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Simple Summary: The Cry1Ab toxin content in different plant organs is highly variable by genetic
events and cultivars. This applies particularly to the pollen, which is the main route of exposure
of protected lepidopteran larvae. Thus, uncertainties appear regarding safety assessments on the
basis of analytical and biological studies: (a) genetic events and cultivars produce various Cry1Ab
toxin contents; thus, risk analyses based on single pollen counts may be erroneous; (b) analytical
problems have been identified explaining the high variability of the documented pollen toxin content;
(c) stinging nettle patches subject to maize pollen sedimentation are frequent nearby maize field
edges, where protected nymphalid larvae may feed; (d) substantial maize pollen sedimentation
(300–600 pollen grains/cm2 in the dominant wind direction) occurs on the leaves of stinging nettle;
(e) July and August are the critical months for the young larvae of Nymphalis io, which are the
most sensitive for pollen containing Cry1Ab toxin; (f ) the exposure of these larvae to maize pollen
containing >100 ng of Cry1Ab toxin/g results in <40% mortality and extended developmental times
in younger stages. This is a definite hazard, which is a sufficient legal ground for habitat conservation
of this protected species in Hungary.

Abstract: A credible risk analysis of maize pollen containing Cry1Ab toxin must include the as-
sessment of (i) pollen production and its Cry1 toxin content; (ii) distribution of the pollen grains
in the surroundings; (iii) pollen-catching capacity of the weeds on field edges; (iv) the lifestyle of
protected lepidopteran larvae living on weeds; (v) Cry1 toxin sensitivity of non-target caterpillars; and
(vi) Cry1 toxin resistance of individual non-target populations. The concentration range of 5–4300 ng
Cry1Ab toxin/g dry pollen determined in MON 810 pollen batches is too diverse for handling it as a
single set in any mathematical modeling. Within the work carried out mainly with the DK-440 BTY
cultivar, the seed samples officially received from the variety owner produced significantly different
(250–470 vs. 5–15 ng/g) Cry1Ab toxin concentrations in the pollen. Nymphalis io L1-L3 larvae were
nearly six times more sensitive for Dipel than Nymphalis c-album. Feeding on the back side and in a
leaf nest, Vanessa atalanta may be subject to lower pollen exposures. N. io larvae may actively attempt
to avoid patches with high pollen contamination. Cry1Ab toxin resistance also partially emerged in
N. io populations reared in the Pannonian Biogeographical Region (Hungary).

Keywords: MON 810; Cry1Ab toxin; protected caterpillars; Urtica dioica; Nymphalis io; Nymphalis
c-album; Vanessa atalanta; maize pollen distribution; Cry1Ab toxin resistance

1. Introduction

Pollen containing Cry1Ab toxin ingested by non-target lepidopteran larvae that con-
sume weeds emerging in maize fields has received wide attention by conservation biologists.
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Danaus plexippus larvae, reared on Asclepias syriaca leaves dusted with the pollen of
“Bt maize” (N4640 maize, SYN-BT11-1—Cry1Ab), reduced their feeding activity, showed
delayed growth, and suffered higher mortality than larvae reared on leaves dusted with
maize pollen without Cry1Ab toxin [1]. Several commentaries [2–5] followed this pio-
neering paper, emphasizing that the toxicity observed is a more complex phenomenon
than thought earlier, due to the interplay among various factors, including natural maize
pollen distribution, Cry/Vip toxin content of different genetic events of maize (presently:
ACS-ZM4-3—Cry9C, DAS-01507-1—Cry1Fa, DKB-89614-9—Cry1Ac, MON-810-6—Cry1Ab,
MON-89034-3—Cry2Ab2 + Cry1A.105; SYN-BT11-1—Cry1Ab, SYN-IR162-4—Vip3Aa20, etc.)
and cultivars, species sensitivity to Cry/Vip toxin, and the conservation status of lepi-
dopteran species living in Europe.

After Hungary joined the European Union (EU), the EU natural heritage became
enriched by a unique region constituting a biogeographical unit, namely, the Pannonian
Biogeographical Region. In the Pannonian Biogeographical Region, representing 3% of
the total area of the EU, there are 55 habitat types of Community interest, representing
as much as 26% of the protected habitats in the EU [6]. Most (85%) of the Pannonian
Biogeographic Region is located in Hungary. In Hungary, 179 Lepidoptera species are
protected by national law [5], an additional 19 species are rigorously protected, and 16 other
species of Community interest are under strict regulation [7,8], which is unique even in
European practices of conservation biology. Nevertheless, Hungary is a leading maize
producer after France in the EU, holding pronounced interests in the very sensitive maize
seed production, which has led to exceptionally cautious views regarding the cultivation of
genetically modified (GM) plants [9].

