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Abstract: This 7.5-year prospective controlled exercise intervention study assessed if daily school
physical activity (PA), from before to after puberty, improved musculoskeletal traits. There were
63 boys and 34 girls in the intervention group (40 min PA/day), and 26 boys and 17 girls in the
control group (60 min PA/week). We measured musculoskeletal traits at the start and end of the study.
The overall musculoskeletal effect of PA was also estimated by a composite score (mean Z-score of the
lumbar spine bone mineral content (BMC), bone area (BA), total body lean mass (TBLM), calcaneal
ultrasound (speed of sound (SOS)), and muscle strength (knee flexion peak torque)). We used analyses
of covariance (ANCOVA) for group comparisons. Compared to the gender-matched control group,
intervention boys reached higher gains in BMC, BA, muscle strength, as well as in the composite
score, and intervention girls higher gains in BMC, BA, SOS, as well as in the composite score (all
p < 0.05, respectively). Our small sample study indicates that a daily school-based PA intervention
program from Tanner stage 1 to 5 in both sexes is associated with greater bone mineral accrual, greater
gain in bone size, and a greater gain in a musculoskeletal composite score for fractures.

Keywords: bone mineral content; bone mineral density; bone size; boys; children; exercise; girls;
muscle strength; muscle mass; physical activity; puberty; Tanner stage

1. Introduction

Thirty percent of children suffer a fracture before the age of 18 [1] and 50% of women and 22% of
men after the age of 50 [2]. This results in enormous costs for society [3], costs that have to be reduced.
One strategy could be to reduce risk factors for fracture [4–7]. Regular physical activity (PA) may be
such a factor, as regular PA is associated with benefits in bone mass, neuromuscular function, and
muscle strength, traits associated with fracture risk [8–11]. PA during growth is also associated with a
gradually reduced fracture incidence [10], as well as a low fracture incidence in adulthood [12–15].
However, it is debated whether a population-based PA intervention program in children can achieve
the same benefits.

There is no PA intervention study published that has followed the development of musculoskeletal
traits from before to after puberty [10]. Such research is necessary as the pre- and early pubertal period
is the period when 25% of adult bone mass is acquired [16]. Furthermore, since fracture risk not only
depends on a single trait, a musculoskeletal composite score may better estimate the expected fracture
protective effect of PA than the measurement of a single trait [17], similar to the use of a composite
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risk score when predicting cardiovascular events [18] or by the fracture risk assessment tool (FRAX)
for fracture risk in the elderly [19,20]. No such composite score exists for fracture risk evaluation
in children. The aim of this study was to evaluate if a daily school-based PA intervention program
from before to after puberty induced beneficial gains in musculoskeletal traits and a musculoskeletal
composite score for fracture.

2. Materials and Methods

The Pediatric Osteoporosis Prevention (POP) study is a population-based prospective controlled
intervention study with the primary aim of investigating whether daily school-based PA improves
musculoskeletal development and reduces fracture risk; the study design is described in detail in
previous publications [10,11,21,22]. The POP cohort includes children from four government-funded
and community-based elementary schools, all located in the same city and with similar socioeconomic
status. Before the start of the study, all schools had the same amount of PA (60 min/week). We then
assigned the first school as the intervention school, and the remaining three as control schools.
We increased the amount of PA in the intervention school to 200 min/week, provided as daily classes of
40 min, all school days during all nine compulsory school years. The PA included moderate to intense
activities from the regular PA curriculum, such as gymnastics, team sports, dancing, running, jumping,
and playing activities. We had no registration as regard the proportion of different activities that were
included in the curricula or proportion of impact and endurance exercise. Furthermore, we had no
registration to what extent the children participated in the PA lessons, but PA classes are mandatory
in Sweden. The control schools continued with the national standard of 60 min/week PA. The same
teachers as before the study start led the PA classes in all schools. In the latest bone mass and muscle
strength follow-ups of the pediatric osteoporosis prevention (POP) study, 40% of the children were still
in pubertal development [10,23].

All children, 98% of Caucasian ethnicity, who started 1st grade during 1998–2000 in the four
schools were invited, when they were 6–9 years old and in Tanner stage 1 [23]. Informed consent was
obtained from the parents of 217 children (123 boys and 94 girls) in the intervention and 132 (68 boys and
64 girls) in the control schools. During the intervention period, 26 boys and 27 girls in the intervention,
and 31 boys and 24 girls in the control schools left the study. We excluded 30 boys and 31 girls in the
intervention and 11 boys and 22 girls in the control schools, who, at the last follow-up in 9th grade
(final compulsory school year in Sweden), had not reached Tanner stage 5 [23]. We further excluded
4 boys and 2 girls in the intervention school and 1 girl in the control school, who had a chronic disease
or medication that could interfere with bone growth.

