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Abstract: Since the 1970s, the application of microprocessor in industrial machinery and the develop-
ment of computer systems have transformed the manufacturing landscape. The rapid integration and
automation of production systems have outpaced the development of suitable human design criteria,
creating a deepening gap between humans and systems in which human was seen as an important
source of errors and disruptions. Today, the situation seems different: the scientific and public debate
about the concept of Industry 4.0 has raised awareness about the central role humans have to play in
manufacturing systems, the design of which must be considered from the very beginning. The future
of industrial systems, as represented by Industry 4.0, will rely on the convergence of several research
fields such as Intelligent Manufacturing Systems (IMS), Cyber-Physical Systems (CPS), Internet of
Things (IoT), but also socio-technical fields such as social approaches within technical systems. This
article deals with different human social dimensions associated with CPS and IoT and focuses on
their conceptual evolution regarding automated production systems’ sociability, notably by bringing
humans back in the loop. Hereby, this paper aims to take stock of current research trends to show the
importance of integrating human operators as a part of a socio-technical system based autonomous
and intelligent products or resources. Consequently, different models of sociability as a way to
integrate humans in the broad sense and/or the develop future automated production systems have
been identified from the literature and analysed.

Keywords: industry 4.0; cyber-physical systems (CPS); internet of things (IoT); human factors;
automated production systems; social interactions; social networks

1. Introduction—Ground-Breaking Changes in Industry Worldwide

Today, the German initiative “Industrie 4.0” (https://www.plattform-i40.de/PI40/
Navigation/EN/Industrie40/WhatIsIndustrie40/what-is-industrie40.html (accessed on 14
June 2021)) [1], along with many other national socio-political programs such as “Industrie
du future” in France (https://www.economie.gouv.fr/lancement-seconde-phase-nouvelle-
france-industrielle (accessed on 14 June 2021)), “High Value Manufacturing Catapult”
(HVMC) in the United Kingdom (https://hvm.catapult.org.uk/ (accessed on 14 June
2021)), “Made in China 2020” (http://english.www.gov.cn/2016special/madeinchina2025/
(accessed on 14 June 2021)), “Manufacturing USA” (https://www.manufacturing.gov/
programs/manufacturing-usa (accessed on 14 June 2021)), etc. are fostering the digitisation
of industry and are taken as references for the development of new manufacturing systems.
The strong stakes associated with their simultaneous and worldwide emergence make
them the foundations of the 4th industrial revolution as it is already considered by experts.

Basically, the technical innovations related to the vision of Industry 4.0 implies the
wide-spread adoption of Cyber-Physical Systems (CPS), the integration of products, smart
factories, and the introduction of value chains into global business networks [2–6]. Such
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technical integration also correlates with a vision of increased control of highly complex
and globalised production processes, also motivated by the expectation for a (partial)
reshoring of production capacities. Other frequently discussed technologies in the context
of Industry 4.0 are adaptive robotics, additive manufacturing and job-related wearables that
are slated to contribute to productivity increases [7]. All these technologies are grounded
on paradigms such as CPS or Internet of Things (IoT), where the continuous automation of
processes plays a huge role [2].

New objectives will be to achieve the networking of humans, objects, and their virtual
representations within complex-adaptable socio-technic industrial systems. IoT and CPS
are positioned as two essential representations into the study and development of future
industrial systems, but equally for the development of the digital society in general. In
this context, one of the most advanced examples is the Japanese initiative Society 5.0,
presented in 2016 at the Japanese 5th Science and Technology Basic Plan, at the German
Center for Office Automation, Information Technology and Telecommunications (CeBIT),
and described by Fukuyama [8]. In this vision, technical innovations of the 4th industrial
revolution are integrated into every aspect of industrial and social landscapes, as a new
5th wave characterized by the information society. However, the described system can be
considered as utopian by the complexity and uncertainties attached to its concretization [9].
One of these uncertainties lies in the two kinds of relationships underlying this Society 5.0
identified by Deguchi et al., that are “the relationship between technology and society and
the technology-mediated relationship between individuals and society” [10].