MON 810—producing Cry1Ab toxin [10–16]—authorized for cultivation in the EU
is resistant to Ostrinia nubilalis and Helicoverpa armigera. There has been an ongoing for-
mal debate on non-target environmental effects, resulting in several national moratoria.
Economic reasons, such as the technology fee for patents, the contract system restricting
farmers’ rights, concerns regarding the narrowing of national variety choices, practical
problems of field treatment and consumer aversion all play roles in rendering MON 810 the
only genetic event in the EU approved for public cultivation. Only Spain and Portugal
have authorized and cultivated MON 810 maize cultivars in practically important field
sizes. It reached ~30% of maize production in Spain during 2010–2015. Our aim with this
retrospective view based on our earlier published studies [5,9–13,17,18], referred to by some
controversial European model ([19] vs. [20–22]) on risk analysis and used by European
Food Safety Authority for its statements, is to reassess this issue and recalculate our results
due to the emotionally based political battles in the EU.

A credible risk analysis regarding maize pollen (depicted in Figure 1) must include
the assessment of: (i) pollen production and Cry/Vip toxin content in various cultivars;
(ii) distributions of the pollen grains in the surroundings; (iii) pollen-catching capacity of
the leaves of weeds on field edges; (iv) the lifestyle of rare/protected lepidopteran larvae
living on critical weeds; (v) Cry/Vip toxin sensitivity of non-target lepidopteran larvae;
and (vi) Cry toxin resistance of individual non-target subpopulations.
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of 2.5 × 10−7 g/dry pollen grain (4000 dry pollen grains weighing 1 mg) and a pollen amount 
of approximately 3000 pollen grains/anther. In the very dry year of 2002, when only the 
lead branch of the tassel flowered, pollen production of DK-440 BTY maize was nearly 40 
kg dry weight/ha near Budapest (Nagykovácsi) [17]. Pollen production of maize cultivars 
can be widely variable among varieties in which the male parent is event MON 810 and 
the female partner is a well-adapted national cultivar (e.g., Pactol vs. Pactol CB, DK-440 
vs. DK-440 BTY, Nobilis vs. Novelis). In addition, weather conditions, particularly the 
quantity of rain prior to tassel formation, also strongly affect pollen production [17,23]. 

The Monsanto documentation, registered in the databases of AGBIOS, specifies the 
Cry1Ab toxin content of MON 810 8–11, 0.1, and 0.2–0.9 µg Cry1Ab/g fresh weight in the 
leaf, the pollen, and the seeds [24,25]. Other authors reported substantially different 
[26,27] or similar values [11,28] (Figure 2). The Cry1Ab toxin content of pollen is consid-
ered low relative to the leaves, but its variability [24,28,29] is high: 0.01–0.49 µg Cry1Ab/g 
fresh pollen. Lang et al. [29] and Nguyen and Jehle [28] measured dry pollen samples. 
What is the reason for the high variability? 

Figure 1. Main elements of a risk analysis regarding lepidopteran larvae feeding on Urtica species con-
taminated with sedimented MON 810 pollen (sketch) Notes: + increases the risk; – decreases the risk.

2. Pollen Production and Cry1Ab Toxin Content of MON 810 Cultivars

Average anther numbers vary between 2400 and 4100 per plant in maize cultivars,
showing a great variability among cultivation sites and years. In turn, the potential pollen
yield was calculated to be 160–220 kg dry pollen/ha, considering an average pollen weight
of 2.5 × 10−7 g/dry pollen grain (4000 dry pollen grains weighing 1 mg) and a pollen
amount of approximately 3000 pollen grains/anther. In the very dry year of 2002, when
only the lead branch of the tassel flowered, pollen production of DK-440 BTY maize was
nearly 40 kg dry weight/ha near Budapest (Nagykovácsi) [17]. Pollen production of maize
cultivars can be widely variable among varieties in which the male parent is event MON
810 and the female partner is a well-adapted national cultivar (e.g., Pactol vs. Pactol CB,
DK-440 vs. DK-440 BTY, Nobilis vs. Novelis). In addition, weather conditions, particularly
the quantity of rain prior to tassel formation, also strongly affect pollen production [17,23].