At baseline and follow-up, we undertook several measurements: Bone mineral content (BMC; g)
and areal bone mineral density (aBMD; g/cm2) for total body less head, left femoral neck (FN), and
first to fourth lumbar spine vertebra (L1L4); bone area (BA; cm2) for FN and L1L4; body composition
(BC) as total body lean mass (kg), with dual energy X-ray absorptiometry (DXA, DPX-L®version 1.3z,
Lunar Corporation, Madison, WI, USA) [10,24,25]; calcaneal speed of sound (SOS; m/s), a measurement
also used to estimate bone quality [26] by quantitative ultrasound (QUS, Lunar Achilles model 1061®,
Lunar Corporation, Madison, WI, USA); and muscle strength (concentric isokinetic peak torque (PT;
Nm) for right knee flexion (flex) at a speed of 60 and 180 degrees/sby a computerized dynamometer
(Biodex System III Pro®, Biodex Medical Systems Inc. Shirley, NY, USA). We used the highest PT
value of five repeated movements of flexion [2,10,24]. Dedicated research technicians performed all
measurements and calibrated the DXA apparatus daily using a phantom. There was no long-term drift
in the equipment. The coefficient of variation (%), evaluated by duplicate measurements in 13 healthy
children, was 1.4%–5.2% for BMC, 1.5% for BA, 2.4%–2.6% for aBMD 0.2% for SOS, 6.7% for PTflex60,
and 9.1% for PTflex180.
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We measured body height (cm) with a Holtain Stadiometer (Holtain LTD, Pembrokeshire,
UK) and body mass (kg) with an electric scale (Avery Berkel HL 120 Electric Scale, Avery Berkel,
West Midlands, UK). Body mass index (BMI) was calculated as mass/height2. A research nurse assessed
the Tanner stage [23] at baseline while self-assessment was used at the follow-up. Lifestyle (dairy intake,
alcohol, smoking, medical conditions, medication use, duration of weekly organized leisure-time
PA) was evaluated through a non-validated questionnaire with assistance from parents [10,22,24,25].
We calculated total PA as the sum of PA in school and organized leisure-time PA. For each individual,
we then summarized the duration of PA at baseline, after half the study period and at follow-up, and
then divided this sum by 3 to reach an estimate of the average duration of PA during the entire study
period for each child.

Using the compulsory Swedish 1st grade school health examinations, we compared height, weight,
and BMI between the children who accepted participation and those that refused and were ten unable
to identify any statistically significant differences between the groups [27]. We were also unable to
identify any statistically significant group differences at baseline in age, height, weight, BMI, PA, BMC,
BA, aBMD, BC, SOS, and PT between children that remained in the study and those who left the study
during the follow-up period (data not shown).

We used IBM SPSS Statistics®version 23 for all statistical analyses. We present data as absolute
numbers (n), proportions (%), means with standard deviations (SD), or mean differences with
95% confidence intervals (95% CI). We calculated study period changes as the follow-up value minus
the baseline value. The composite score was calculated as the mean Z-score (the number of SDs above
or below the age and gender-predicted mean value) of L1L4 BMC, L1L4 BA, BC, SOS, and PTflex180,

with all traits associated with fracture risk [4–7,10,12,15,22–25,28,29], a score that has been shown to
predict fractures in old men [20]. For group differences in trait changes, we used analysis of covariance
(ANCOVA) adjusted for age at follow-up and the baseline trait value (for the composite score, only the
baseline trait since Z-scores include the adjustment for age). We used Spearman’s correlation test to
estimate the correlation between the average duration of PA during the study period and composite
score changes. We regarded p < 0.05 as a statistically significant difference. All participants in the
POP study and the parents or guardians provided written consent, the Ethics Committee of Lund
University, Sweden (LU 453-98; 1998-09-15) approved the study, and the study is registered as a clinical
trial (ClinicalTrials.gov.NCT000633828).

