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Simple Summary: Hyphantria cunea is a cosmopolitan quarantine pest that can sustain on a wide
range of host plants. However, the role of the digestive physiology of H. cunea larvae in regulating its
multi-host adaptation has not been reported. Herein, we found that α-amylase and trypsin played
an important role in nutrient metabolism and host adaptation of H. cunea. Furthermore, H. cunea
larvae had highly adaptable compensatory mechanisms for digestion in response to insect digestive
enzyme inhibitors. The findings reveal that digestive physiology mediates the multi-host adaptation
of H. cunea larvae.

Abstract: Digestive physiology mediates the adaptation of phytophagous insects to host plants. In
this study, the digestive characteristics of Hyphantria cunea larvae feeding preferences on different
host plants were investigated. The results showed that the body weight, food utilization, and nutrient
contents of H. cunea larvae feeding on the high-preference host plants were significantly higher than
those feeding on the low-preference host plants. However, the activity of larval digestive enzymes in
different host plants presented an opposite trend, as higher α-amylase or trypsin activity was observed
in the group feeding on the low-preference host plants than that feeding on the high-preference host
plants. Upon treatment of leaves with α-amylase and trypsin inhibitors, the body weight, food intake,
food utilization rate, and food conversion rate of H. cunea larvae significantly decreased in all host
plant groups. Furthermore, the H. cunea comprised highly adaptable compensatory mechanisms of
digestion involving digestive enzymes and nutrient metabolism in response to digestive enzyme
inhibitors. Taken together, digestive physiology mediates the adaptation of H. cunea to multiple
host plants, and the compensatory effect of digestive physiology is an important counter-defense
strategy implemented by H. cunea to resist plant defense factors, especially the insect digestive
enzyme inhibitors.

Keywords: Hyphantria cunea; digestive enzymes; nutrients; host plant; adaptation

1. Introduction

Hyphantria cunea (Lepidoptera: Erebidae) is a cosmopolitan quarantine pest that
originated in North America and is mainly distributed in the United States and southern
Canada [1,2]. It was first introduced in Hungary from its origin in 1940 and exploded
on a large scale in 1945 [3]. At present, H. cunea has invaded over 32 countries [4]. In
China, the H. cunea invasion began in 1979, and since then, it has spread to 613 county-level
administrative regions in 14 Chinese provinces. H. cunea exhibits the characteristics of
high food intake and prolonged damage time [5]. Upon invasion, H. cunea can eat up the
whole plant leaves, inhibit the growth of trees and crops, and eventually result in severe
destruction of forest and agriculture ecological balance [6]. Additionally, H. cunea often
feeds and pupates on plants in public areas, such as parks and on the sides of roads, thereby
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affecting the daily life of local residents [7]. The damages caused by H. cunea have seriously
threatened agriculture and forestry production and ecological security [8]. In 2022, ten
Chinese ministerial-level departments listed the control of H. cunea as a key mission.

H. cunea, as a high polyphagy pest, can sustain on a wide range of host plants. It
has been reported that H. cunea can feed on 636 host plants, of which 120 are found in
the United States, 300 in Japan, 219 in South Korea, and 234 in Europe [9–12]. In China,
more than 300 host plants have been reported as potential hosts for H. cunea, covering
almost all the tree, flower, and crop species [13]. Phytophagous insects exhibit distinct
preferences for the host plants [14]. Schowalter et al. (2017) found that H. cunea exhibits a
high preference for Morus alba, Platanus acerifolia, Carya cathayensis, Fraxinus pennsylvanica,
and Ulmus americana [7]. Jang et al. (2015) found that Cornus kousa and most coniferous
tree species are non-feeding species for H. cunea [15]. Numerous studies revealed that
during the process of co-evolution between phytophagous insects and plants, insects
evolved a digestive physiological regulatory mechanism to achieve the best adaptation
for different host plants. As demonstrated by Lazarevi et al. (2017), Lymantria dispar
larvae exhibit increased trypsin activity upon feeding on the low-preference host plant,
Robinia pseudoacacia, compared with the high-preference host plant, Quercus palustris [16].
Sarate et al. (2012) showed that Helicoverpa armigera exhibits enhanced larval adaptation to
pigeon peas and chickpeas (low-preference host plants) through increasing gut amylase
activity [17]. Strong host adaptability is also an important aspect of the wide host spectrum
for H. cunea [18]. Currently, the studies on the host adaptability of H. cunea mainly focus
on the host plant screening, as well as the feeding and oviposition selection behavior of H.
cunea to different host plants [19,20]. However, no systematic study has been conducted
to explore the adaptive mechanism of H. cunea larvae to multiple host plants from the
perspective of digestive physiology.

