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Abstract: More than 70% of all knee injuries in soccer occur in non-contact situations. It is known that
increased lower limb dynamic knee valgus is associated with such situations. Little has been found
out about differences in knee kinematics of the dominant (kicking) and non-dominant (supporting) leg
during a single leg landing. A total of 114 male adolescent soccer players (age 14.6 ± 1.1 years) from
elite (N = 66) and amateur soccer clubs (N = 48) performed a single leg drop landing down from a box.
For each leg, the two-dimensional dynamic knee valgus angle (DKVA) was calculated. Paired t-tests
were used to statistically determine significant differences between dominant and non-dominant
leg DKVA, and t-tests were calculated between the two performance groups. Statistically significant
differences (p < 0.05) were identified for the DKVA between the dominant and non-dominant leg for
both amateur and elite players, showing a greater DKVA for the dominant leg. Group differences for
the DKVA between amateur and elite players were not found, neither for the dominant, nor for the
non-dominant leg. It can be concluded that the non-dominant leg showed more stable dynamics than
the dominant leg during unilateral landing regardless of the player’s performance level. This could
be due to adaptions to sport-specific requirements. Therefore, it is recommended that programs to
prevent knee injuries among soccer players consider the dynamics of each leg individually.
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1. Introduction

Stabilization disorders in the knee joint in jump landings are associated with injuries of the anterior
cruciate ligament (ACL) and patellofemoral pain [1,2]. An enlarged knee valgus in combination with
hip adduction and knee flexion seem to increase the probability of a major knee injury [3,4].

In soccer, ACL injuries rank among the most severe injuries involving long periods of
convalescence [5–10]. Interestingly, most ACL injuries occur in situations without external
influence [11,12]. These particularly include quick changes of direction and jump landings [13].
When landing after a jump, such as in header situations, muscular activity must ensure stabilization
of the knee joint in all directions [14]. A lack of neuromuscular stability seems to increase the risk of
injuries to the knee joint [15–17].

Especially in soccer, the dominance of one leg becomes obvious [18]. The neuromuscular
requirements of the kicking leg are entirely different from those of the supporting leg [19,20].
It can therefore be assumed that different muscular activity in both extremities may lead to a different
degree of muscular stabilization of the knee joint when landing on one leg. Since in men’s soccer the
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frequency of ACL injuries on the side of the dominant, kicking leg is slightly higher than that on the
non-dominant side [21,22], the question arises whether different landing kinematics might play a role
in this situation [23].

Muscular asymmetries already occur in juniors [24], which might be of medical relevance.
Individual balancing exercises are often part of professionals’ training programs. At the same time,
the higher training intensity in the professional area can also promote the occurrence of muscular
asymmetries resulting in asymmetrical landing kinematics. In previous studies, the dynamic knee
valgus angle in the frontal plane has been proven suitable for the analysis of landing kinematics [25,26].

This study is aiming to answer the following questions:

(1) Are there any statistically significant differences between the frontal knee angles of the dominant
leg (DOM) and the non-dominant leg (NON) in junior soccer players when they land on one leg?

(2) Are there any differences between the knee angles of the dominant and non-dominant leg in
professional and amateur junior soccer players?

2. Materials and Methods

A total of 117 male junior soccer players (age: 14.6 ± 1.1 years, height: 171.3 ± 8.2 cm, weight:
59.0 ± 10.6 kg) from seven different junior teams participated in the tests (see Table 1). Three test
persons were not included in the evaluation due to wrong or incomplete performances, thus 114 test
persons were evaluated. The junior players of the top performance class (N = 66) were members
of professional soccer clubs of the German national soccer league (‘Bundesliga’) which run youth
academies. They play in the top class of their respective age group and perform at least four
soccer-specific training sessions as well as one athletic training each week. In contrast, only two
to three training sessions without any specific athletic training are held per week in the amateur clubs
(second lowest local league, N = 48).

Table 1. Anthropometric data of the 144 test persons.