This debate on the links between society and technology is naturally found in socio-
technical systems, such as production ones [2,3,7,11–16]. The place of humans and his
consideration into the design of the latter have also become a very important issue, giving
rise to several systems engineering visions and approaches. In this context, the generic Hu-
man Systems Integration (HSI) concept is both used in research fields interested in human
factors and in systems engineering, aiming to associate notions of human performance and
technology design [17] to systems’ design. In addition, HSI concept echoes the user-centric
system (or Human-centred or Anthropocentric) design approach, that can be found under
the standard ISO 9241-210:2019, as “A way of designing interactive systems, aiming to
make systems usable and useful by focusing on users, their needs and requirements, and
applying human factors, ergonomics and existing knowledge and techniques in terms of
usability” [18].

From another viewpoint, Human Centered Design is presented by G. Boy as an inter-
disciplinary and systemic approach toward HSI mixing “cognitive engineering, advanced
human-computer interaction (HCI), modeling and simulation, complexity management,
life-critical systems, and organization design and management.” [19]. More recently, the
“Inclusion” concept, grounded on educative sciences and consisting in adapting a given
process by considering individual characteristics instead of collective or standard goals,
was extended to human manufacturing system inclusion [20,21].

This development echoes David Lockwood’s sociological theory of social systems,
defined as social integration. In his works, social inclusion/integration differs from com-
mon system integration by considering mutual relationships among individual actors and
groups in a system, to achieve “conscious and motivated interaction and cooperation”,
instead of anonymous coordination mechanism [22]. Therefore, the emergence of CPS as a
new wave of automated production system, motivates to privilege this social integration
concept [23,24]. Notably, the development and use of social interaction between objects
and humans could today be envisioned as a key enabler of the extension of the paradigms
of CPS and IoT to human beings in industry.

The first contribution of this article is to provide an overview of human social dimen-
sions’ place in CPS and IoT in literature, detailing their specificities, contributions, and
potential regarding automated production systems in the broader context of Industry 4.0.

The second contribution figures out, where automation processes are going on and
how humans are integrated within these systems. Because the ongoing process of automa-
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tion belongs to the inner logic of industry, this aspect becomes explicit in the following
paper, which is structured as follows. Section 2 will detail some fundamentals concerning
CPS and IoT paradigms, and the role to be given to them within these automated produc-
tion systems. Section 3 will discuss different models of sociability defined as the ability
to interact with others, including human-machine, machine-machine, human-human in-
teractions, to illustrate the purpose of Section 2. Due to these complex developments, the
hypothesis that the engineers and developers intend automation on different process levels
is implicitly raised. Section 4 will conclude by raising open questions concerning work
automatization and questioning how automation is changing work quality today.

2. Fundamentals on CPS and IoT—An Insight

The notions of CPS and IoT are generally recognized as the main pillar of Industry
4.0 [4,7] Decades ago, the debate on Computer Integrated Manufacturing (CIM) systems
referred intensively to new technological and social dimensions with a huge societal im-
pact [23]. However, recent associated technical integration systems encompass this debate
with a different focus [24–28]. Technological dimensions are related to the connection
between the technical systems, while sociological dimension is related to communication
and interfacing human and technical systems. In both cases, integration has to consider the
following:

(a) machine-machine interaction,
(b) human-machine interaction and
(c) human-human interaction.

The introduction of CIM systems in the 1980s had fundamental effects on the orga-
nizational level of work. On the one side, digitization of work processes created a vision
about the complete automation of factories without personnel [23]. Yet, on the other side,
the high level of technical standards created a discourse about the rising and dependent
scope of human actions within working processes [2].

We call “restrictive” a work organization based on a strict human-machine interaction
in a delimited workspace, dependent on technical parameters and on rational production
lines. This organization disappears while considering the support of qualified and respon-
sible employees, which should be actively involved in the production processes. It must be
noted that such flexible work organization is more complex to design than ones restricted
to the mechanistic and hierarchical principles of management. The participation of the
employees into these processes should imply the introduction of tacit knowledge, planning
and operation, group work, as well as decision-making processes.