The Monsanto documentation, registered in the databases of AGBIOS, specifies the
Cry1Ab toxin content of MON 810 8–11, 0.1, and 0.2–0.9 µg Cry1Ab/g fresh weight in the
leaf, the pollen, and the seeds [24,25]. Other authors reported substantially different [26,27]
or similar values [11,28] (Figure 2). The Cry1Ab toxin content of pollen is considered low
relative to the leaves, but its variability [24,28,29] is high: 0.01–0.49 µg Cry1Ab/g fresh
pollen. Lang et al. [29] and Nguyen and Jehle [28] measured dry pollen samples. What is
the reason for the high variability?
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Figure 2. Average Cry1Ab toxin content in various organs of MON 810 maize cultivars reported by
different authors. Notes: red arrows show the minimum values; a—[24], b—[25], c—[26], d—[27],
e—[29], f—[28], g—[11].

2.1. Differences between Genetically Modified Cultivars

The non-GM (called near-isogenic) female line may cause significant differences be-
tween compositions of cultivars. Data depicted on Figure 2 illustrate this characteristic
difference among cultivars, as the near isogenic line was different in every case indicated.
Bruns and Abel [26] and Abel and Adamczyk [27] tested a Pioneer (DuPont→ Corteva)
hybrid, Nguyen and Jehle [28] worked with a Novelis (Monsanto→ Bayer) cultivar, and
Székács et al. [11] experimented with a DeKalb (Monsanto→ Bayer) cultivar. The last clas-
sical steps (i.e., ♀Nobilis + ♂MON 810→ Novelis; ♀DK-440 + ♂MON 810→ DK-440 BTY)
in seed production may change several parameters of Cry1Ab toxin production. In our
case, in 2001 and 2004, we obtained two DK-440 BTY seed samples, both originating from
Monsanto Hungary. Significant differences were found in Cry1Ab toxin production in
the pollen of these two varieties of a single maize cultivar of MON 810 in two lots of the
same cultivar (termed DK-440 BTYA and DK-440 BTYB in this paper for distinction) to be
470 and 5-20 ng Cry1Ab toxin/g dry pollen, respectively [11,17,18]. Thus, the first seed
lot (DK-440 BTYA) of the two allotments received from the variety owner, both labeled
“DK-440 BTY”, produced significantly more Cry1Ab toxin in the leaves, roots, and pollen
sack as well [11,12,30] than the second shipment (DK-440 BTYB). The great variety in
Cry1Ab toxin content indicates that the pollen density alone is not sufficient to clearly
characterize the toxicological effects of MON 810 maize pollen on sensitive lepidopteran
larvae [19–21]. Toxin content in the pollen must be also taken into consideration. In contrast,
most authors in the scientific literature handled risk assessments solely based on pollen
density. This has been the most considerable, although not the only, problem with early
risk analysis [19–21]. We have described the levels of and the variability in Cry1Ab toxin
content in MON 810 maize [11,12,16,30,31], but variations in the levels of this toxin can
be even greater in other genetic events. SYN-EV176-9 maize pollen contains nearly ten to
fifty times more Cry1Ab toxin/g pollen than MON 810, on average. The term “Bt maize”
(GM maize expressing Bacillus thuringiensis endotoxin(s), e.g., Cry1Ab) is rather broad both
from analytical and toxicological aspects: the Cry1Ab toxin content in different organs
(including pollen) is highly variable by genetic event and cultivar. The concentration
range of 5–4300 ng Cry1Ab toxin/g pollen ([12,16–18,24,25] vs. [19–22]) determined in
MON 810 pollen batches is too diverse for handling it as a single set in any mathematical
modeling. Not considering the high differences in the toxin content in pollen, and thus



Insects 2022, 13, 206 5 of 12

ignoring the data originating from corresponding analytical studies, is the key problem
with the present risk analysis of non-target Lepidoptera to Bt maize pollen [19–22].

2.2. Cry1Ab Toxin Production Changes during Plant Development

The toxin concentration was found to show a rapid rise in the leaves by the end of
the 5th week of cultivation, followed by a gradual decline by the 16th week and a slight
increase again during the last 2 weeks due to partial desiccation. Similar, but smaller
fluctuations of toxin levels were seen in the roots during plant development. In contrast,
Cry1Ab toxin levels appeared to be stable in the stem, anther wall, pollen, and grain
(Figure 2) [11–13,16,30,31].

