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Simple Summary: Insects regulate their physiology and behavior through their circadian clock in
response to daily changes in the photoperiod. Parasitoid wasps are well-known biocontrol agents.
Therefore, understanding the circadian activities of parasitoid adults may help improve biological
control strategies. In the present study, we characterized the circadian patterns of emergence, mating,
and oviposition of an ectoparasitoid wasp, Pachycrepoideus vindemmiae. We also identified eight
clock candidate genes, most of which showed significant rhythmic expressions. These results serve
as a starting point for further functional studies of the clock genes in P. vindemmiae as well as in
other parasitoid wasps. The findings of this study also provide information that could contribute to
improving biological control strategies using parasitoid wasps.

Abstract: Despite the importance of circadian rhythms in insect behavior, our understanding of
circadian activity and the molecular oscillatory mechanism in parasitoid wasp circadian clocks is
limited. In this study, behavioral activities expected to be under the control of the endogenous
circadian system were characterized in an ectoparasitoid wasp, Pachycrepoideus vindemmiae. Most
adults exhibited emergence between late night and early morning, while mating only occurred during
the daytime, with a peak at midday. Oviposition had three peaks in the early morning, late day, or
early night and late night. Additionally, we identified eight putative clock genes from P. vindemmiae.
The quantitative PCR (qPCR) results indicate that most clock genes showed significant rhythmic
expressions. Our comparative analysis of clock genes in P. vindemmiae and 43 other parasitoid wasps
revealed that none of the wasps possessed the timeless and cry1 genes commonly found in some other
insect species, suggesting that the circadian clock system in parasitoid wasps is distinct from that
in other non-Hymenoptera insects such as Drosophila. Thus, this study attempted to build the first
hypothetical circadian clock model for a parasitoid wasp, thus generating hypotheses and providing
a platform for the future functional characterization of P. vindemmiae clock genes as well as those
of other parasitoid wasps. Finally, these findings on P. vindemmiae circadian activity will aid the
development of effective field release programs for biological control, which can be tested under
field conditions.
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1. Introduction

Insects regulate their physiology and behavior through their circadian clock in re-
sponse to daily changes in the photoperiod. In parasitoids, the circadian system controls
the timing of activities such as locomotor, emergence, mating, and oviposition activity [1].
For example, the locomotor activity of Brachymeria intermedia only occurs during the pho-
tophase [2], while the locomotor activity of female Meteorus pulchricornis wasps peaks just
after light off under a photoperiod of 16:8 h (light/dark), indicating a primarily nocturnal
pattern [3]. The emergence of Cotesia kariyai larvae occurs solely during the photophase
and is not dependent on the developmental duration, and they can emerge in the new
photophase under the reversed cycle [4]. The emergence of Trichogramma brassicae male and
female adults occurs within three hours of lighting [5]. Nasonia vitripennis males emerge
preferentially around light-on when they anticipate the light-on signal [6]. The daily ovipo-
sition rhythms of three Drosophila parasitoids were monitored under a light–dark cycle.
Leptopilina heterotoma and Asobara tabida mainly parasitize hosts in the morning, and L.
boulardi oviposits just before light off [7]. Eretmocerus warrae females oviposit throughout
the 24 h period with a peak at 10–14 h into the photophase [8]. The emergence, mating,
and oviposition rhythms of Tamarixia triozae have been recorded and analyzed, with most
emergence and mating activities taking place in the morning and oviposition exclusively
occurring during the daytime with a peak in the mid-morning to mid-afternoon [9].

At the molecular level, the central circadian clock has been most extensively studied
in the fruit fly Drosophila melanogaster. The basic mechanism of the clock involves three
interlocked autoregulatory transcriptional translational feedback loops consisting of a set of
clock genes [10]. In the first major loop, the products of Clock (Clk) and cycle (cyc) genes form
heterodimers, which activate the transcription of the period (per) and timeless (tim) during
the late day to early night [11–14]. In the middle of the night, the proteins PER and TIM
form heterodimers and enter the nucleus, where they suppress the transcriptional activity
of the CLK/CYC complex and, thus, repress their own transcription [12,15]. Light exposure
causes the Drosophila-type cryptochrome (CRY-d) to disrupt PER and TIM heterodimers,
releasing the inhibition of transcription [1,16]. The rhythmic expression of per and tim is
produced by this negative feedback. The second loop involves the genes Clk, cyc, vrille, and
Par domain protein 1 (Pdp1) [17]. During the night, CLK/CYC activates the transcription
of vrille and Pdp1 through an E-box [18]. The VRILLE protein accumulates earlier than
PDP1 and represses Clk transcription through a V/P-box. PDP1 accumulates later than
VRILLE and triggers Clk transcription during the day, resulting in a peak of CLK during
the day [10,19]. The third loop is made up of the clockwork orange (cwo) gene, a member of
the orange superfamily. The protein CWO binds to the E-box, competing with CLK/CYC,
to regulate the amplitude of Clk, per, and tim mRNA oscillations [20]. Although other
insects have a basic clock mechanism similar to that of Drosophila, some differences have
been observed [21]. For example, in Antheraea pernyi and Bombyx mori, PER does not enter
the nucleus [22,23]. In the genome of hymenopteran species, tim is absent [24,25]. The
involvement of CRY2 in the PER/TIM feedback loop has been reported in Apis mellifera
and Danaus plexippus [16,24,26].

