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Supplementary Figures

Figure S1 Striated muscle-specific DNA hypomethylation extending over the gene body of COX7A1 and downstream is
associated with the gene's preferential expression in striated muscle.

Figure S2. HADHB and its co-expressed gene neighbor, HADHA, share a bidirectional promoter with highest expression and
DNA hypomethylation in skeletal muscle.

Figure S3. Preferential expression of SLC25A4/ANT1 is correlated with an overlapping super-enhancer containing DNA
hypomethylated subregions in skeletal muscle and heart.

Figure S4. Preferential expression of ACO2 is correlated with an overlapping a super-enhancer containing DNA
hypomethylated subregions in skeletal muscle and heart.

Figure S5. The myoblast-specific IncRNA from the 3" end of PRKN is an antisense transcript.

Figure S6. Preferential expression of VDACI is correlated with an overlapping super-enhancer containing DNA
hypomethylated subregions in skeletal muscle and heart.

Figure S7. The full-length PPARGC1A gene including the far distal promoter displays novel brain and embryonal stem cell
RNA signals.

Figure S8. Closer view of the promoter regions of PPARGC1A shows tissue-specific epigenetic signatures.
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Figure S1 Striated muscle-specific DNA hypomethylation extending over the gene body of COX7A1 and
downstream is associated with the gene's preferential expression in striated muscle. (A) COX7A1 gene neighborhood
(chr19:36,639,976-36,646,905, hg19). Color-coded chromatin state segmentation (Roadmap Epigenomics Project; 18-
state). (B) DNase-seq and MyoD binding as determined from MyoD ChIP-seq (UniBind) and HAND1 TFBS (Transfac
prediction program, https://genexplain.com/transfac/); only TF sites at DNasel hypersensitive sites (DHS) associated
with skeletal muscle are shown. (C) Whole genome bisulfite-seq for DNA methylation levels; a CpG island in this
region indicated by the green box. Significant SkM and heart hypomethylated DMRs were determined by comparison
of these tissues to aorta, lung, adipose tissue, and monocytes. Blue bars, regions of low-methylation (LMRs) relative to
methylation throughout the genome in the same tissue. (D) The GTEx RNA-seq expression profile is shown as bar
graphs with linearly displayed median values for TPM from hundreds of biological replicates for each tissue type
unless otherwise indicated (https://gtexportal.org/home/). (E) RNA-seq on cell culture-derived poly(A)*RNA is shown
as an overlay of the indicated five cell types (log scale). All tracks are horizontally aligned and in hg19 coordinates.
TPM, transcripts per kilobase millions; Prom, promoter; Enh, enhancer; Txn, transcription; SkM1, psoas skeletal muscle;
SkM2, skeletal muscle from leg; PFC, prefrontal cortexDMR, differentially methylated region; NHEK, normal human
epithelial kidney cells; ESC, embryonic stem cells (H1); LCL, lymphoblastoid cell line; FC, frontal cortex.
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Figure S2. HADHB and its co-expressed gene neighbor, HADHA, share a bidirectional promoter with highest
expression and DNA hypomethylation in skeletal muscle. The indicated region for these two genes, which encode
subunits of hydroxyacyl-CoA dehydrogenase, is chr2:26,404,644-26,514,796. (A) — (C) show chromatin state
segmentation and ChIP-seq profiles for the two histone modifications that together indicate enhancer chromatin. (D) -
(F) Similar to panels in Figure S1. Yellow segments in Panel A, weak enhancer chromatin; orange or yellow-green