3. Results

We present sex-specific group characteristics in Tables 1 and 2. Twenty-six children (18.6%) were,
according to isoBMI, classified as being overweight and 7 (5.0%) as being obese. The only baseline group
differences in musculoskeletal traits between the intervention and control groups were higher PTflex180

(p = 0.02) in the intervention boys and higher PTflex60 (p < 0.05) in the intervention girls (Table 2).
Boys in the intervention group during the study period gained higher L1L4 BMC (p = 0.02), L1L4

aBMD (p = 0.03), L1L4 BA (p = 0.03), and PTflex180 (p = 0.008) than boys in the control group (Table 3).
Girls in the intervention group gained higher BMC at all measured sites (p = 0.003 to 0.03), aBMD for
total body less head (p = 0.004) and L1L4 (p = 0.002), BA for L1L4 and FN (both p = 0.03), and calcaneal
SOS (p = 0.003) than girls in the control group (Table 3).
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Table 1. Anthropometry, lifestyle characteristics, and duration of organized physical activity (PA). Data are presented as numbers (n) with proportions (%) within
brackets or as means with standard deviations (SD) within brackets.

Boys Girls

Intervention (n = 63) Control (n = 26) Intervention (n = 34) Control (n = 17)

Before intervention start
Total organized PA (hours/week) 3.1 (3.5) 3.4 (3.4) 1.6 (1.7) 1.9 (1.6)

After intervention start
Age (years) 7.6 (0.6) 8.2 (0.6) 7.5 (0.4) 8.0 (0.6)
Height (cm) 128.7 (6.0) 131.5 (5.5) 127.8 (5.6) 130.9 (7.5)
Weight (kg) 28.2 (5.3) 29.0 (5.0) 28.6 (5.8) 27.5 (5.2)
BMI (kg/m2) 16.9 (2.4) 16.7 (2.0) 17.4 (2.8) 16.0 (1.8)

Exclusion of dairy products 0 (0%) 4 (16%) 0 (0%) 0 (0%)
Chronic medical conditions 9 (14%) 2 (8%) 5 (15%) 0 (0%)

Current medication 13 (21%) 2 (8%) 5 (15%) 0 (0%)
Total organized PA (hours/week) 6.3 (3.5) 4.2 (3.4) 4.9 (1.7) 2.7 (1.6)

Follow-up
Age (years) 15.2 (0.4) 15.3 (0.5) 15.1 (0.5) 15.3 (0.5)
Height (cm) 175.6 (6.9) 175.8 (6.7) 166.6 (5.0) 168.4 (6.0)
Weight (kg) 66.0 (11.3) 64.7 (10.7) 62.5 (10.1) 56.6 (8.6)
BMI (kg/m2) 21.4 (3.2) 20.9 (3.0) 22.5 (3.1) 19.7 (2.5)

Smoking 3 (5%) 1 (4%) 3 (9%) 4 (24%)
Drinking alcohol 15 (24%) 2 (8%) 6 (18%) 3 (18%)

Total organized PA (hours/week) 9.5 (4.9) 6.4 (3.2) 7.7 (3.2) 5.0 (3.2)
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Table 2. Single musculoskeletal traits and a musculoskeletal composite score at baseline. Data are presented as numbers (n), means (standard deviations), or mean
differences with 95% confidence intervals in brackets. BC = body composition, BMC = bone mineral content, aBMD = areal bone mineral density, BA = bone area, QUS
= quantitative ultrasound, PT = muscle peak torque. QUS data were missing in 5 intervention and 16 control children.

Boys Girls

Intervention (n = 63) Control (n = 26) Mean Difference Intervention (n = 34) Control (n = 17) Mean Difference

BC (kg)
Lean mass 21.8 (2.6) 22.5 (2.7) −0.6 (−1.9, 0.6) 19.8 (2.5) 20.6 (2.6) −0.8 (−2.4, 0.7)

BMC (g)
Total body less head 673.1 (144.9) 712.6 (141.8) −39.5 (−106.2, 27.2) 638.4 (143.9) 644.9 (137.8) −6.5 (−93.5, 80.5)

L1L4 19.9 (4.5) 21.2 (4.4) −1.2 (−3.3, 0.8) 19.5 (4.8) 19.2 (3.5) 0.3 (−2.3, 3.0)
Femoral neck 2.9 (0.6) 3.0 (0.4) −0.1 (−0.3, 0.2) 2.6 (0.5) 2.4 (0.3) 0.2 (−0.1, 0.5)

aBMD (g/cm2)
Total body less head 0.70 (0.05) 0.71 (0.05) −0.01 (−0.04, 0.01) 0.69 (0.05) 0.69 (0.05) 0.00 (−0.03, 0.03)