The molecular mechanisms of the circadian clock in parasitoid wasps are largely
unknown. Most studies on the circadian clocks of parasitoid wasps have been limited to
those of N. vitripennis [27]. For instance, in the heads of N. vitripennis females, per and cry
mRNA levels were found to oscillate synchronously in L12: D12 and L16: D8 photoperiods,
as well as in constant light and darkness following entrainment in the same photoperiods.
The light-on signal determined the occurrence of per and cry oscillations [28]. In contrast,
other clock genes, including Clk, cwo, and Pdp1, showed no significant rhythmic expression
in the heads of N. vitripennis females under any photoperiods [29]. Per RNAi altered
the expression of cry2, Clk, and cyc, changed the locomotor activity, and affected male
courtship behavior [27,30]. Furthermore, N. vitripennis females injected with dsRNA of per
were unable to produce diapause-destined eggs in response to short days, indicating that
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per plays a crucial role in the photoperiodic perception and the timing of photoperiodic
diapause induction [27,29].

Pachycrepoideus vindemmiae (Hymenoptera: Pteromalidae), a solitary and generalist
pupal wasp, can successfully parasitize a wide range of fly (Diptera) hosts [31–33]. The
potential of P. vindemmiae as biological control agents against Diptera pests has been
evaluated. For example, P. vindemmiae has been found to be one of only two parasitoid
species that can successfully attack and kill Drosophila suzukii in the field in Europe and
the Americas [34]. Despite its potential, the circadian activities of P. vindemmiae are not
well understood, and research exploring the molecular mechanisms of its circadian clock
is limited, as is the case with many other parasitoid wasps. In the present study, we
characterized circadian activities under a photoperiod of 12:12 h (light/dark) and identified
eight clock candidate genes of P. vindemmiae. The expression profiles of these genes were
also determined. These results provide a basis for comparison with the circadian systems of
other insect species and serve as a starting point for further functional studies of the clock
genes in P. vindemmiae as well as in other parasitoid wasps. The findings of this study can
also provide information to improve biological control strategies using parasitoid wasps.

2. Materials and Methods
2.1. Insect Rearing

The D. melanogaster w1118 obtained from the Bloomington Stock Center (Indiana Uni-
versity, Bloomington, IL, USA) was reared on standard medium. The P. vindemmiae colony
was kindly provided by Prof. Gongyin Ye (Zhejiang University, Hangzhou, China) and
reared by parasitizing the pupae of w1118 as described in [31,35,36]. Adult wasps were
held in culture tubes (2.5 cm in diameter and 10 cm in height) (ASOCC507601, Sinopharm,
Shanghai, China) and fed with a 20% v/v sucrose solution (A610498, Sangon Biotech,
Shanghai, China). Both laboratory cultures were maintained at 25 ◦C and 60 ± 5% relative
humidity under a photoperiod of 12:12 h of light and darkness [31].

2.2. The Circadian Activity of P. vindemmiae

We recorded sex-dependent emergence rhythms using a method described by
Bertossa et al. [6] and Chen et al. [9]. Briefly, 15 two-day-old mated female wasps were
placed in Petri dishes (10 cm in diameter) (F611004, Sangon Biotech, Shanghai, China)
with 60 host pupae aged two days old and allowed to parasitize for 6 h (Zeitgeber time
(ZT) 9–15; ZT0 corresponds to light on and ZT12 corresponds to light off) under a 12:12
light–dark photoperiod. A total of 16 days after oviposition, the emergence rhythms of
30 P. vindemmiae females (5 replicates of 6 females each) and 25 males (5 replicates of five
males each) from the parasitized host pupae were observed for 3 successive days under the
same photoperiod. During the scotophase, the infrared night vision system connected to a
PC was used to record the observations.

For measuring circadian mating rhythm, we individually paired one-day-old virgin
females with one-day-old virgin males at the beginning of the photophase under a photope-
riod of 12:12 h (light/dark). The mating events of 26 pairs (5 replicates of 5 or 6 pairs each)
were observed continuously throughout both the photophase and scotophase. During the
scotophase, the infrared night vision system was used, as described above.

The two-day-old mated females were used for recording circadian oviposition rhythm.
We paired a one-day-old virgin female with a one-day-old virgin male in a petri dish
(3.5 cm in diameter) (F611201, Sangon Biotech, Shanghai, China). The male was removed
immediately after a mating event was observed. Then, we obtained a mated female and
fed it until this female was two days old. A single two-day-old mated female was held
in the Petri dish (3.5 cm in diameter) (F611201, Sangon Biotech, Shanghai, China) with
10 host pupae aged two days old at the beginning of the photophase under a photoperiod
of 12:12 h (light/dark). The oviposition rhythms of 32 mated females (5 replicates of 6
or 7 females each) were observed continuously throughout photophase and scotophase.
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During the scotophase, the infrared night vision system was used. Female wasps were fed
on 20% v/v sucrose solution.

2.3. Identification of Clock Systems from Parasitoid Wasps

The P. vindemmiae transcriptome can be obtained from the National Center for Biotech-
nology Information (NCBI) Sequence Read Archive (SRA) Databases (https://www.ncbi.
nlm.nih.gov/sra/PRJNA573955, accessed on 15 December 2022). The genome data of
43 other parasitoid wasps (Table S1) were obtained from InsectBase 2.0 (http://v2.insect-
genome.com/, accessed on 15 December 2022). Firstly, candidate clock genes of P. vin-
demmiae and other parasitoid wasps were identified through TBLASTN searches against
transcriptomes and genomes using local BLAST with an E-value cutoff of 1 × 10−5 using
known clock protein sequences of D. melanogaster, Anopheles gambiae, A. mellifera, D. plex-
ippus, Tribolium castaneum, and Gryllus bimaculatus. Then, candidate genes were further
confirmed manually using online BLASTP versus NCBI non-redundant protein sequences
without species limits (E-value: 1 × 10−5).