segments, strong enhancer chromatin.
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Figure S3. Preferential expression of SLC25A4/ANT1 is correlated with an overlapping super-enhancer containing DNA
hypomethylated subregions in skeletal muscle and heart. The region shown for this gene, which codes for a mitochondrial
carrier adenine nucleotide translocator, is chr4:186,057,295-186,078,660. (A) — (E) are similar to panels in Figure S1. Super-
enhancer chromatin (https://asntech.org/dbsuper/) in SkM and brain is indicated by a dotted light blue line over the top of the
chromatin state tracks.
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Figure S4. Preferential expression of ACO2 is correlated with an overlapping a super-enhancer containing DNA
hypomethylated subregions in SkM and heart. The region shown is chr22:41,854,342-41,930,734. (A) — (E) are similar
to tracks in Figure S1. Super-enhancer is indicated by a dotted light blue line over the top of the chromatin state tracks.
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Figure S5. The myoblast-specific IncRNA from the 3’ end of PRKN is an antisense transcript. The region shown is
chr6:161,766,443-161,875,712. (A) Chromatin state segmentation tracks as in previous figures. (B) and (C) ChIP-seq
profiles for H3K27ac and H3K4me3, the two modification that together signify promoter chromatin. (D) Strand-specific
RNA-seq; vertical viewing range for Roadmap tissue samples, 0- 0.1 and for ENCODE RNA-seq samples, 0-15. Blue
boxes, brain-specific epigenetic profiles; dotted black box, myoblast-specific epigenetic profiles or antisense RNA;
purple box, SkM or myoblast-associated antisense RNA. Fib, fibroblasts
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Figure S6. Preferential expression of VDACI is correlated with an overlapping a super-enhancer containing DNA
hypomethylated subregions in SkM and heart. The region shown is chr5:133,306,218-133,343,133. (A) — (E) are similar
to panels in Figure S2.
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Figure S7. The full-length PPARGC1A gene including the far distal promoter displays novel brain and embryonal stem cell
RNA signals. All RefSeq isoforms for PPARGC1A (chr4:23,780,312-24,511,140); missing from the RefSeq database is the Alt
promoter isoform (Alt TSS, purple broken arrow). Full-length RefSeq isoforms other than the main described brain-associated
isoforms [1] are shown in gray font. B1 — B5, previously described exons for brain-specific coding transcripts [1]; as in all figures,
the taller boxes in the gene structures denote coding exons and shorter ones, non-coding exons. (A) — (D) and (F) are as in
previous figures. Broken arrows in Panels A or F, TSS associated with the following alternative promoters: light blue, Distal;
purple, Alt (Alternative); black, Prox (Proximal, the canonical promoter); orange, Liver. (E) Non-strand specific RNA-seq as an
overlay graph; the RNA-seq signal at the canonical portion of PPARGC1A for ESC (see Panel D) is obscured by the higher
HepG2 signal. Close-up of exons B4 and B5 showed that both cerebellum and germinal (Germ.) matrix have discrete RNA signal
(not illustrated). Vvr, vertical viewing range for tissue RNA-seq; in Figure 7, the vvr for tissue RNA-seq was 0 — 0.1 Dotted boxes
in Panel B, region of novel ESC intragenic AS promoter that align with an ESC-specific DHS in Panel C. ESC minus-strand
RNA-seq repeated in Panel F for comparison to tissue RNA-seq. AC, anterior caudate; AG, angular gyrus; SN, substantia nigra.
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Figure S8. Closer view of the promoter regions of PPARGC1A shows tissue-specific epigenetic signatures. (A) The
genomic region shown on the left is chr4:23,849,740-23,909,222 (59 kb). (B) The region shown on the right is
chr4:24,446,483-24,495,085 (48 kb). Tracks are as in previous figures with the addition of 5 cap analysis of gene
expression for the 5’-ends of poly(A)* RNAs. The broken arrows for Liver, Prox, Alt, and Distal TSS are color coded as
in Figure S7. Technical duplicates are shown for strand-specific ESC (H1) RNA-seq that indicate more signal at coding
exon 2, which is the first exon common to PPARGCIA isoforms, than at exon 1 at the Prox TSS (Panel A) and yet more
signal at non-coding exon B1 and downstream at the Distal TSS (Panel B). Only bivalent promoter chromatin was seen
at the Prox promoter for ESC while strong promoter chromatin was found at the Distal promoter. The ESC-associated
transcript is distinct from a previously described PPARGC1A-upstream EST from ESC and similar iPSC transcripts [2].
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