Digestion and absorption are two important aspects of digestive physiology and can
affect the adaptability of phytophagous insects to host plants at varying degrees [21]. The
levels of these two aspects are mainly determined by the digestive enzyme activity of
phytophagous insects, such as α-amylase and trypsin. In this regard, we hypothesized
that digestive physiology based on digestive enzymes mediates the formation of multiple
host characteristics of H. cunea. To test the above-mentioned hypothesis, we fed H. cunea
larvae with leaves of high-preference (Ulmus pumila, Fraxinus mandshurica, and M. alba),
medium-preference (Juglans mandshurica and Betula platyphylla), and low-preference (Albizia
kalkora and Tilia amurensis) host plants. Subsequently, the larval growth and food utilization
status, content of nutrients, and activity of digestive enzymes were measured. Furthermore,
the regulatory roles of digestive physiology on the adaptation of H. cunea to multiple host
plants were demonstrated in reverse by the treatment of α-amylase and trypsin inhibitors.
The relevant findings of this study helped in determining the correlation between the
digestive physiology and multi-host adaptability of H. cunea and provide a theoretical
foundation to analyze the outbreak of H. cunea.

2. Materials and Methods
2.1. Experimental Host Plants

According to the results of our previous study [22], the larvae of H. cunea exhibit
a high preference for U. pumila (UP), F. mandshurica (FM), and M. alba (MA), a medium
preference for J. mandshurica (JM) and B. platyphylla (BP), and a low preference for A. kalkora
(AK) and T. amurensis (TA). Therefore, these seven tree species were selected as host plants
to test in this study. Except for MA, which was 2 years old (purchased from Baima Mountain
Spring Agricultural Development Co., Ltd., Taian, China), the rest of the trees were 3 years
old (purchased from Shenyang Ruihe Technology Service Co., Ltd., Shenyang, China) at
the time of testing. In May 2022, all plants were planted in pots (400 × 350 mm) containing
10 kg of soil substrate. The soil substrate consisted of sand, turf soil, and vermiculite at a
ratio of 1:3:1. A total of 300 host plants per species were planted and maintained under
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natural light conditions. During the experiment, the plants were watered every two days
and weeded over time to ensure normal growth.

2.2. Experimental Insects

In July 2022, egg masses of H. cunea were collected from Hengshui, Hebei province,
China. The egg masses were incubated in an incubator (HPG-280HX, Harbin Donglian
Electronic Technology Development Co., Ltd., Harbin, China) at a temperature of 25 ± 1 ◦C,
relative humidity of 70 ± 1%, and a photoperiod of 16L:8D [23]. After hatching, the larvae
were reared on the artificial diets (purchased from the Ecology and Nature Conservation
Institute, Chinese Academy of Forestry, Beijing, China) under the same conditions until
the third instar. Third-instar larvae with a molting time of less than 24 h were selected. All
larvae were divided into 7 groups and reared on the leaves of 7 host plants, respectively. The
temperature, humidity, and photoperiod of the larval growth environment were consistent
with the incubation environment. The larvae were not starved before being transferred
from artificial diet to the leaves. The larvae were kept in plastic boxes that contain sufficient
leaves (133 × 80 × 48 mm). Each box was fed with 5 larvae. To keep the food plentiful and
fresh, the leaves were changed once a day.