Level N Age (years) Height (cm) Weight (kg)

Amateur 48 15.4 ± 1.4 174.1 ± 6.8 64.1 ± 10.9

Elite 66 14.0 ± 0.2 169.3 ± 8.6 55.3 ± 8.8

Exclusion criteria were acute injuries or complaints as well as two-footedness. The participants
and their parents or guardians were informed prior to the trial, in accordance with the requirements of
the Helsinki Declaration, about the trial objective and trial procedure and gave their written informed
consent. The local ethics commission had approved the study.

2.1. Test Procedure

The tests in the amateur clubs were carried out on separate dates in the respective club houses.
The elite junior players were tested during an international tournament in a mobile test station before
the actual tournament matches in a non-exhausted condition. The players of all teams were identically
prepared and instructed for the tests. Weight and height were measured on site, and information on
leg dominance was provided by both player and coach. The dominant leg was defined as the leg that
the player usually kicks with.

The test persons wore sports shorts, no shirt, and were barefoot in order to prevent influences
of the shoes on leg kinematics. Marker points with a diameter of 12 mm were fixed to six anatomic
landmarks (anterior superior iliac spine (ASIS), middle of the patella (CP), middle of the connecting
line between the malleoli on the foot’s instep (MM); Figure 1a). The same person performed palpation
and fixed the markers.
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Before testing started, a photograph was taken of the test persons in order to measure their natural
leg axis, standing with their feet at hip width apart and kneecaps pointing forward.

The players were introduced to the test procedure according to a specific, standardized pattern.
The single leg drop jumps were performed from a 30 cm high box (PlyoBox®). The arms were crossed
behind the back because preliminary measurements showed this to be an appropriate method to
eliminate arm swing during the landing process. Otherwise, arm movement would have been an
additional uncontrollable parameter as regards trunk stabilization. The drop jump was carried out in a
forward direction with both feet, and the landing took place on one foot. A 40 cm × 60 cm mat was
placed directly in front of the box to mark the landing zone.

After the standardized instruction, the test person had two trial jumps, the performance of which
was corrected, if required. Subsequently, they jumped twice, once landing on the dominant and once
on the non-dominant leg. An attempt was deemed a failure and the test had to be repeated if the test
person performed an evasive movement when landing (such as a change of the foot position), carried
out a balancing movement of the arms, or correction of the jump after landing.

2.2. Data Analysis

The image recordings were transferred to a PC and analyzed using the Dartfish 7 Pro Suite
(Dartfish, Fribourg, Switzerland) software. For each leg, the time of the highest degree of knee flexion
while landing was identified. In the still images, the knee angles in the frontal plane (angle between
ASIS, CP and MM; Figure 1a) were calculated for each side. Valgus angles were marked with a positive
sign and varus angles were marked with a negative sign. The evaluation distinguished between the
dominant (kicking leg) and non-dominant leg (supporting leg).

Data processing and graphical representation were executed using Microsoft Excel 14.1.0. Statistics
were calculated by means of XLSTAT 2016 (Addinsoft, New York, NY, USA). To compare the dominant
and non-dominant leg, dependent samples t-tests were calculated. t-Tests were calculated to identify
possible differences between the amateur and elite group. Equality of variance was tested in advance,
applying Fisher’s F-test, and the degree of freedom was corrected according to Welch-Satterthwaite,
if required.

The significance level was set to 5%. The calculated p-values were adjusted according to
Bonferroni-Holm. The effect size was determined by Cohen’s d. Values between 0.2 and 0.4 signify
weak effects, up to 0.7 they point to medium-sized effects, and if they are >0.7 they imply strong effects.