L1L4 0.67 (0.11) 0.69 (0.07) −0.02 (−0.07, 0.02) 0.69 (0.12) 0.66 (0.07) 0.03 (−0.03, 0.10)
Femoral neck 0.80 (0.10) 0.81 (0.11) −0.01 (−0.06, 0.04) 0.72 (0.10) 0.68 (0.06) 0.04 (−0.01, 0.09)

BA (cm2)
L1L4 29.6 (3.4) 30.3 (3.4) −0.8 (−2.3, 0.8) 27.8 (3.4) 29.0 (3.5) −1.2 (−3.2, 0.9)

Femoral neck 3.6 (0.4) 3.7 (0.3) −0.1 (−0.2, 0.1) 3.6 (0.3) 3.6 (0.4) 0.0 (−0.2, 0.2)
QUS

SOS (m/s) 1533.6 (23.4) 1532.6 (18.4) 1.0 (−12.0, 13.9) 1525.3 (17.5) 1522.7 (15.9) 2.6 (−9.1, 14.3)
PT (Nm)

PTflex60 23.7 (6.5) 25.9 (7.0) −2.2 (−5.3, 0.9) 21.1 (5.7) 24.5 (5.3) −3.4 (−6.7, −0.1)
PTflex180 21.5 (5.5) 24.7 (6.6) −3.2 (−5.9, −0.5) 19.1 (6.3) 22.1 (4.5) −3.1 (−6.6, 0.4)

Composite score −0.07 (0.70) 0 −0.06 (−0.40, 0.28) 0.23 (1.25) 0 0.24 (−0.33, 0.81)
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Table 3. Musculoskeletal trait and composite score changes. Data are presented as absolute numbers (n), means (standard deviations), or mean differences with 95%
confidence intervals in brackets. BC = body composition, BMC = bone mineral content, aBMD = areal bone mineral density, BA = bone area, QUS = quantitative
ultrasound, PT = muscle peak torque. Mean follow-up time was 7.5 years. a Analysis (ANCOVA) adjusted for age at follow-up and baseline trait value. QUS data
were missing in 20 intervention and 17 control children.

Boys Girls

Intervention (n = 63) Control (n = 26) Mean Difference a p Value a Intervention (n = 34) Control (n = 17) Mean Difference a p Value a

BC (kg)
Lean mass 29.6 (4.8) 28.8 (4.2) 1.2 (−0.8, 3.3) 0.24 18.6 (2.8) 18.3 (3.4) 0.6 (−1.2, 2.5) 0.49

BMC (g)
Total body less head 1710.5 (352.4) 1666.9 (386.1) 96.1 (−58.9, 251.1) 0.22 1437.9 (295.5) 1287.5 (252.1) 171.0 (31.1, 310.9) 0.02

L1L4 43.2 (10.3) 39.9 (11.8) 5.3 (1.0, 9.6) 0.02 41.6 (9.4) 35.3 (7.4) 6.6 (2.3, 10.9) 0.003
Femoral neck 3.1 (0.7) 2.9 (0.9) 0.1 (−0.2, 0.5) 0.44 2.8 (0.8) 2.2 (0.7) 0.6 (0.1, 1.1) 0.03

aBMD (g/cm2)
Total body less head 0.37 (0.07) 0.36 (0.08) 0.02 (−0.02, 0.05) 0.30 0.35 (0.06) 0.30 (0.05) 0.05 (0.02, 0.08) 0.004

L1L4 0.43 (0.10) 0.39 (0.10) 0.05 (0.01, 0.10) 0.03 0.50 (0.11) 0.41 (0.08) 0.10 (0.04, 0.16) 0.002
Femoral neck 0.28 (0.10) 0.27 (0.13) 0.02 (−0.04, 0.07) 0.52 0.34 (0.10) 0.30 (0.11) 0.05 (−0.02, 0.11) 0.17

BA (cm2)
L1L4 27.4 (4.4) 25.7 (4.7) 2.2 (0.2, 4.1) 0.03 23.1 (3.1) 21.7 (2.8) 1.9 (0.2, 3.6) 0.03

Femoral neck 1.9 (0.4) 1.8 (0.5) 0.0 (−0.2, 0.2) 0.80 1.5 (0.5) 1.2 (0.5) 0.3 (0.0, 0.6) 0.03
QUS

SOS (m/s) 61.1 (39.4) 72.8 (37.9) −10.1 (−32.3, 12.1) 0.37 86.4 (35.7) 42.5 (24.9) 41.4 (15.6, 67.3) 0.003
PT (Nm)