2.4. Sequence Alignment and Phylogenetic Analysis

Domain analyses of CRY2, VRILLE, PDP1 and CWO proteins were conducted ac-
cording to a CDD search (https://www.ncbi.nlm.nih.gov/cdd, accessed on 15 December
2022) [37]. The domains of other clock proteins were analyzed based on their corresponding
references. Multiple sequence alignments of the amino acid sequences were performed
using ClustalX2 [38] and then edited using GeneDoc. Phylogenetic analysis was con-
ducted using MEGA 7 with 1000 bootstrap replicates based on the maximum likelihood
method [39].

2.5. Quantitative Real-Time PCR (qPCR)

The mRNA levels of the clock genes from P. vindemmiae were measured using qPCR.
One day after emergence, the heads of adult insects were collected into a TRIzol reagent
(15596018, Invitrogen, Carlsbad, CA, USA) every 4 h (ZT2, 6, 10, 14, 18, 22; ZT0 corresponds
to light-on and ZT12 corresponds to light-off). Total RNA was extracted from the collected
heads according to the manufacturer’s protocol. The first-strand complementary DNA
(cDNA) was synthesized using TransScript One-Step gDNA Removal and cDNA Synthesis
SuperMix (AT311, Transgen, Beijing, China) as previously described [40]. The specific qPCR
primers were designed using Primer3 Input (version 0.4.0, https://bioinfo.ut.ee/primer3-0
.4.0/, accessed on 15 November 2022) (Table S2). qPCR was carried out for three biological
replicates, with 20 adult heads pooled together for each replicate. The experiments were
conducted on a CFX96™ Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA)
using the following program: 95 ◦C for 30 s, followed by 40 cycles of 95 ◦C for 5 s, and
60 ◦C for 30 s. We used the 28S rRNA gene as the reference gene [31]. Relative expression
levels were calculated using the comparative 2−∆∆CT method [41], following the guidelines
described by Bustin et al. [42].

2.6. Data Analysis

The differences between the means were analyzed using one-way analysis of variance
(ANOVA) and Tukey’s test with statistical significance set at p < 0.05 using SPSS version
22 (IBM SPSS Statistics for Windows, Version 22.0). The results of the circadian rhythm
observation and qPCR were visualized using GraphPad Prism 7.0 (GraphPad, San Diego,
CA, USA).

3. Results
3.1. The Circadian Activity of P. vindemmiae

The emergence of both sexes was highest between the late scotophase and the early
photophase and then significantly decreased. All males and females emerged from ZT 22
to ZT 2. One sex difference noted in the emergence of P. vindemmiae was that males started

https://www.ncbi.nlm.nih.gov/sra/PRJNA573955
https://www.ncbi.nlm.nih.gov/sra/PRJNA573955
http://v2.insect-genome.com/
http://v2.insect-genome.com/
https://www.ncbi.nlm.nih.gov/cdd
https://bioinfo.ut.ee/primer3-0.4.0/
https://bioinfo.ut.ee/primer3-0.4.0/
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to emerge at ZT 22, half an hour earlier than females, and completed emergence at ZT 0.5,
1.5 h later than females (Figure 1A). Mating was observed only during the daytime, with
the highest peak occurring at midday (Figure 1B). Oviposition had three peaks in the early
morning, late day or early night, and late night. Nearly 70% of female adults oviposited
within six hours into the photophase (Figure 1C).
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Figure 1. Pachycrepoideus vindemmiae males and females emergence (A), mating (B) and oviposition (C)
patterns under a photoperiod of 12:12 h (light/dark). Data are presented as the means ± standard
deviation. The different letters are significantly different based on one-way analysis of variance
(ANOVA) and Tukey’s test with differences considered significant at p < 0.05.
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3.2. Core Clock Genes in P. vindemmiae and Other Parasitoid Wasps

Eight core clock genes were identified in P. vindemmiae, including Clock (Pv_Clk), cycle
(Pv_cyc), period (Pv_per), timeout (Pv_timout), cryptochrome2 (Pv_cry2), vrille (Pv_vrille),
Par domain protein 1 (Pv_Pdp1) and clockwork orange gene (Pv_cwo) (Tables 1 and 2).
BLASTP (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 5 May 2023) analysis re-
vealed that six of the eight clock proteins exhibited the highest sequence homology with
those of N. vitripennis, with the exception of Pv_VRILLE, which showed the highest se-
quence homology with that of Melipona quadrifasciata, and Pv_CWO, which showed the
highest sequence homology with that of Colletes gigas (Table 1). tim and cry1 were not
identified in all the wasps analyzed in this study, and cyc, per, cry2, and vrille were not
identified in eight, one, two, and one species of these wasps, respectively. However, Clk,
timeout, Pdp1, and cwo were identified in all the parasitoid wasps (Tables 2 and S1).

Table 1. Clock genes found in Pachycrepoideus vindemmiae.

Protein Name Molecular
Weight (kDa)

Accession
Number

Blast Information
(E-Value; Genbank No.; Species)

Pv_CLK 84.49 OQ145164 0.0; XP_032452987.1; Nasonia vitripennis
Pv_CYC 107.74 OQ145166 0.0; XP_008215805.1; N. vitripennis
Pv_PER 134.99 OQ145167 0.0; XP_008209246.1; N. vitripennis
Pv_TIMEOUT 69.32 OQ145168 0.0; XP_031783081.1; N. vitripennis
Pv_CRY2 65.57 OQ145169 0.0; XP_001606405.2; N. vitripennis
Pv_VRILLE 42.54 OQ145170 1 × 10−163; KOX68987.1; Melipona quadrifasciata
Pv_PDP1 27.71 OQ145171 0.0; XP_031779953.1; N. vitripennis
Pv_CWO 40.75 OQ145172 1 × 10−153; XP_043263793.1; Colletes gigas

Table 2. Clock genes identified from parasitoid wasps.