Cry1Ab toxin content was significantly reduced in leaves at the lowest leaf level,
compared with the higher leaf levels, due to partial leaf necrotization. A substantial (up
to 22%) plant-to-plant variation in Cry1Ab contents in the leaves was observed. When
studying toxin distribution within the cross and longitudinal sections of single leaves, less
variability was detected diagonally, with an approximately 20% higher toxin concentration
at or near the leaf vein. More significant variability was seen lengthwise along the leaf at the
sheath and rising to a maximum concentration at the middle of the lamella. Cry1Ab toxin
contents may exhibit significant decreases toward the leaf tip due to necrotization [12].

2.3. Analytical Difficulties of Cry1Ab Determination

Widely used analytical methods for the detection of Cry toxins are enzyme-linked
immunosorbent assay (ELISA—Envirologix, Abraxis, etc.) systems. Reported Cry1Ab toxin
concentrations in MON 810 maize show high variability: order of magnitude differences
have been observed among various plant parts from different varieties, those cultivated at
different locations, and sometimes even within the same plant variety at a single location. In
addition to being biological sources of variability, numerous analytical problems have been
identified explaining the high variability among the documented data on toxin content.
Two fundamental difficulties of analytical determinations of Cry1Ab toxin in Bt plants have
been highlighted: the problem of the quantitative detection of plant-produced preactivated
toxin (a 91 kDa molecular weight N-terminal fragment of the protoxin) with ELISAs based
on protoxin-specific (a 131 kDa molecular weight microbial toxin) antibodies, on the one
hand, and the calibration difficulty of commercial ELISA systems with linear regression
instead of the sigmoid calibration typical for immunoassays, on the other hand. In addition,
results obtained with different ELISA methods are often not directly comparable with each
other [13,16,30,31].

3. Frequent Weeds on Maize Field Edges in the Pannonian Biogeographical Region
and Their Maize Pollen-Catching Capacity

The stinging nettle (Urtica dioica) is a common plant species living at areas adjacent
to maize fields in Hungary, and certain sensitive lepidopteran larvae develop on this
weed [5,32]. These protected caterpillars can sporadically live on Rubus spp. [17] and thorn
apple (Datura stramonium) as well; however, these latter assemblages are rarely found in
Hungary.

In our experiments, carried out at Zsámbék, Hungary, we determined pollen densities
of 190, 328, 339 and 1114 pollen grains/cm2 at the same time and leaf level in maize,
stinging nettle, thorn apple and marshmallow (Althea officinalis), respectively [17]. The
pollen-catching capacity of plant leaves is maximal if the size of the sticky hairs is nearly
the same as the pollen grains (diameter 70–100 µm), such as in Urtica species. Thus, the
pollen-retaining features of stinging nettles are better than those of maize, but worse than
marshmallow. After 1 month (wind and rain effects), marshmallow retained nearly half of
the maize pollen caught on the leaf surface, the corresponding pollen-retaining capacity of
stinging nettle was 13%, whereas that of maize and thorn apple were as low as 0–1% [17].

The leaf surface/biomass ratio of U. dioica (the host plant of Nymphalis io larvae) is
2.8-times higher than that of Senecio jacobae (the host plant of Danaus plexippus larvae).
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N. io larvae ingest 7 or 35 pollen grains along with consumed host leaf material during the
first larval instars in cases of 100 or 500 pollen cm2 maize pollen densities on stinging nettles,
respectively [17]. Larvae in the last instars of N. io consumed a leaf biomass corresponding
to 2600-times more surface with maize pollen grains than the 1st instar [recalculated from 17],
while the corresponding value for V. atalanta is 2100.

4. Maize Pollen Distribution

Maize pollen is released during periods of dry air weather conditions. Maize pollen
is typically shed from a single plant within 8 days, with a difference of 8 days between
pollen shed in a maize population from the first and last individuals, corresponding to
an average of approximately 16 days of the male flowering period within a single maize
field [23,32–36]. The duration of pollen shedding may be doubled, or sometimes even
tripled, especially at field edges with weedy perimeters, where herbicide treatments are
not very effective.