2.3. Treatment with Insect Digestive Enzyme Inhibitors

Newly molted 4th instar larvae were selected from each host plant group. These larvae
from each host plant group were divided into three parts. One part was used as the non-
inhibited group (denoted as CK) and continued to be reared on the original plant leaves. The
other two parts were fed with leaves of host plants sprayed with either α-amylase inhibitor
(denoted as AI) or trypsin inhibitor (denoted as TI), respectively. The α-amylase inhibitor
was purchased from Shanghai Renbang Pharmaceutical Technology Co., Ltd., Shanghai,
China and the trypsin inhibitor was purchased from Shanghai Beyotime Biotechnology
(Shanghai, China). Based on the results of our preliminary experiments, the α-amylase
inhibitor and trypsin inhibitor were constituted in distilled water at a concentration of
750 g/L and 200 g/L, respectively. The prepared inhibitor solutions were evenly sprayed
onto the leaf surface of each host plant. A total of 1 mL of treatment solution was sprayed
on every 5 leaves. After drying at room temperature, the leaves were used to feed the 4th
instar larvae of H. cunea. When these larvae reached the 5th instar stage, they were divided
into two parts. One part was propagated for the next 48 h and then collected to obtain the
whole larval body or midgut tissue samples. The other part was used to determine the
larval body weight and food utilization parameters.

2.4. Body Weight and Food Utilization of H. cunea Larvae

Using the method developed by Gao et al. (2022) and Jiang et al. (2018), the food
utilization by H. cunea larvae was measured [24,25]. During the experiment, the larval body
weight and fresh leaf mass were measured before feeding, and then, the larval body weight,
fecal mass, and residual leaf mass were measured after 48 h of feeding. The corrected water
loss rate was calculated using the leaves that were not fed by H. cunea larvae. A total of
three replicates were set for each group, and each replicate consisted of 10 larvae. The food
intake, food consumption rate, conversion rate, and utilization rate of H. cunea larvae were
calculated using the following formula:

Food intake (g) = (mass of fresh leaves before feeding − mass of residual
leaves after feeding)/(1 − corrected water loss rate);

Food consumption rate (%) = (food intake − fecal discharge quality)/food
intake × 100%;

Food conversion rate (%) = (weight after feeding − weight before feeding)/(food
intake − feces discharge quality) × 100%;
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Food utilization rate (%) = (weight after feeding − weight before feeding)/food
intake × 100%.

2.5. Determination of Nutrient Contents in H. cunea Larvae

The contents of total protein (A045-4), total amino acids (A026-1-1), glucose (A54-
1-1), trehalose (A49-1-1), and free fatty acids (A042-2-1) in the larvae of H. cunea were
determined using the kit. All kits were purchased from Nanjing Jiancheng Bioengineering
Institute. Briefly, the larvae in each group, at a ratio of weight (g): volume (mL) = 1:9, were
mixed with normal saline and ground using a mortar and pestle. The larvae tissues for
trehalose determination were ground with the extracting solution provided in the kit. The
homogenate was centrifuged at the speed and time per the manufacturer’s instructions
(10 min at 2500 rpm for total protein, glucose and free fatty acids; 10 min at 3500 rpm for
total amino acids; 10 min at 8000× g for trehalose). Subsequently, the supernatant was
collected for nutrient content determination according to the manufacturer’s instructions.
Three replicates were set for each group, and each replicate consisted of three larvae.
The total protein, total amino acids, glucose, trehalose, and free fatty acids contents of
H. cunea were expressed as mg/g, µmol/mg prot, mmol/g prot, mg/g tissue, and mmol/g
prot, respectively.

2.6. Determination of Digestive Enzyme Activity in the Midgut of H. cunea Larvae

The content or activity of the protein (A045-4), α-amylase (C06-1-1), and trypsin (A080-2)
in H. cunea larval midgut were determined using the kit. All kits were purchased from
Nanjing Jiancheng Bioengineering Institute. The tissue was mixed with normal saline at
a ratio of weight (g): volume (mL) = 1:9. Subsequently, the samples were ground using
a plastic grinding pestle in a 1.5 mL centrifuge tube. After centrifugation at 2500 rpm
for 10 min, the supernatant was collected. The protein concentration and α-amylase and
trypsin activities of the supernatant were determined according to the manufacturer’s
instructions. Three replicates were set for each group, and each replicate consisted of
midgut tissue from five larvae. Both α-amylase and trypsin activities were expressed as
U/mg prot.