Species
Clock Gene

Clk cyc per tim timeout cry1 cry2 vrille Pdp1 cwo

Apocrypta bakeri + + + nd + nd + + + +
Aphidius ervi + + + nd + nd + + + +
Aphidius gifuensis + + + nd + nd + + + +
Asobara japonica + + + nd + nd nd + + +
Belonocnema treatae + + + nd + nd + + + +
Cotesia chilonis + + + nd + nd + + + +
Cotesia congregata + + + nd + nd + + + +
Cotesia flavipes + nd + nd + nd + + + +
Copidosoma floridanum + + + nd + nd + + + +
Cotesia glomerata + + + nd + nd + + + +
Chelonus insularis + + + nd + nd + + + +
Cotesia rubecula + nd + nd + nd + + + +
Cotesia sesamiae + nd + nd + nd + + + +
Ceratosolen solmsi + + + nd + nd + + + +
Campoletis sonorensis + + + nd + nd + + + +
Cotesia vestalis + + + nd + nd + + + +
Diachasma alloeum + + nd nd + nd + + + +
Diadromus collaris + nd + nd + nd nd + + +
Diadegma semiclausum + nd + nd + nd + + + +
Eumacrocentrus americanus + + + nd + nd + + + +
Fopius arisanus + + + nd + nd + + + +
Gonatopus flavifemur + nd + nd + nd + + + +
Goniozus legneri + + + nd + nd + + + +
Hyposoter didymator + + + nd + nd + + + +
Leptopilina boulardi + + + nd + nd + + + +
Leptopilina clavipes + + + nd + nd + + + +
Lysiphlebus fabarum + nd + nd + nd + + + +
Leptopilina heterotoma + + + nd + nd + + + +

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Table 2. Cont.

Species
Clock Gene

Clk cyc per tim timeout cry1 cry2 vrille Pdp1 cwo

Macrocentrus cingulum + + + nd + nd + + + +
Microplitis demolitor + + + nd + nd + + + +
Nasonia giraulti + + + nd + nd + + + +
Nasonia longicornis + + + nd + nd + + + +
Nasonia vitripennis + + + nd + nd + + + +
Orussus abietinus + + + nd + nd + + + +
Pteromalus puparum + + + nd + nd + + + +
Pachycrepoideus vindemmiae + + + nd + nd + + + +
Sycophaga agraensis + + + nd + nd + + + +
Synergus gifuensis + + + nd + nd + + + +
Synergus itoensis + + + nd + nd + + + +
Trichogramma brassicae + + + nd + nd + + + +
Trichogramma evanescens + + + nd + nd + + + +
Trichogramma pretiosum + nd + nd + nd + + + +
Trichomalopsis sarcophagae + + + nd + nd + nd + +
Venturia canescens + + + nd + nd + + + +

nd, not identified; +, identified.

3.3. CLK

Pv_CLK shared 79% identity (BlastP, E-value = 0) with the CLK protein from N. vit-
ripennis (Table 1). Pv_CLK contains an N-terminal basic helix loop helix (bHLH) domain
for binding to DNA [43]. Two PER-ARNT-SIM (PAS) domains mediating the binding
to the heterodimeric partner CYC were also detected in Pv_CLK. In the region immedi-
ately carboxy-terminal to the PAS-B domain, a PAS-associated C terminal (PAC) domain
was detected, which was proposed to be necessary for dimer formation (Figure S1) [44].
Phylogenetic analysis of CLKs from parasitoid wasps showed all the proteins could be
divided into two groups (Figure S2). Group 1 CLKs formed three branches with CLKs
from Figitidae, Ichneumonidae, and Pteromalidae. Group 2 CLKs from five families of
parasitoids are separated into five clusters to be family-specific. Pv_CLK shared a much
closer evolutionary relationship with CLKs from Pteromalidae in group 1.

3.4. CYC

CYC is also termed aryl hydrocarbon receptor nuclear translocator (ARNT) or brain
and muscle ARNT-like protein (BMAL) [44,45]. Pv_CYC shared about 78% identity (BlastP,
E-value = 0) with ARNT-like protein 1 isoform X2 from N. vitripennis (Table 1). Pv_CYC
contains three highly conserved regions that are characteristic of known CYC proteins,
bHLH, PAS-A, and PAS-B domains (Figure S3). The evolutionary tree showed that Pv_CYC
clusters with corresponding proteins from other Pteromalidae parasitoids. The other CYCs,
deriving from five families of parasitoid wasps, were separated into five clusters to be
family-specific (Figure S4).

