon AUG, as reported in the fruit fly Drosophila melanogaster [78,79]. There-

fore, the second trnM with anti-codon (UAU) was considered to be functional in L. aphro-

dite. Furthermore, similar gene rearrangements occurring in the region of CR-I-Q-M-ND2 

were also reported in other orders of insects, e.g., M-I-Q tRNA cluster in Lepidoptera 

(Manduca sexta) [80], Q-I-M in Hemiptera (Neuroctenus parus) [81], I-I-I-I-I-Q-M in Man-

todea (Schizocephala bicornis) [31], etc. Consequently, the region of CR-I-Q-M-ND2 is re-

garded as a hot spot for gene rearrangements in insects. 

The tandem duplication-random loss (TDRL) model [82,83] was proposed and has 

explained similar gene rearrangements in other insects [81,84]. Therefore, the TDRL 

model can be reasonably used to explain the gene rearrangements of Heptageniidae (Fig. 

2). The region of CR-I-Q-M-ND2 was presumed to be the original gene arrangement. The 

mechanisms of gene rearrangement of I-M-Q-M was assumed to be as follows: a tandem 

duplication of Q-M happened, followed by random loss of the first trnQ, making the gene 

order as I-M-Q-M, as reported in Zhang et al. [33]. As for the gene rearrangement of I-M-
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Q-NCR, we propose that the tandem duplication of Q-M happened, followed by the ran-

dom loss of the first trnQ and the mutation of the second trnM. Consequently, the trans-

location of trnM and the NCR located between trnQ and ND2 were observed in the sub-

family Heptageniinae (Maccaffertium, Stenacron and Stenonema). Notwithstanding, the mi-

togenome of P. cupulatus showed the typical insect gene order and was different from 

other mitogenomes of Heptageniidae. The conservative gene order of P. cupulatus was 

proposed to occur as follows: the extra trnM between trnI and trnQ was lost from the 

ancestral I-M-Q-M type and thus formed the I-Q-M gene arrangement. Therefore, the gene 

arrangements among genera of Heptageniidae need further study. 

Generally, insect mitogenomes are of high compaction with rare and short NCRs ex-

cept for the CR [17]. The great majority of mayfly mitogenomes featured short NCR 

lengths. However, NCRs of 25-47 bp  were located between trnA and trnR and observed 

in all mitogenomes of Heptageniidae [33-35]. This feature is rarely observed in other may-

fly mitogenomes. Thus, this NCR located between trnA and trnR may be a synapomorphy 

for Heptageniidae. The NCRs can form stem-loop secondary structures (Fig. S3), which 

may contribute to the progress of replication slippage and then an increase in duplicate 

copies [85]. Also, the NCR was proposed as an alternative replication origin for mtDNA 

[86,87]. As for the occurrence of the NCR, it was inferred to derive mainly from the corre-

sponding CR because of the high similarity between the two (>70%), such as the complete 

sequence (37 bp) in L. aphrodite (similarity 94.59%) and the partial sequence (23 bp) in P. 

youi (similarity 100%) (Fig. S4). Considering the long distance between the NCR and CR, 

the recombination model may be more suitable to explain NCR production [88,89]. The 

creation of the NCR was presumed to occur as follows: a fragment containing the CR was 

cleaved out and then inserted into a location between trnA and trnR. Although there is a 

low similarity between the NCR and CR (<70%) or the short similar sequence (<20 bp) in 

several species (as mentioned in the results), the NCR was proposed to have evolved in-

dependently under relaxed selective pressure instead of evolving in concert with the CR 

[89]. In addition, the short NCR located between trnS2 and ND1 was detected in all Hep-

tageniidae mitogenomes, and has also been reported in Ephemeroptera and other insects 

[23,32-34,49]. Based on the alignments of these NCRs of all Heptageniidae species (Fig. 

S6), a highly conserved motif of 16 bp (TACTTAAAAARKTCAR)  may be the binding site 

of the transcription termination factor (DmTTF) [90]. 

4.2. Phylogenetic analyses 

Higher-level phylogenetic relationships within Ephemeroptera have not been gener-

ally accepted [8-12]. In our results, the BI and ML phylogenetic analyses shared congruent 

topologies (Fig. 3). S. chinensis, the only species of Siphluriscidae, was deemed as the basal 

group of Ephemeroptera from the study of Ogden et al. [12] and Zhang et al. [33]. The 

next were Isonychiidae, Ameletidae, and one species of Siphlonuridae, as indicated by 

our results. The phylogenetic position of Isonychiidae was convincingly supported by Og-

den et al. [12] as the primitive clade except for Siphluriscidae and Baetidae from topolo-

gies. Then, Heptageniidae was supported as a sister clade to the remaining Ephemerop-

tera by our results, contrary to the topologies constructed by Kluge [10,11] and McCafferty 

[8,9], as well as Ogden et al. [15], which suggested that Heptageniidae was sister to 

Isonychidae based on morphological characteristics and nuclear data, respectively. Based 

on a comparison of our results and other studies, the phylogenetic position of Hepta-

geniidae is still challenging to determine.  