2.7. Statistical Analysis

The significance of larval body weight, food utilization index, nutrient content index,
and activity of digestive enzymes among different host plant groups were analyzed by
the one-way analysis of variance (ANOVA) after testing for variance homogeneity and
normal distribution or achieving variance homogeneity and normal distribution by log-
transforming if necessary (Tables S1 and S2). Independent sample t-test analysis was
performed to analyze the significance of each parameter between the non-inhibited and
AI treatment groups or between the non-inhibited and TI treatment groups (p < 0.05)
(Table S3).

3. Results
3.1. Digestive Enzyme Activity of H. cunea Larvae

The larval α-amylase and trypsin activities in the BP, AK, and TA groups were signifi-
cantly higher than those in the UP, FM, MA, and JM groups (Figures 1 and 2). Compared
with the CK group, the larval α-amylase activity in all AI-treated host plant groups was
significantly decreased (Figure 1A). Among them, those feeding on AI-treated FM groups
exhibited the lowest activity. However, the larval trypsin activity was significantly in-
creased in the medium-preference host plant (JM and BP) groups after AI treatment and
significantly decreased in the high- and low-preference host plant (UP, FM, MA, AK, and
TA) groups after AI treatment (Figure 2A). After TI treatment, the α-amylase and trypsin
activities of larvae were significantly inhibited in all host plant groups (Figures 1B and 2B).
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Of which, the strongest inhibition effect on the two digestive enzyme activities was ob-
served in the TI-treated TA group, and the inhibition rate of α-amylase activity and trypsin
activity was 52.38% and 58.42%, respectively (Figures 1B and 2B).
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Figure 1. The α-amylase activities of H. cunea larvae treated with AI (A) or TI (B). Data in the figure
are presented as the mean ± SE (N = 3); lowercase letters indicate the difference between different
host plant control groups (p < 0.05); * indicates the significant difference between the non-inhibited
and AI treatment groups or between the non-inhibited and TI treatment groups for the same plants
(p < 0.05).
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Figure 2. The trypsin activities of H. cunea larvae treated with AI (A) or TI (B). Data in the figure are
presented as the mean ± SE (N = 3); lowercase letters indicate the difference between different host
plant control groups (p < 0.05); * indicates the significant difference between the non-inhibited and AI
treatment groups or between the non-inhibited and TI treatment groups for the same plants (p < 0.05).

3.2. Growth status of H. cunea Larvae

The body weight of H. cunea larvae that were fed on high-preference host plants was
significantly higher than those fed on low-preference host plants (Figure 3). Of these,
the larvae that were fed on UP exhibited the highest body weight, and those fed on TA
exhibited the lowest body weight. The larval body weight in all AI- or TI-treated host plant
groups was significantly suppressed compared to the CK group (Figure 3A,B). The most
significant suppression effect of either AI or TI treatment was observed in the UP group,
with the inhibition rates as high as 61.68% and 61.85%, respectively (Figure 3A,B).

3.3. Food Utilization of H. cunea Larvae

The food intake and food conversion rates of H. cunea larvae in the high-preference
host plant (UP, FM, and MA) groups were significantly higher than those in medium- and
low-preference host plant groups (Figures S1 and S2). The food utilization rate of H. cunea
larvae on high- and medium-preference host plants was significantly higher than those on
low-preference host plants (Figure 4). The food consumption rate of H. cunea larvae on
high-preference plants was significantly lower than those on medium- and low-preference
host plants (Figure 5). Compared with the CK group, after UP, FM, MA, JM, BP, AK, and
TA groups were treated with AI or TI, the larval food intake, food conversion rate and food
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utilization rate of H. cunea larvae exhibited a significant decrease (Figures S1 and S2 and 4),
whereas the larval food consumption rate was significantly elevated (Figure 5).
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Figure 3. Body weight of H. cunea larvae treated with AI (A) or TI (B). Note: Data in the figure are
presented as the mean ± SE (N = 3); lowercase letters indicate the difference between different host
plant control groups (p < 0.05); * indicates the significant difference between the non-inhibited and AI
treatment groups or between the non-inhibited and TI treatment groups for the same plants (p < 0.05).
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Figure 4. Food utilization rate of H. cunea larvae treated with AI (A) or TI (B). Data in the figure are
presented as the mean ± SE (N = 3); lowercase letters indicate the difference between different host
plant control groups (p < 0.05); * indicates the significant difference between the non-inhibited and AI
treatment groups or between the non-inhibited and TI treatment groups for the same plants (p < 0.05).
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Figure 5. Food consumption rate of H. cunea larvae treated with AI (A) or TI (B). Data in the figure
are presented as the mean ± SE (N = 3); lowercase letters indicate the difference between different
host plant control groups (p < 0.05); * indicates the significant difference between the non-inhibited
and AI treatment groups or between the non-inhibited and TI treatment groups for the same plants
(p < 0.05).
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3.4. Nutrient Contents of H. cunea Larvae