4.1. Pollination Time of Maize in the Pannonian Biogeographical Region

According to a decade-long experience [5,18,31,32], individual maize plants are pol-
linated in 4–8-day periods annually. At the field level, pollination lasts 7–21 days. The
pollination variability of the individual plants was particularly strong in the first 5 m
of the field (i.e., edge effect). Maize hybrids had shorter pollination periods (7–14 days)
than the open pollinated local variety. The whole maize pollination period—for different
varieties with the FAO number assortment in a country—is rather wide. The pollination
time depends on the time of sowing, the soil temperature during seed emergence, soil
quality, water management and weather conditions. Maize pollination is frequent during
the second half of July and August in the Pannonian Biogeographical Region. The duration
of maize pollination is important for caterpillar larval stages living on Urtica spp. This
defines the time window for this exposure.

4.2. Average Pollen Density of Maize Cultivars

Pollen densities detected on stinging nettle were in the same range (frequently found
to be 230–350 pollen/cm2) that was determined on maize leaves at similar leaf levels. We
have never detected such a high pollen density [5,17,18,32] as that which had been reported
by Fahse et al. in their mathematical model [21]. The N. io larvae actively avoid feeding on
leaf patches with pollen densities over 1000 pollen grains/cm2 (practically very rare cases,
mostly near the main leaf vein), and for this reason, dose-dependence does not exist in the
case of maize pollen with Cry1Ab toxin content. In the case of Dipel (a bioinsecticide with
Cry1 toxin as active ingredient), the situation is very different [17]. The protein content of
MON 810 maize pollen (not identical to that of Dipel) activates the feeding sensors of the
larvae, which triggers them to avoid the leaf surfaces covered heavily with maize pollen.
Thus, maize pollen alters the host plant quality for N. io larvae. Not considering this effect
is also an important weakness all mathematical models presented in this field [19–22].

5. Protected Lepidopteran Larvae near Edge of the Maize Field

Exposure to pollen containing the transgenic Cry1Ab toxin may exert detrimental
effects on non-target lepidopteran species as well. Direct mortality as an acute toxicity sign
of Cry1 toxin is well known. Chronic mortality types such as longer developmental times,
and sometimes lower pupal weights, may also occur [5,17,18]. The likelihood of predation
(mostly by insectivorous birds), parasitoids and pathogens becomes elevated when the
larval development is slow. We frequently observed that N. io larval populations are
regularly reduced by a viral pathogen (cypovirus 2) and certain parasitoids (Sturmia bella,
Tachinidae and Pteromalus puparum, Pteromalidae) in Hungary [17,18,37]. During a 12-year
experimental period, all the MON 810 pollen-treated larvae were infected by cypovirus 2
on one occasion, and N. io pupae were ~60% infected by P. puparum in different years.
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5.1. Lifestyles of Protected Lepidopteran Larvae Living on Urtica Species

The peacock butterfly (N. io), comma butterfly (Nymphalis c-album), small tortoiseshell
(Aglais urticae) and red admiral (V. atalanta) are protected species in Hungary. The map
butterfly (Araschnia levana) is another nymphalid larva that also feeds on Urtica species,
but it does not have a protected status in Hungary. In cases of protected species (this legal
status may change nation by nation), no risk is acceptable (can be tolerated), and in these
cases, the host plant quality needs to be undisturbed. Maize pollen containing Cry1 toxin
cannot comply with the protected status, because it changes the host plant quality of Urtica
species at maize field edges and may cause disturbances in the larval development. Thus,
MON 810 maize cannot constitute a part of integrated pest management [38]. Living on
nettles, Aglais urticae is also a controversial species which showed only negligible effects for
Bt maize pollen (without Cry1 toxin measurement) [39,40].

In cases of multivoltine species—A. urticae, N. io, N. c-album, V. atalanta, which has two
generations in Hungary—only half of the populations are exposed to maize pollen [5,17,32].
Only monophagous species have no chance to develop on other host plants (Figure 3).
Nevertheless, not all Urtica populations are settled down the edge of maize fields. Therefore,
only a small part of the larval populations is at a possible hazard. This is another fact which
cannot be significantly assessed by the present risk analysis [19–22].
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Caterpillar lifestyles (Figure 3) may heavily alter the effects of DK-440 BTYA pollen. 
In the case of young V. atalanta larvae (L1–L3), leaves have been rolled and, in this shelter, 
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Figure 3. Larval stadia of nymphalid species developing on Urtica spp. in the Pannonian Biogeograph-
ical Region [5,17,18,32]. Notes: Italics bold—protected species; colors: yellow—maize pollination,
green—untreated population, white—active imago, blue—larval diapause or hibernation of imago,
purple—migration to South Europe; letters: G—generation number, T—maize pollen-treated genera-
tion number, F—feeding type (M—monophage, O—oligophage, P—polyphage), L—larval life style
(S—solitary larva, G—larvae in group), H—feeding habits (B—back part of the leaf, F—front part of
the leaf, D—larva shelters in leaf web), W—overwintering (P—pupa, I—imago, M—no overwintering
strategy, imago migration).