3.5. PER

Pv_PER had 63% sequence similarity (BlastP, E-value = 0) to PER in N. vitripennis
(Table 1). Pv_PER contains PAS-A and PAS-B regions that mediate the binding of PER to
its heterodimeric partner TIM [15]. A cytoplasmic localization domain (CLD) involved in
the retention of PER in the cytoplasm [46] and nuclear localization signal (NLS) mediating
nuclear entry of the PER-TIM complex [47] were also detected in Pv_PER (Figure S5).
The phylogenetic tree indicated Pv_PER clusters with corresponding proteins from other
Pteromalidae parasitoids. The other PERs, deriving from five families of parasitoid wasps,
were separated into five clusters to be family-specific (Figure S6).
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3.6. TIMEOUT

Pv_TIMEOUT exhibited 89% sequence similarity (BlastP, E-value = 0) to the TIMELESS
homolog from N. vitripennis (Table 1). Pv_TIMEOUT contains the conserved TIMELESS
domain and TIMELESS-C domain as found in other species (Figure S7) [48]. A phylogenetic
tree was constructed based on TIMEOUT and TIMELESS sequences for 34 parasitoid
species and nine other insect species, respectively. The analysis suggested TIMEOUT and
TIMELESS proteins fall out into their respective clades (Figure 2). Pv_TIMEOUT was
located in the same clade as TIMEOUT proteins from other Pteromalidae parasitoids, and
the other TIMEOUTs, deriving from four families of parasitoid wasps, were separated into
four family-specific clusters (Figure 2).
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Figure 2. Phylogenetic relationships of TIMEOUT proteins from parasitoid wasps including Pachy-
crepoideus vindemmiae and TIMELESS proteins from Aedes aegypti (Aaeg), Anopheles gambiae (Agam),
Antheraea pernyi (Aper), Bombyx mori (Bmor), Drosophila melanogaster (Dmel), Danaus plexippus (Dple),
Gryllus bimaculatus (Gbim), Periplaneta americana (Pame) and Tribolium castaneum (Tcas). GenBank
numbers of TIMELESS proteins are listed after the abbreviations of species names. For TIMEOUT
proteins, tip labels show the protein names in InsectBase 2.0 and the species information is listed
in Table S1. The phylogenetic tree is constructed using the maximum likelihood method. The best
models is JTT+G4. Red dots at the nodes denote bootstrap values greater than 500 from 1000 trials.

3.7. CRY2

Pv_CRY2 shared 86% identity (BlastP, E-value = 0) with the CRY1 isoform X3 identified
from N. vitripennis (Table 1). However, this protein is listed as ‘CRY1′ in NCBI despite
clearly being CRY2 [28]. Pv_CRY2 contains a DNA photolyase and a flavin adenine
dinucleotide (FAD) binding domain (Figure S8). The CLK: BMAL interaction domains
(RD-1, RD-2a, and RD-2b) present in mice are also found in P. vindemmiae [49], as well as
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a coiled-coil domain. A conserved NLS, which is necessary for CRY nuclear localization,
is also found within the RD-2b domain [50] (Figure S8). For the phylogenetic analysis
of insect CRY1 and CRY2 proteins, we chose 6-4 photolyases and vertebrate CRY4 since
they are most closely related to insect CRY1 and CRY2 phylogenetically [1]. Consistent
with the previous results [1], the phylogenetic tree of CRY/DNA photolyase proteins
mapped with the functional character revealed that all vertebrate CRY and insect CRY2
proteins had repressive transcriptional activity except for CRY3 from Danio rerio. All CRY2
proteins from parasitoid wasps clustered within the insect CRY2 group, which have been
reported to repress CLK: CYC transcription in cell culture [1]. Pv_CRY2 clusters with
corresponding proteins from other Pteromalidae parasitoids and the other CRY2 proteins
from five families of parasitoid wasps were separated into five clusters to be family-specific
(Figure 3). The evolutionary tree showed that the repressive transcriptional ability of insect
CRY2 evolved from a photolyase-like ancestral gene lacking the ability to function as a
transcriptional suppressor, and Pv_CRY2 might function as a transcriptional suppressor of
CLK: CYC-mediated transcription like other insect CRY2 proteins.

Insects 2023, 14, x FOR PEER REVIEW 10 of 17 
 

 

 

Figure 3. Phylogenetic relationships of DNA photolyases and CRYs. The phylogenetic tree of amino 

acid sequences was constructed using the maximum likelihood method. The best model is LG+I+G4. 

Bootstrap values below 70% were removed from the phylogenetic tree. The functional character is 

mapped onto this phylogenetic tree based on [1]. Orange letters indicate the proteins that can repress 

CLK: CYC (BMAL)-mediated transcription in cell culture. Blue letters indicate the proteins that lack 

this ability in cell culture. Black and red letters indicate the proteins whose transcriptional repressive 

activity remain unknown. The tip labels of parasitoid wasps show the protein names in InsectBase 

2.0. Species information for parasitoid wasps is listed in Table S1 and other species are selected based 

on [1], whose tip labels consist of protein names, species names and Genbank numbers. 

3.8. VRILLE and PDP1 

Both Pv_VRILLE and Pv_PDP1 are members of the basic leucine zipper (bZIP) tran-

scription factors [18]. Pv_VRILLE and Pv_PDP1 shared 77.95% identity (BlastP, E-value = 

1 × 10−163) with nuclear factor interleukin-3-regulated protein (a vertebrate homolog of 

VRILLE protein) from Melipona quadrifasciata, and 99% identity (BlastP, E-value = 0) with 

the hepatic leukemia factor (a vertebrate homolog of PDP1 protein) isoform X9 from N. 

vitripennis (Table 1). Both Pv_VRILLE and Pv_PDP1 contain bZIP domains, which are es-

sential for their DNA-binding function in the Clk gene promoter to regulate Clk transcrip-

tion [18,51] (Figures S9 and S10). The evolutionary trees show that both Pv_VRILLE and 

Pv_PDP1 clustered with corresponding proteins from other Pteromalidae parasitoids. The 

other VRILLE and PDP1 proteins from different families of parasitoid wasps were sepa-

rated into their respective clusters to be family-specific, with the exception of a PDP1 