3. Results

There is a statistically significant difference in the dynamic valgus angles when landing on
the dominant, kicking leg and on the non-dominant, supporting leg in both the amateur players
group (t(47) = 2.051, p = 0.046) and the elite players group (t(65) = 4.001, p = 0.000). In the first case,
a weak-sized effect occurs, and in the second case, a medium-sized effect occurs (Table 2). The share of
left-footed players in the professionals’ group was 29% (19 left-footed vs. 47 right-footed players) and
17% (8 left-footed, 40 right-footed players) in the amateurs’ group. The comparison of the knee angles
between the amateur and elite groups does not exhibit any statistically significant differences, neither
for the dominant leg (t(82) = 1.009, p = 0.316) nor for the non-dominant leg (t(112) = −0.450, p = 0.653).

Table 2. Differences in the dynamic knee valgus angles between the dominant (DOM) and
non-dominant (NON) leg in the groups examined, CV = coefficient of variation, d = Cohen’s d.
Negative values mark varus angles and positive values signify valgus angles.

Level Leg df M SD CV p d

Amateur
DOM 47 1.419 13.597 9.58

0.046 0.28NON 47 −1.856 9.729 −5.24

Elite
DOM 65 3.758 10.036 2.67

0.000 0.64NON 65 −2.715 10.281 3.79



Sports 2017, 5, 14 4 of 8

Sports 2017, 5, 14 4 of 7 

 

 
(a) (b) 

Figure 1. (a) Experimental setup: ASIS = marker on the anterior superior iliac spine, CP = marker on 
the center of the patella, MM = marker on the instep; (b) Example of the landing positions of a 
right-footed soccer player: the dominant (right) leg shows an increased dynamic knee valgus angle 
(note that the left hip rotates backwards). 

4. Discussion 

This study aimed at finding possible differences in the landing kinematics of the dominant and 
non-dominant leg in junior soccer players. A statistically significant effect of small and medium size 
was identified in the groups analyzed. The dominant leg showed a larger knee valgus angle than the 
non-dominant leg, which, at the time of maximum flexion, is generally stabilized in a slight varus 
position. Figure 1b shows an example of a right-footed soccer player. All subgroups showed large 
coefficients of variance (Table 2). This was caused by the large inter-individual variation of the knee 
angles, which might probably have been caused by the individual differences in the players’ static 
leg axes. The static leg axes and their deviations, such as knock knees (genu valgum) or bowed legs 
(genu varum) influence the initial position from which a dynamic movement will start. Therefore, 
further studies should examine the influence of the individual static leg axes on the dynamic valgus 
angles. 

We let the players perform only one jump for each leg after having finished the trial jumps. 
Although other studies analyzed the mean value of several jumps [25,26], we decided not do so as 
we wanted to minimize possible learning effects. 

Obviously, the kinematic differences reflect the different motor requirements of the supporting 
and the kicking leg in soccer. Differences between the two extremities can be considered 
specializations of the sensorimotor system [27]. The supporting leg is optimized in a way to ensure a 
stable mechanical anchor point for the movement of the kicking leg. This happens through 
neuromuscular movement programs that dynamically stabilize the foot, knee, and hip joints. The 
kicking leg’s motion is very complex and depends on the situational motor requirements when 
guiding or kicking the ball. Simply put, the non-dominant (supporting) leg is optimized for 
stabilizing the leg axis and hip, also during a one-legged landing. This happens through intensified 
activation of the hip’s outer rotators and hip abductors [28]. In contrast, the dominant (kicking) leg 
exhibited a potential instability during our tests when serving as a landing leg. Muscular imbalances 
between the two sides are known in soccer and are the subject of controversial debate in terms of 
their manifestation and potential influence on injuries [29–31]. 

Figure 1. (a) Experimental setup: ASIS = marker on the anterior superior iliac spine, CP = marker
on the center of the patella, MM = marker on the instep; (b) Example of the landing positions of a
right-footed soccer player: the dominant (right) leg shows an increased dynamic knee valgus angle
(note that the left hip rotates backwards).