PTflex60 68.4 (21.1) 66.2 (16.4) 2.9 (−6.6, 12.4) 0.55 44.3 (11.3) 38.3 (13.3) 7.7 (−0.2, 15.7) 0.06
PTflex180 51.5 (13.4) 43.7 (9.9) 8.2 (2.2, 14.2) 0.008 30.7 (8.8) 25.8 (9.5) 4.6 (−1.4, 10.5) 0.13

Composite score 0.30 (0.55) 0 (1) 0.29 (0.05, 0.54) 0.02 0.31 (0.88) 0 (1) 0.43 (0.08, 0.78) 0.02
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Both boys and girls in the intervention group gained favorable musculoskeletal composite scores
than their sex-specific control groups (both p = 0.02). There was a correlation between the average
duration of PA per week during the study period and study period changes in the composite score
(R = 0.17; p = 0.04).

4. Discussion

Puberty is the period in which 25% of the adult bone mass is acquired [16], and the greatest
skeletal response to mechanical load occurs during pre- and early puberty [30]. In light of this, it seems
reasonable that PA-induced musculoskeletal effects should be monitored from before to after puberty.
We found in this small cohort, where we followed children from Tanner stage 1 to stage 5, that both boys
and girls with daily school PA achieved greater gains in bone mass, bone size, and a musculoskeletal
composite score for fractures than boys and girls with school PA 1–2 times per week. The current
data further provide a plausible mechanism for the previously reported inverse correlation between
the number of years with daily school PA and low annual fracture incident rate ratio (IRR) [10,21].
Since PA-induced bone mass benefits in young years seem to be retained in adulthood [12–15], and
children with high level of PA have a lower fracture incidence in adulthood [12,13,15], it is imperative
that we continue to follow the POP cohort to evaluate if increased PA in school really is a strategy to
reduce the adult fracture burden.

This study also highlights the difficulties encountered when evaluating the effect of a PA
intervention by one single trait. If we had used femoral neck aBMD as a single endpoint variable,
we would erroneously have concluded that our intervention was without effect. We addressed this
difficulty by the use of a composite score. Finding a dose–response relationship between the weekly
duration of PA and gain in the score, in addition with knowledge that the score predict fractures in old
men [20], strengthens the view that this is a clinically relevant score.

Randomized controlled trials (RCTs) have found beneficial bone mass effects by increased PA in
children [10,11], and also bone morphology is influenced by PA in a beneficial way [10,11,15,31–36].
However, most published intervention studies include volunteers, and few have followed the PA
effect beyond 24 months [10,11]. The most recent publication from the POP cohort found beneficial
bone mineral accrual in girls but not boys by increased PA [10]. The problem with that study was
that around 40% of all children had still not reached Tanner stage 5 [10]. Our current study supports
that a school PA program throughout puberty results in measurable effects on bone mass and bone
size. Such programs should probably be initiated before puberty [30,37,38], but no study has so far
been able to identify the best age to start such interventions. Of great interest is also that children in
school-based PA programs continue to have a high duration of PA not only during the intervention
period [39] but also after [40]. This could be one reason why PA-induced high bone mass in childhood
is also associated with high bone mass in adulthood [12–15].

The study’s strengths include the prospective, controlled, and population-based study design,
that this is the only PA intervention study that has followed children from Tanner stage 1 to 5 and that
this is the first study that has utilized a composite score to estimate the overall musculoskeletal effect
of PA in children. Study limitations include the low participation rates, especially in the control group,
and the high dropout frequency. This makes it questionable to generalize the results to the broader
community based on this study alone. However, the two dropout analyses found no indication of
selection bias. We also acknowledge that most children in this study were of Caucasian ethnicity and
they lived in a socioeconomic middle class area, facts that makes it difficult to transfer the inferences to
children with other ethnic backgrounds and children living in other socioeconomic areas. The lack of
individual randomization is another weakness. Further limitations include that we only registered the
self-reported duration of school PA and organized PA during leisure time, with no type of activity,
playing activities, or objectively registered PA being measured.
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5. Conclusions

In our small sample study, there are indications that a daily school-based PA intervention program
from Tanner stage 1 to 5, in both sexes, is associated with greater bone mineral accrual, greater gain in
bone size, and a greater gain in a musculoskeletal composite score for fractures. Future larger studies,
also in other socioeconomic settings and within other ethnic subgroups, should verify or oppose our
findings before generalization of results to the broader community is possible. In addition, even if the
composite score predicts fractures in old men, future studies must, as there may be different risk factors
for fractures in old and young individuals, evaluate if the score predicts fractures in children as well.
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