Caterpillar lifestyles (Figure 3) may heavily alter the effects of DK-440 BTYA pollen.
In the case of young V. atalanta larvae (L1–L3), leaves have been rolled and, in this shelter,
larvae do not reach the maize pollen settled. Referring to our study [5], Perry et al. [19]
considered V. atalanta and N. io as having equal larval sensitivity to pollen containing
Cry1Ab toxin; however, our referred article did not mention the name of this species at
all. It has also been strange that they refereed to us when stating that the first instar is the
most sensitive stage to Cry1Ab toxin, although we have never stated this in any written
communication. In fact, 7 years later, we published that the second instar is the most
sensitive to Dipel [17].

The young larvae of N. c-album feed (peel) alone on the back (dorsal) part of Urtica
leaves, whereas maize pollen settles down on the front (ventral) surface. Thus, the pollen
contact in this case is also low. In contrast, the young larvae of N. io and A. urticae feed on
the front of the leaves. Moreover, N. io larvae feed in groups in their first to third instars.
They need stimuli in their younger ages for a normal feeding behavior. This peculiar
feeding pattern may lead to increased mortality when the larvae sense being exposed to
too much maize pollen and begin looking for other places for feeding. The mortality rate of
N. io larvae is higher when they remain alone [41]. These are reasons why species show



Insects 2022, 13, 206 8 of 12

such widely different sensitivity to Cry1 toxin. N. c-album is nearly sixfold less sensitive
to Dipel than N. io [17]. None of the current risk analyses [19–22] may suitably handle
differing species sensitivities; instead, they try to build a model for an “imaginable uniform
species” when facts are distinctive. There are overly numerous advisers of the concept of
“knowledge-based modeling”, and too few active researchers involved in experimental
work focus on lepidopteran larval development and behavior in the laboratory, obtaining
factual and applicable laboratory and field data [17,18,38–41].

5.2. Toxicity Types of Cry1Ab on Nymphalis io Larvae

Pollen with low toxin concentrations (<20 ng Cry1Ab/g pollen) did not exert any
effects (in our case, the DK-440 BTYB—Figure 4) on N. io larvae. In contrast, pollen
of higher toxin content (>100–400 ng Cry1Ab toxin/g pollen—DK-440 BTYA—Figure 4)
exerted substantial observable effects on N. io larvae feeding on nettle leaves covered with
300–600 pollen grains/cm2 [18]. Low mortality at early larval stages (usually not more than
40% during larval development—Figure 4), delayed early larval development (L1–L3) and
lower larval weights until L3 were observed. Moreover, viral infection (cypovirus 2) of the
last (L5) instars was unusually frequent. N. io larvae appeared to be more sensitive to Cry
toxins (Dipel clearly show this sensitivity [17]) than the other species tested (N. c-album,
V. atalanta). A concentration dependence of larval mortality on pollen density is hard to
establish, because larvae can actively avoid feeding on leaf parts contaminated with a high
density of maize pollen.
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A vast number of field studies have been published based on simple pollen densities
on weed leaves without Cry1Ab toxin quantification. We do not cite these articles, because
the real extent of exposure to Cry1Ab toxin is questionable in these cases.

5.3. Variable Larval Sensitivities of Nymphalis io Subpopulations—Cry1 Toxin Resistance

The emergence of resistance to Cry1Ab toxin in insect subpopulations is well known
today [18,42–47], although mostly is mentioned in relation to pest species only; however,
resistance can be developed in non-target insect species as well. In our laboratory, when
working with shared egg batches of N. io which originated from a distinct pair, using
the same simple method as presented earlier [11,18,32], we found that progenies of the
same two parents were tolerant to the Cry1Ab toxin content in pollen in six cases, with
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no mortality found in these cases at up to nearly 600 pollen grains/cm2 (MSG cultivars—
150 ng Cry1Ab toxin/g pollen). Cry1Ab-resistant N. io subpopulations—no surprise—are
originally parts of the Hungarian lepidopteran larval population [9,16,18].