4. Discussion

This study aimed at finding possible differences in the landing kinematics of the dominant and
non-dominant leg in junior soccer players. A statistically significant effect of small and medium size
was identified in the groups analyzed. The dominant leg showed a larger knee valgus angle than the
non-dominant leg, which, at the time of maximum flexion, is generally stabilized in a slight varus
position. Figure 1b shows an example of a right-footed soccer player. All subgroups showed large
coefficients of variance (Table 2). This was caused by the large inter-individual variation of the knee
angles, which might probably have been caused by the individual differences in the players’ static leg
axes. The static leg axes and their deviations, such as knock knees (genu valgum) or bowed legs (genu
varum) influence the initial position from which a dynamic movement will start. Therefore, further
studies should examine the influence of the individual static leg axes on the dynamic valgus angles.

We let the players perform only one jump for each leg after having finished the trial jumps.
Although other studies analyzed the mean value of several jumps [25,26], we decided not do so as we
wanted to minimize possible learning effects.

Obviously, the kinematic differences reflect the different motor requirements of the supporting
and the kicking leg in soccer. Differences between the two extremities can be considered specializations
of the sensorimotor system [27]. The supporting leg is optimized in a way to ensure a stable mechanical
anchor point for the movement of the kicking leg. This happens through neuromuscular movement
programs that dynamically stabilize the foot, knee, and hip joints. The kicking leg’s motion is very
complex and depends on the situational motor requirements when guiding or kicking the ball. Simply
put, the non-dominant (supporting) leg is optimized for stabilizing the leg axis and hip, also during a
one-legged landing. This happens through intensified activation of the hip’s outer rotators and hip
abductors [28]. In contrast, the dominant (kicking) leg exhibited a potential instability during our
tests when serving as a landing leg. Muscular imbalances between the two sides are known in soccer
and are the subject of controversial debate in terms of their manifestation and potential influence on
injuries [29–31].
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Since dynamic knee valgus positions in combination with hip adduction and hip flexion (“medial
knee collapse”) seem to promote ACL injuries [23], these kinematic cases must be given special
attention. Nevertheless, this study cannot answer the question of whether the increased probability of
injury of the knee joint of the dominant leg [22] is also caused by more unfavorable landing kinematics.
However, the results show that more research is required in this field in the future.

The differences between the supporting and kicking leg were identified in both groups of players
with the effect being larger in the elite player group. On the one hand, it would be plausible if
those differences occur more prominently in junior professionals because in their age group, the
degree of specialization and training is already very intense, which leads to muscular adaptations [18].
Differences in posture stability when standing on one leg are already known for professional and
amateur players [32]. On the other hand, all professional soccer clubs that participated in this
study offer a special athletic training at least once a week to compensate for muscular imbalances.
Both aspects possibly keep a balance. In any case, the problem of the differences between the two sides
concerns both performance groups.

Determining the two-dimensional (2D) knee angle in the frontal plane to assess knee kinematics
is well-known from other studies [25,26]. Even though it is impossible to infer the three-dimensional
knee angle from the 2D analysis [33], the 2D knee angle still supplies important and usable
information [34,35]. Geometrically, this angle is a result of the projection of the knee position into
the frontal plane. It therefore includes rotation movement in the hip joint as well as knee flexion,
rotation, and adduction [36]. The combination of these movements is known as “dynamic knee valgus”
and represents a sum parameter that, in itself, does not say anything about the biomechanical knee
valgus [37], but seems to be associated to injuries of the joint. Therefore, this parameter seems to be a
time- and cost-efficient measure and supplies useful data on a complex knee movement [35].

Differences between the two extremities during movement exist in many types of sports and
are the result of neuromuscular adaptation [38,39]. It is therefore not necessary to consider them
basically negative. However, since correlations to injuries are known [40], kinematic and muscular
asymmetries should continue to receive their due attention in both amateur and professional training
and performance diagnostics. To ensure effective injury prevention, coaches should emphasize not only
a suitable warm-up training [15,40,41], but also a separate training of the musculature that stabilizes
the knees and hip, which includes coordinate aspects [42–46].

5. Conclusions

The differences between the kinematics of the dominant and non-dominant leg during a single leg
landing need to be critically assessed, especially in view of injury prevention, and should be reflected
in corresponding training programs.
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