Figure 3. Phylogenetic relationships of DNA photolyases and CRYs. The phylogenetic tree of amino
acid sequences was constructed using the maximum likelihood method. The best model is LG+I+G4.
Bootstrap values below 70% were removed from the phylogenetic tree. The functional character is
mapped onto this phylogenetic tree based on [1]. Orange letters indicate the proteins that can repress
CLK: CYC (BMAL)-mediated transcription in cell culture. Blue letters indicate the proteins that lack
this ability in cell culture. Black and red letters indicate the proteins whose transcriptional repressive
activity remain unknown. The tip labels of parasitoid wasps show the protein names in InsectBase
2.0. Species information for parasitoid wasps is listed in Table S1 and other species are selected based
on [1], whose tip labels consist of protein names, species names and Genbank numbers.
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3.8. VRILLE and PDP1

Both Pv_VRILLE and Pv_PDP1 are members of the basic leucine zipper (bZIP) tran-
scription factors [18]. Pv_VRILLE and Pv_PDP1 shared 77.95% identity (BlastP,
E-value = 1 × 10−163) with nuclear factor interleukin-3-regulated protein (a vertebrate
homolog of VRILLE protein) from Melipona quadrifasciata, and 99% identity (BlastP, E-value
= 0) with the hepatic leukemia factor (a vertebrate homolog of PDP1 protein) isoform X9
from N. vitripennis (Table 1). Both Pv_VRILLE and Pv_PDP1 contain bZIP domains, which
are essential for their DNA-binding function in the Clk gene promoter to regulate Clk tran-
scription [18,51] (Figures S9 and S10). The evolutionary trees show that both Pv_VRILLE
and Pv_PDP1 clustered with corresponding proteins from other Pteromalidae parasitoids.
The other VRILLE and PDP1 proteins from different families of parasitoid wasps were
separated into their respective clusters to be family-specific, with the exception of a PDP1
protein (Lcla007363.1) from Leptopilina clavipes (Hymenoptera: Figitidae), which clustered
into the Pteromalidae group (Figures S11 and S12).

3.9. CWO

Pv_CWO displayed 64% identity (BlastP, E-value = 1 × 10−153) with the transcription
factor cwo isoform X2 from Colletes gigas (Table 1). Pv_CWO contains two highly conserved
regions that are characteristic of known CWO proteins, namely, the bHLH and Hairy Or-
ange domains (Figure S13) [52]. The bHLH domain is responsible for binding to DNA [43].
The Hairy Orange is an important functional domain in the Drosophila proteins Hesr-1,
Hairy, and Enhancer of Split, which play a key role in inhibiting specific transcriptional
activators [53]. According to the evolutionary tree, all CWO proteins were grouped into
six major clusters to be family-specific and Pv_CWO clusters with corresponding proteins
from other Pteromalidae parasitoids (Figure S14).

3.10. Expression Profiles of Clock Genes in P. vindemmiae Females and Males

We obtained daily expression profiles of eight core clock genes in the heads of
P. vindemmiae females and males. In the heads of female adults, Pv_Clk and Pv_cyc mRNA
showed similar daily oscillations, with a peak in the early morning (ZT 2) and a trough
at midnight (ZT 18) (Figure 4A,B). In contrast, Pv_per, Pv_timeout, Pv_cry2, Pv_Pdp1, and
Pv_cwo mRNA levels were in an almost anti-phase to those of Pv_clk and Pv_cyc. Pv_per
and Pv_timeout mRNA levels varied over time, with a peak at ZT 18 (Figure 4C,D). Pv_vrille
showed a similar expression pattern to Pv_per and Pv_timeout, with no significant circadian
changes detected (Figure 4F). Pv_cry2 and Pv_Pdp1 mRNA levels cycled in the heads of
female adults with a peak at early night (ZT 14) and a trough at late night (ZT 22) and early
morning (ZT 2), respectively (Figure 4E,G). Pv_cwo mRNA levels peaked between ZT 10
and 14 and declined to low levels between ZT 18 and 8 (Figure 4H).

The expression profiles of the same core clock genes were also measured In the heads
of male adults. Pv_Clk and Pv_cyc mRNA levels were low during the night and reached
their maxima at ZT 6, ZT 2, and ZT10 during the day, respectively (Figure 4A,B). Pv_per,
Pv_timeout, Pv_cry2, Pv_Pdp1, and Pv_cwo mRNA levels were almost in anti-phase with
those of Pv_clk and Pv_cyc. Pv_per and Pv_cry2 transcript levels were low during the
day, started to increase in the late day, and reached their maxima at ZT 14 (Figure 4C,E).
Pv_timeout and Pv_Pdp1 mRNA levels peaked at midnight (ZT 18) (Figure 4D,G). The peak
levels of Pv_vrille mRNA from males occurred late at night or early morning (ZT 22-2) and
decreased during the day (Figure 4F). Pv_cwo mRNA levels peaked between ZT 14 and
18 and declined to low levels between ZT 22 and 10 (Figure 4H). The qPCR results show
differences in the clock gene expression patterns between female and male individuals.
In males, the expression peaks of Pv_Clk, Pv_Pdp1, and Pv_cwo were delayed for several
hours compared to females. Pv_vrille showed no significant rhythmic expression in females,
while it peaked at late night and early morning in males.



Insects 2023, 14, 486 11 of 17Insects 2023, 14, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 4. qPCR results showing the mRNA abundance levels of the eight clock genes in females 

(solid red lines) and males (solid blue lines) (A–H). Data are presented as the means ± standard 

deviation. The different letters are significantly different based on one-way analysis of variance 

(ANOVA) and Tukey’s test with differences considered significant at p < 0.05. 