The contents of various nutrients (total protein, total amino acids, glucose, trehalose,
and free fatty acids) in larvae that were fed on the high-preference host plants were
significantly higher than those fed on the low-preference host plants (Table 1). Upon
AI or TI treatment, the total protein content of larvae significantly increased in the AK
and medium-preference host plant groups (JM and BP) but significantly decreased in the
high-preference host plant groups; the total amino acids content of larvae was significantly
increased in the MA group, but significantly decreased in the FM, medium- and low-
preference host plant groups (JM, BP, AK, and TA); the larval contents of glucose and
trehalose in all plant groups were significantly decreased; the larval content of free fatty
acids was significantly increased in the JM and high-preference host plant groups (UP, FM,
and MA), but significantly decreased in the BP and low-preference host plant groups (AK
and TA).
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Table 1. Nutrients content of H. cunea larvae.

Nutrient Content UP FM MA JM BP AK TA

Total protein
(mg/g)

CK 10.53 ± 0.65 ab 11.55 ± 0.41 ab 10.02 ± 0.25 b 12.11 ± 0.41 a 7.37 ± 0.63 c 7.66 ± 0.66 c 7.08 ± 0.88 c
AI 8.19 ± 0.18 * 9.60 ± 0.47 * 7.33 ± 0.61 * 14.83 ± 0.20 * 13.77 ± 1.24 * 10.73 ± 0.27 * 8.18 ± 0.53
TI 7.70 ± 0.75 * 9.12 ± 0.54 * 8.08 ± 0.60 * 17.05 ± 0.66 * 14.02 ± 1.11 * 11.32 ± 1.14 * 8.63 ± 0.30

Total amino
acids (µmol/mg prot)

CK 1.92 ± 0.19 a 1.90 ± 0.12 a 1.80 ± 0.05 ab 1.83 ± 0.13 ab 1.52 ± 0.19 abc 1.41 ± 0.13 c 1.18 ± 0.05 c
AI 2.31 ± 0.20 * 1.20 ± 0.07 * 2.00 ± 0.01 * 1.09 ± 0.14 * 0.85 ± 0.11 * 0.96 ± 0.01 * 1.02 ± 0.01 *
TI 1.94 ± 0.19 1.26 ± 0.14 * 2.30 ± 0.04 * 1.07 ± 0.02 * 0.96 ± 0.07 * 0.84 ± 0.10 * 0.86 ± 0.03 *

Glucose
(µmol/g prot)

CK 110.30 ± 3.41 a 120.90 ± 11.36 a 110.90 ± 3.31 a 82.20 ± 15.37 b 55.20 ± 1.56 b 62.00 ± 6.61 b 67.60 ± 3.80 b
AI 40.70 ± 1.97 * 85.50 ± 1.22 * 88.90 ± 4.83 * 48.10 ± 3.68 * 27.80 ± 1.74 * 41.70 ± 7.66 * 37.70 ± 1.50 *
TI 62.40 ± 3.06 * 76.80 ± 7.96 * 81.95 ± 4.97 * 43.50 ± 6.60 * 36.90 ± 6.09 * 52.60 ± 1.57 * 53.90 ± 1.80 *

Trehalose
(mg/g tissue)

CK 8.69 ± 0.30 a 9.26 ± 0.29 b 7.23 ± 0.46 c 5.75 ± 0.13 d 2.50 ± 0.21 e 1.24 ± 0.11 f 3.82 ± 0.41 g
AI 2.43 ± 0.12 * 4.50 ± 0.52 * 1.81 ± 0.16 * 3.60 ± 0.44 * 0.74 ± 0.35 * 0.53 ± 0.15 * 0.60 ± 0.18 *
TI 2.48 ± 0.24 * 4.21 ± 0.37 * 3.50 ± 0.28 * 3.34 ± 0.58 * 0.85 ± 0.57 * 0.38 ± 0.04 * 0.78 ± 0.23 *