These criteria are, again, at stake when the emergent vision of the new automated
production systems designed with CPS and IoT are debated [5–7,13,29–31]. Observations
have already shown that these distributed internet-based systems bring path dependencies
that may restrict the possibilities for alternative work organization models by automa-
tion [32–34]. If human factors are not included simultaneously with technological factors in
the design process, there is little space for “re-automation” regarding human interference
into the work processes [25].

Due to the wide range of its potential applications, this concept of CPS enjoys great
popularity in the scientific world, although it is rather recent (enunciated by Lee in
2006) [35]. However, popularity and novelty make it a concept whose definition and
scope are rather blurred. It is also often associated with the one of IoT, which appeared a
little earlier in the 2000s [36,37].

According to Bril El-Haouzi [25] and Bordel et al. [38], preferences in the use of the
terms CPS and IoT are observed from one scientific community to another, or from one
geographical area to another. Thus, CPS will be preferred to IoT in mechatronics and IoT in
computer science communities. The term CPS are also found more often on the American
continent than in Europe or Asia, where IoT is preferred [25,38]. Yet, these two concepts
are fundamentally different and need to be differentiated.
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The popularity of the IoT concept has been presented in literature with many defi-
nitions. Notably, Madakam and colleagues conducted a literature review in 2015, which
led them to formulate the following definition: “an open and comprehensive network
of intelligent objects that have the capacity to auto-organize, share information, data, re-
sources, reacting and acting in face of situations and changes in the environment” [39].
Concerning CPS, Lee initially enunciated the concept as being “integration of computation
with physical processes” where “embedded computers and networks monitor and control
the physical processes, usually with feedback loops where physical processes affect com-
putations and vice versa” [35]. It can be noted that this definition stays consistent with the
one fostered more recently by Monostori “systems of collaborating computational entities
which are in intensive connection with the surrounding physical world and its on-going
processes” [40].

These first definitions can be characterized as techno-centred since only technical
aspects of CPS and IoT are exposed, while human is not evoked. Hence a system can be
considered as being composed of both objects and their cyber representations. In other
words, a system can be seen as organized along two axes: the first one representing the
physical world; the second one representing the cyber world. On the one hand, IoT would
correspond to the horizontal connectivity and synchronization between physical or cyber
objects, performed thanks to internet data exchange protocols-based technologies (such
as TCP/IP). On the other hand, CPS would correspond to the vertical connectivity and
synchronization between objects and their cyber representation, performed thanks to cloud
and sensors-based technologies [6,11,32,41,42] (Figure 1).
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Therefore, CPS and IoT can be seen as the two main enabling paradigms for Cyber-
Physical systems’ networking, and two of the main pillars for Industry 4.0. This represen-
tation seems well-suited to describe machine-machine interaction. But as expresses here
above, human-human interaction and human-machine interaction (e.g., HSI) are equally
important regarding Industry 4.0 [2,25].

Nonetheless, these aspects have been tackled for both IoT and CPS in the last decade.
Chart 1 shows the results for the searches (S1): “Cyber Physical Systems” AND (Human
OR Social OR Anthropocentric) and (S2): “Internet of Things” AND (Human OR Social OR
Anthropocentric). This search was performed with the ScienceDirect scientific database
for practicality of use. No other database was queried, for the purpose of this search is to
provide an overview of the scientific interest for the subject and not an exhaustive analysis.
To obtain relevant results, the search has been restricted to articles (research and reviews),
presenting the terms in their title, abstract or keywords. Hence, searches target the articles
instead of only mentioning them, but for which they are the main subject (Figure 2).