4. Discussion 

In parasitoid wasps, different circadian activities are performed at specific times to 

maximize fitness gains. P. vindemmiae oviposition had three peaks in the early morning, 

late day or early night, and late night (Figure 1C), while mating peaked at midday with 

no overlap with the oviposition activity (Figure 1B). In insects, repeated mating attempts 

by males can result in harassment of females and cause physical injuries, reduced foraging 

efficiency, and energy expenditure. Harassment by males can also interfere with the pro-

cess of oviposition and reduce the longevity and fecundity of females [54]. No overlap 

between oviposition and mating peaks suggested that males were not able to disturb fe-

males during oviposition, indicating that P. vindemmiae has developed strategies to per-

form different life functions at specific times for maximum fitness gain. A similar situation 

has also been observed in T. triozae [9] and E. warrae [8]. 

Sex differences in circadian behavior have been observed in parasitoids. Firstly, a 

distinct difference between males and females in circadian activity is the time at which 

activity begins, which has been observed in N. giraulti [55], Trichogramma species [5,56], 

and Encarsia formosa [57]. Secondly, there is a difference in activity duration and intensity 

between males and females. For example, T. brassicae males have been observed to be less 

active than females since their phase of activity is shorter and their hourly activities fewer 

[58]. The daily rhythm of emergence also varied according to sex. It has been reported that 

males emerge before females (protandry) in some parasitoids [5]. In this study, the results 

show that P. vindemmiae males started to emerge half an hour earlier than females at ZT 

22 (Figure 1A). The advantage of parasitoid wasp protandry is that the males emerge first, 

so they have a greater opportunity to mate with females. For females, protandry can re-

duce the time between emergence and mating, thereby reducing the risk of death before 

reproduction. 

Knowledge of the circadian activity of parasitoid wasps can contribute to decisions 

on field release. For diurnal parasitoids, it is better to release the parasitoid wasps in the 

morning [9,59]. The circadian oviposition patterns of Diachasmimorpha longicaudata and 

Doryctobracon crawfordi overlap. The control efficacy is reduced when both parasitoid 

wasps are simultaneously released as a result of substantial competition [60]. Our study 

revealed the circadian activity of P. vindemmiae and provides information for the enhance-

ment of its biological control. For instance, we may achieve better results if we carry out 

field release of mated P. vindemmiae females instead of newly emerged females in the early 

morning when environmental conditions are more favorable to avoid affecting the sex 

Figure 4. qPCR results showing the mRNA abundance levels of the eight clock genes in females (solid
red lines) and males (solid blue lines) (A–H). Data are presented as the means ± standard deviation.
The different letters are significantly different based on one-way analysis of variance (ANOVA) and
Tukey’s test with differences considered significant at p < 0.05.

4. Discussion

In parasitoid wasps, different circadian activities are performed at specific times to
maximize fitness gains. P. vindemmiae oviposition had three peaks in the early morning,
late day or early night, and late night (Figure 1C), while mating peaked at midday with no
overlap with the oviposition activity (Figure 1B). In insects, repeated mating attempts by
males can result in harassment of females and cause physical injuries, reduced foraging
efficiency, and energy expenditure. Harassment by males can also interfere with the process
of oviposition and reduce the longevity and fecundity of females [54]. No overlap between
oviposition and mating peaks suggested that males were not able to disturb females during
oviposition, indicating that P. vindemmiae has developed strategies to perform different
life functions at specific times for maximum fitness gain. A similar situation has also been
observed in T. triozae [9] and E. warrae [8].

Sex differences in circadian behavior have been observed in parasitoids. Firstly, a
distinct difference between males and females in circadian activity is the time at which
activity begins, which has been observed in N. giraulti [55], Trichogramma species [5,56],
and Encarsia formosa [57]. Secondly, there is a difference in activity duration and intensity
between males and females. For example, T. brassicae males have been observed to be
less active than females since their phase of activity is shorter and their hourly activities
fewer [58]. The daily rhythm of emergence also varied according to sex. It has been reported
that males emerge before females (protandry) in some parasitoids [5]. In this study, the
results show that P. vindemmiae males started to emerge half an hour earlier than females at
ZT 22 (Figure 1A). The advantage of parasitoid wasp protandry is that the males emerge
first, so they have a greater opportunity to mate with females. For females, protandry
can reduce the time between emergence and mating, thereby reducing the risk of death
before reproduction.

Knowledge of the circadian activity of parasitoid wasps can contribute to decisions
on field release. For diurnal parasitoids, it is better to release the parasitoid wasps in the
morning [9,59]. The circadian oviposition patterns of Diachasmimorpha longicaudata and
Doryctobracon crawfordi overlap. The control efficacy is reduced when both parasitoid wasps
are simultaneously released as a result of substantial competition [60]. Our study revealed
the circadian activity of P. vindemmiae and provides information for the enhancement of its
biological control. For instance, we may achieve better results if we carry out field release of
mated P. vindemmiae females instead of newly emerged females in the early morning when
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environmental conditions are more favorable to avoid affecting the sex ratio of offspring
due to insufficient mating because most P. vindemmiae female oviposition occurs in the early
morning earlier than the peak they mate at noon.