Free fatty acids
(µmol/g prot)

CK 114.60 ± 11.28 a 55.00 ± 3.40 b 105.60 ± 7.98 a 49.00 ± 11.30 b 6.30 ± 1.28 c 11.20 ± 1.60 c 9.40 ± 2.00 c
AI 152.90 ± 6.38 * 79.40 ± 11.24 * 223.90 ± 6.15 * 80.20 ± 5.09 * 1.70 ± 0.21 * 2.60 ± 0.35 * 3.10 ± 0.54 *
TI 157.20 ± 13.98 * 79.20 ± 7.09 * 269.80 ± 9.98 * 84.10 ± 8.50 * 2.80 ± 0.91 * 2.80 ± 1.94 * 3.10 ± 1.58 *

Data in the table are presented as the mean ± SE (N = 3); lowercase letters indicate the difference between different host plant control groups (p < 0.05); * Indicates the significant
difference between the non-inhibited and AI treatment groups or between the non-inhibited and TI treatment groups for the same nutrients in the same plants (p < 0.05).
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4. Discussion

Generally, phytophagous insects use their own digestive physiological mechanisms
to improve the efficiency of food utilization for adapting to the host plants [26,27]. In
the present study, the body weight, food utilization rate, and nutrient contents (e.g., total
protein and total amino acids) of H. cunea larvae feeding on the high-preference host
plants were found to be significantly higher than those feeding on the low-preference host
plants. This supports the results of our previous study [22], indicating that H. cunea exhibits
different preferences for the host plants. It is worth mentioning that the food consumption
rate of H. cunea larvae in the low-preference host plant group was significantly higher than
those in the high-preference host plant group. The food consumption rate is an important
indicator that characterizes the food absorption capacity of phytophagous insects [25,28]. It
indicates that H. cunea enhances the level of larval adaptation to the low-preference host
plants by increasing the absorption capacity. However, inconsistent with the expected
results, the α-amylase and trypsin activities in the midgut of H. cunea larvae feeding on
the high-preference host plants were significantly lower than those feeding on the low-
preference host plants. A possible reason is that H. cunea larvae are more easily able to
digest and absorb the high-preference host plants than the low-preference host plants.
Namely, it only needs relatively few digestive enzymes to efficiently absorb the nutrients
from the high-preference host plants. Similarly, Chai et al. (2016) found that the amylase
and cellulase activities in the gut of Agasicles hygrophila larvae were higher when feeding
on the non-palatable host plants than those feeding on the palatable host plants [29]. A
reverse trend was also reported by Shen et al. (2022), who found that among the five
host plant groups, Dendrolimus houi larvae feeding on the high-preference host plants
exhibited the highest digestive enzyme activity [30]. Our results, together with these
previous findings, suggest that the response of digestive enzymes in phytophagous insects
to the host plants with different preferences varies depending on the insect species or the
content of endogenous inhibitors in these plants.