As for Heptageniidae, the monophyly of three subfamilies Ecdyonurinae, Hepta-

geniinae and Rhithrogeninae was supported, consistent with the research of Wang & 

McCafferty [13] and Webb & McCafferty [7]. Nevertheless, the internal phylogenetic clas-

sification within Heptageniidae in our study differed from Wang & McCafferty [13]. In 

our study, the phylogenetic relationship within Heptageniidae was shown as (Hepta-

geniinae + (Ecdyonurinae + Rhithrogeninae)), opposite to the (Ecdyonurinae + (Hepta-

geniinae + Rhithrogeninae)) presented in Wang & McCafferty [13] and (Rhithrogenidae + 
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(Ecdyonurinae + Heptageniinae)) in Ogden et al [15]. When the phylogenetic classification 

was combined with gene rearrangements and NCRs, there was a specific correlation. The 

gene rearrangement of I-M-Q-NCR was concentrated in Heptageniinae and the gene ar-

rangement of I-M-Q-M was observed in the remaining species of Rhithrogeninae and Ec-

dyonurinae except for I-Q-M in P. cupulatus. These results illustrated that Ecdyonurinae 

and Rhithrogenina were closely related and the two formed a sister group to Hepta-

geniinae. Phylogenetic relationships highly congruent with gene rearrangements and 

NCR locations were also reported in other insects [91,92], which suggests that synapo-

morphic gene rearrangements and NCRs have been forming continuously during evolu-

tion and could provide effective phylogenetic information. However, the phylogenetic re-

lationship of the three subfamilies within Heptageniidae was also controversial due to the 

lack of other evidence in our study. In addition, concerning the taxonomy of Stenonema, 

Stenacron and Maccaffertium, compared to the research of Zembrzuski & Anderson [16], it 

is a pity that we could not draw a valid conclusion based on our results because of the 

lack of sequences for these genera. Further morphological and molecular data are required 

to demonstrate a more exact phylogenetic relationship among Ephemeroptera. 

In fact, the gene arrangement of I-Q-M was found only in P. cupulatus of Hepta-

geniidae. This was confusing as to whether such a gene arrangement was specific to the 

genus Paegniodes or formed during the random mutation progress. More mayfly mitoge-

nomes are expected to be sequenced, which will help to explore the types of gene arrange-

ments and clear phylogenetic classifications within Heptageniidae. 

4.3. Positive selection analyses 

Adaptive evolution of mitochondrial genes under environmental pressure is sup-

ported by the present studies [43-45]. Environmental temperature significantly influences 

energy requirements and metabolic adaptation, which is essential to mayflies as aquatic 

insects [46,47]. Multiple subunits of  the mitochondrial complexes associated with oxida-

tive phosphorylation are encoded by mitochondrial genes, with the exception of complex 

II [93]. In this way, positive selection of mitochondrial genes was proposed to be related 

to temperature and adaptation to the energy demands of mayflies.  

Analysis of the branch model showed that there was no positive selection on the fore-

ground branch. It was proposed that information indicating positive selection was possi-

bly covered by continuous neutral evolution or negative selection at most sites in the gene 

sequence [94]. According to the branch-site model, 27 positive selection sites were found. 

It was worth noting that 23 of the positive selection sites were concentrated on the coding 

sequence of mitochondrial complex I. As the first large protein complex of the respiratory 

chains, complex I provides the proton power for ATP synthesis during electron transfer 

from NADH to ubiquinone via the transmembrane proton pump [95-97]. Therefore, com-

plex I is essential for the energy metabolism of cells and drives more than one-third of the 

total energy production in the mitochondrion [87]. ND1-ND6 subunits are regarded as the 

minimal assembly of complex I and form the core of the transmembrane region [98], with 

the ND2, ND4 and ND5 genes proposed to be main candidates to harbor the proton pump 

[99]. The importance of complex I and its subunits can explain the reason for more positive 

selection sites in complex I than in other complexes. In addition, several positive selection 

sites were also observed in the subunits (Cyt b and COX1) of complex III and complex IV. 

Cyt b is the main transmembrane subunit of  Complex III and exerts a crucial function in 

ATP production [100]. Also, complex IV has regulatory effects in the electron transport 

chain and its subunit COX1 starts the assembly process of complex IV [101]. Moreover, 

the positive selection sites in the eight PCGs were located in or close to the functional 

domains based on the structural analysis (Table 5). Consequently, the adaptive changes 

in amino acids at these positive selection sites, especially in the functional regions, were 

proposed to affect protein stability or even function [102,103]. On the whole, mitochon-

drial PCGs are related to energy metabolism and can experience positive selection to cope 

with energy needs under low temperature stress. 
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5. Conclusion 

Fifteen complete mitogenomes and two nearly complete mitogenomes of Hepta-

geniidae were successfully determined. Gene rearrangements in these mitogenomes of 

Heptageniidae were divided into two types: one has the commonly reported gene order 

of I-M-Q-M in the subfamily Ecdyonurinae (Afronurus, Parafronurus and Leucrocuta) and 

Rhithrogeninae (Epeorus), whereas the other has a novel gene order of I-M-Q-NCR in Hep-

tageniinae (Maccaffertium, Stenacron and Stenonema). These gene rearrangements were ex-

plained by the tandem duplication-random loss (TDRL) model. In addition, the NCRs lo-

cated between trnA and trnR were found in all Heptageniidae species and inferred to be 

a synapomorphy for Heptageniidae. The phylogenetic relationships within Ephemerop-

tera were highly congruent with the gene rearrangements and the location of NCRs, sup-

porting the monophyly of Heptageniidae and its internal phylogenetic relationship (Hep-

tageniinae + (Ecdyonurinae + Rhithrogeninae)). The selection pressure analyses indicated 

that mitochondrial PCGs of mayflies underwent positive selection to cope with potential 
energy requirements under low temperature stress. 
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