The absence of the timeless and cry1 genes in parasitoid wasps suggests that their
circadian clock system is distinct from that of other non-Hymenoptera insects such as
Drosophila. While CRY1 is light-sensitive and does not exhibit transcriptional repressive
activity, CRY2, a vertebrate-like protein, is a potent transcriptional repressor of CLK:
CYC-mediated transcription but is not light-sensitive. These two cry genes give rise to
different types of circadian clocks. Light-sensing in different types of circadian clocks
is mediated by different mechanisms, leading to the synchronization of the clock via
TIMELESS degradation [1]. However, Hymenoptera species, including parasitoid wasps,
have lost both CRY1 and TIMELESS proteins, implying a completely novel light input
mechanism for their circadian clocks [16,25,61]. Figure 5 presents a circadian clock model for
P. vindemmiae that comprises three interlocked autoregulatory transcriptional-translational
feedback loops. In the first major loop, heterodimers formed by the products of Clk and
cyc genes activate the transcription of per and cry2. Subsequently, PER/CRY2 enter the
nucleus to inhibit their own transcription by repressing CLK/CYC transcriptional activity.
Because of the absence of CRY1, the clock uses a new light input pathway for entrainment.
The second loop consists of the genes Clk, cyc, vrille, and Pdp1. CLK/CYC activates the
transcription of vrille and Pdp1 leading VRILLE to accumulate earlier than PDP1, which
then suppresses Clk transcription. PDP1 accumulates later and triggers Clk transcription.
Finally, CWO modulates the amplitude of the clock in the third loop.

Studies examining the expression patterns of core clock genes have demonstrated
the diversity of the molecular clock machinery in insects. Pv_Clk mRNA in females ex-
hibits a similar daily oscillation to Clk in D. melanogaster, peaking in the early morning [62]
(Figure 4A), while Clk shows no significant rhythmic expression in Solenopsis invicta [19], A.
mellifera [24] or Gryllus bimaculatus [18]. Pv_cyc mRNA levels are low during the night and
reach their maxima in the early morning (Figure 4B), while cyc shows no significant rhyth-
mic expression in D. melanogaster males [62] or N. vitripennis females [29]. In hymenopteran
insects, timeout mRNA levels in both P. vindemmiae (Figure 4D) and A. mellifera [24] peak
at midnight, while timeout mRNA levels in S. invicta are almost in anti-phase to these [19].
Pv_cry2 mRNA cycles in the heads of female adults peak in the early night (Figure 4E),
similar to those of A. mellifera females, while cry2 mRNA levels peak at late night in S.
invicta [19] and N. vitripennis [29]. However, Pv_per mRNA levels vary over time, with
a peak at midnight (Figure 4C), similar to those of D. melanogaster [62], S. invicta [19], A.
mellifera [24], and G. bimaculatus [18]. Overall, the expression profiles of core clock genes in
P. vindemmiae, such as Pv_Clk, Pv_cyc, Pv_per, Pv_timeout, and Pv_cry2, are more similar
to those of A. mellifera than other insects. To further investigate the diversity of circadian
clock mechanisms, the expression patterns of clock genes need to be analyzed in more
insect species, and the functions of the clock genes should be studied using molecular
genetic techniques.

Although there have been only a few comparative studies on the expression patterns
of female and male clock genes, previous research has shown that some clock genes are
expressed consistently in both sexes [13,18,51], while others are quite variable [63,64]. Sex
differences in circadian clock gene expression may arise from environmental variability and
gene functions. In Ceratosolen solmsi, a pollinating wasp that has an obligate mutualism with
fig trees, timeout is only rhythmically expressed in females that are dispersing from the fig
syconium, while it is arrhythmic in males and females inside the syconium [63]. Among the
core clock genes, per shows the largest divergence between the sexes in C. solmsi. Moreover,
the mRNA levels of per are closely correlated with emergence rates at specific time intervals
in both male and female wasps. The present study detected sexual dimorphism in the
clock gene expression in P. vindemmiae, which suggests that these clock genes with different
expression patterns in females and males may play a key role in protandry in P. vindemmiae
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(Figure 1A). More research on sexual dimorphism in clock gene expression is needed to
reveal the extensive diversity of gene functions under various environmental conditions.
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Although the molecular oscillatory mechanisms consisting of a set of clock genes have
been extensively studied in some model insects [16,21,65,66], how the circadian clocks
control daily rhythms in physiology and behavior via mechanisms that regulate gene
expressions remains unknown. In Anopheles species, clock genes affect swarming and
mating behavior by regulating the gene desat1, a dehydrogenase gene involved in the
synthesis of a hydrocarbon on the body surface of male mosquitoes, which is a component
of the sex pheromone of Anopheles [67]. Our present study characterized the circadian
activity and putative clock genes in P. vindemmiae; however, the mechanisms by which
the clock genes regulate circadian behaviors such as emergence, mating, and oviposition
require further research.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/insects14050486/s1, Table S1: Circadian clock proteins
in parasitoid wasps; Table S2: Primers used in qPCR analysis; Figure S1: Sequence alignment of
CLK amino acid sequences; Figure S2: Phylogenetic relationships of CLKs from parasitoid wasps;
Figure S3: Sequence alignment of alignment of of CYC amino acid sequences; Figure S4: Phyloge-
netic relationships of CYCs from parasitoid wasps; Figure S5: Sequence alignment of PER amino
acid sequences; Figure S6: Phylogenetic relationships of PERs from parasitoid wasps; Figure S7:
Sequence alignment of TIMEOUT amino acid sequences; Figure S8: (A) Structure and organization
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of Pv_CRY2; (B) Sequence alignment of CRY amino acid sequences; Figure S9: Sequence alignment
of VRILLE amino acid sequences; Figure S10: Sequence alignment of PDP1 amino acid sequences;
Figure S11: Phylogenetic relationships of VRILLE from parasitoid wasps; Figure S12: Phyloge-
netic relationships of PDP1 from parasitoid wasps; Figure S13: Sequence alignment of CWO amino
acid sequences; Figure S14: Phylogenetic relationships of CWO proteins from parasitoid wasps.
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