To further clarify the physiological function of digestive enzymes, we perturbed the
digestion physiology of H. cunea larvae by spraying the inhibitors of digestive enzymes
onto the leaf surface and then analyzed the adaptability of H. cunea to different host plants.
Our results revealed that the body weight, food utilization status, several nutrients content,
and α-amylase activity of H. cunea larvae upon AI treatment were significantly reduced.
The function of α-amylase is to convert the starch into oligosaccharides, a precursor for
glucose abortion [31–33]. These results suggest that the absence of α-amylase or functional
impairment of α-amylase inhibits normal nutritional metabolism and attenuates the growth
of H. cunea larvae. Trypsin is a key enzyme involved in the process of food protein
hydrolysis [34]. The inhibition analysis revealed that the growth and digestive physiology
trends of H. cunea larvae in the TI treatment group were consistent with those in the AI
treatment group. It further indicates that the absence of trypsin may lead to inefficient
uptake and utilization of nutrients (e.g., total protein) from the host plants by H. cunea,
which ultimately leads to the growth retardation of H. cunea larvae. In addition to digestive
physiology disorders, another possible reason for the reduced growth of H. cunea larvae
caused by AI and TI is that inhibitor treatment reduces the palatability of plant leaves, as
inhibitor-treated larvae in all host plant groups consume significantly less food. However,
the food consumption rate increased following the addition of inhibitors across the board,
irrespective of high and low preference towards host plants. This suggests once again that
H. cunea larvae may be trying to adapt to adverse environmental conditions by improving
their absorption capacity. This ability has also been reported in H. cunea larvae adaptation to
other stressors, such as secondary metabolites and heavy metals stress [35–37]. Interestingly,
treatment with digestive enzyme inhibitors attenuated differences in larval adaptation
between high- and low-preference host plant groups, as shown by the fact that the AI
and TI treatment reduced the difference in larval body weight from 65.77–135.17 mg to
38.66–74.14 mg between high and low feeding groups. A large number of studies have
shown that compared with low-preference host plants, high-preference host plants have
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higher nutrient content and lower endogenous digestive enzyme inhibitor content [38–40].
After treatment with exogenous enzyme inhibitors, the H. cunea larvae could not effectively
absorb nutrients from plants with high preference. This has led to a narrowing of the
differences in the degree of adaptation. Another reason may be that digestive disorders
lead to weakened digestive and taste nervous system functions, but further research is
needed. Taken together, our results demonstrate that α-amylase and trypsin play an
important role in nutrient metabolism and host adaptation of H. cunea.

Numerous studies have demonstrated that phytophagous insects are capable of regu-
lating their digestive physiology to meet nutrient requirements [41–43]. This is a strategy
used by insects to adapt to adverse conditions [44,45]. In the present study, the α-amylase
activity in larval midgut was found to be significantly reduced in all AI-treated host plant
groups, but the trypsin activity was significantly increased in the AI-treated JM and BP
groups. Similar compensatory effects of digestive enzymes have been reported in other
Lepidopteran insects. For example, Bezerra et al. (2017) found that Ephestia kuehniella
exhibited a significant increase in chymotrypsin activity in vivo after treatment with TI [46].
Kuwar et al. (2019) also found that the trypsin activity of H. armigera larvae that were fed
on soybean upon TI treatment was significantly increased [47]. These findings suggest that
if the host plant has a high content of an insect digestive enzyme inhibitor, phytophagous
insects can still regulate the activities of other digestive enzymes to compensate for the
adverse effects of such inhibitors to promote the absorption and utilization of food nutri-
ents [48]. Additionally, the nutrient content analysis revealed similar compensatory trends
in the nutrient content of H. cunea larvae after treatment with AI or TI. For example, the
total amino acids and free fatty acids contents were significantly higher in both AI- and
TI-treated MA groups. It is further shown that H. cunea larvae have highly adaptable com-
pensatory mechanisms for digestion, including digestive enzymes and nutrient metabolism,
in response to unfavorable conditions. The insect digestive enzyme inhibitors secreted
by plants are a common class of chemical defense compounds against phytophagous
insects [47,49]. The compensatory effect exhibited by H. cunea to the digestive enzyme
inhibitors may be implicated as a counter-defense strategy in response to their endogenous
plant resistance factors. It is not difficult to conclude that the highly adaptable digestive
physiological compensation effect may be the reason for the multi-host adaptability and
host expansion of H. cunea larvae.

5. Conclusions

The digestive physiology of H. cunea plays an integral role in its adaptation to mul-
tiple host plants. The H. cunea larvae can improve larval food utilization and absorption
efficiency on host plants by regulating the activity of larval digestive enzymes. This helps
H. cunea maximize its adaptation to a variety of host plants and ensure its spread and host
expansion. Additionally, H. cunea exhibits a highly adaptable digestive physiological com-
pensation effect involving digestive enzymes and nutrient metabolism. This is implicated
as a counter-defense strategy evolved by H. cunea in response to the endogenous resistance
factors of host plants, especially the inhibitors of insect digestive enzymes. The findings
of this study provide new insights into potential strategies to analyze the spread and host
expansion of H. cunea.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects14050463/s1; Figure S1: Food intake of H. cunea larvae;
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homogeneity of variances; Table S3: Independent samples test.
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