6. Consequences for a Credible Hazard Assessment

The debate on the effect of Cry1 toxin, which settles on the leaves of Urtica species,
changes the quality of host plant and causes destruction of the sensitive larval population
part of nymphalid species, and is now flaring up again ([19] vs. [20–22,45,46]). The fact
of the hazard to N. io based on laboratory tests cannot be denied [2,5,16,30,40,43], but
the extent of the risk is small for A. urticae [38,40], N. c-album [17] and V. atalanta [17].
Nonetheless, the risk is also limited for N. io, given the small populations that develop
on the edges of cornfields. The published mathematical models are oversimplified and
contradict with each other, i.e., are the basis for the corresponding EFSA opinion [19] and
others [20–22], and do not consider countless relevant biological facts (see Figure 1) clearly
established under laboratory tests. Furthermore, the role of the highly variable Cry1Ab
toxin contents of MON 810 pollen is completely ignored in this ongoing debate [19–22,48,49].
Ultimately, assessment is simplified to pollen counting without sufficient environmental
analysis [50–54], whereas the relationship to pollen count (even though the Cry1Ab toxin
content of pollen stocks are usually different) to larval mortality is not even linear. As seen
from our laboratory feeding experiments, I. io L1–L3 rejects high maize pollen density and
does not consume the area of the leaf vessels where deposition occurs in higher quantities.
In our opinion, the likelihood of the actual occurrence of the hazard is low; therefore, the
hazard caused by Cry1Ab toxin in maize pollen is in the range of that of any type of Bacillus
thuringiensis formulation, such as Dipel [55], and certainly does not exceed the hazard of
neurotoxic insecticides applied in practice again the corn borer.

As seen from the above discussion, MON 810 cultivars producing more than 100 ng
Cry1Ab toxin/g pollen exert an existing hazard to nymphalid larvae. In a valid risk
assessment, the question is the likelihood of exposure. In the case of protected species,
however, no alteration of the habitat is allowed legally; therefore, the existent hazard is a
sufficient cause for restrictions, although in regular cases, risk as a produce of hazard and
exposure needs to be considered.

The issue of management of the hazard to wildlife is presently based on environmental
law in Europe. This is different from country to country. In Hungary, where N. io has a
legally protected status, the observed hazard is a sufficient cause to prohibit the cultivation
of MON 810 cultivars that produce more than 100 ng Cry1Ab toxin/g pollen. In the case of
butterflies not falling under legal environmental protection, the corresponding risk caused
by Cry1Ab toxin-containing maize pollen would probably not justify a cultivation morato-
rium for MON 810. Moreover, regular insecticidal control against O. nubilalis and H. amigera
(these are rare insect pests in Hungary [14]) or Diabrotica virgifera (occurring sporadically
in Hungary) may cause a similar or higher damage in the protected butterfly populations
as the pollen of MON 810. During 2020, abamectin, acetamiprid, beta cyfluthrin*, chlo-
rantraniliprole, chlorpyrifos*, cypermethrin, esfenvalerate, indoxacarb, lambda cyhalothrin,
methofenozide and thiacloprid* (note: * indicates the active ingredient has not been applied
in formulated pesticide products in 2021) were listed as authorized active ingredients for
insect control in maize fields in Hungary. This is a very sharp contradiction—between
Cry1 toxin-containing pollen and authorized insecticide treatments—in cases of protected
nymphalid species in Hungary.

The interest in maize pollen dispersal has originated in different areas: (i) gene flow
resulting in intraspecific hybrids in European seed production [9,23,56,57]; (ii) direct envi-
ronmental impacts on sensitive non-target species as far as some meters from maize fields
in the case of varieties producing Cry toxins; and (iii) the effects on honeybees collecting
maize pollen as a protein source to feed their larvae and thereby contaminating honey.

In the case of intraspecific hybridization, shorter or longer isolation zones are in-
volved. Nonetheless, despite the short pollen lifetime and low pollen numbers in the air,
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the GM-pollen source can result in intraspecific hybridization with maize hybrids and
interspecific hybridization with wild teosinte relatives in Central America. Most of the
related publications consider the critical hybridization zone being several hundred meters
long. In our experiments, we found ~10% colored seeds at 200 m in the case of a white
maize cultivar. We did not find—using genetically dominant blue colored maize as a
pollen source—intraspecific hybridization near 800 m in a valley (Nagykovácsi—Budapest,
Ady-liget) and in the direction of prevalent wind [57].
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