Overall, the interest shown for this research area has risen consistently for the last
decade. The decrease observed for 2020/2021 was due to an update delay in the database
(for instance, results for CPS in 2020 have risen from 45 to 50 between April and May 2021).
In a prior paper, Valette et al. have already proposed a study upon the human-integration
the evolution of CPS and IoT paradigms regarding human, anthropocentric and social
characters [32].
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What will be deepened in this paper is the social character, often associated with
the development of systems and of their architectures. As Moniz and Krings mentioned,
the application of new robotic systems in the manufacturing shop-floor level is widely
undertaken without the reference of «real» social implications. Due to the cognitive and
perceptual workload for new robot operators in complex and automated working systems,
the social dimension is currently defined by developers with the focus on the issues of
security and, eventually, qualification. However, the social dimension remains in a limbo
regarding the technical debate about interaction systems [26].

The analysis concerning the impact of automation on work processes is closely con-
nected with the knowledge about social issues at work level. If the term “social” can be
seen as the most generic to express human consideration for production systems design in
literature, it is, however, not unambiguous nor necessarily the mark of an attention paid to
the human being. We can especially cite its use in a multi-agent field, where any interaction
between two agents, human or not, is called social.

Notably, the 1998 work from Sycara can be quoted, where “sociability” is referring to
the fact “that an agent is capable of interacting in a peer-to-peer manner with other agents or
humans.” [33], along with more recent works from Nguyen and Katarzyniak, establishing
as social interactions “all acts, actions and practices that involve more than two agents
and affect or take account of other agents’ activities, experiences or knowledge states” [43].
Hence, social integration models/approaches can be divided into the three types: social
interactions based on peer-to-peer communication interfaces, social-network services based
approach as a media for social interaction and human-inspired social relationships-based a
sociability model, detailed in the following sections.

3. Social Aspects in IoT and CPS
3.1. Social Interactions Based on Peer-to-Peer Communication Interfaces

The “classic” approach, mostly found in the Multi-Agent Systems (MAS) study field,
defines as social any agent able to interact with another one, whether it is artefactual
or natural. The developments we would classify here aim mainly at human physical
enhancement through technological means, with the purpose of human integration in such
systems. Hence, Sowe et al. define a Cyber-Physical Human System as an “interconnected
systems (computers, cyber physical devices, and people) “talking” to each other across
space and time, and allowing other systems, devices, and data streams to connect and
disconnect” [44]. This definition is found in the work of (Schirner et al. 2013), who
developed the ’Human-in-The-Loop Cyber-Physical Systems’ (HiTLCPS).

This concept consists of an embedded system improving the ability of a human being
to interact with his physical environment (Figure 3). The “loop” is made up of a human,
an embedded system, and their environment. Beyond the very concrete translation of
the integration of the human factor into systems, they provide here a solution where the
system is presented as a physical extension of the human being, via a digital interface.
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Figure 3. HiTLCPS (see [34]).

With the development of the ‘Anthropocentric Cyber-Physical Systems’ (ACPS) by
Pirvu and colleagues [27], defined as a reference architecture integrating the three physical,
cyber/IT and human components (Figure 4), the search for the integration of the human
factor is taken further. The authors present it as an integrated, social, local, irreversible,
adaptive, and autonomous system, in line with the continuity of Cyber-Physical Social
Systems (SCPS) and Cyber-Physical Social Systems (CPSS). The ACPS is presented as
an architecture “where the humans are not just interactants with a CPS, but elements of
the system affecting its lifetime behaviour” [27]. However, unlike previous contributions
offering concrete applications, this one pushes human integration further but remains,
therefore, very conceptual.
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Until now, the most recent development of these approaches is the ’Social Human-In-
The-Loop Cyber-Physical Production System’ (Social-HITL-CPPS) of [45]. In this paper,
the interpretation of a human agent’s behaviour and its coordination with other agents are
identified as the two main challenges of the integration of humans in social (and not just
industrial) environments.

To meet these challenges, a three-layer architecture has been proposed. This architec-
ture connects, on the one hand, human users to the cyber part via user interfaces, and on
the other hand, the physical parts (i.e., non-human agents and the environment) to the
cyber part via a network (Figure 5).
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Under these conditions, the social interaction with automated systems (i.e., CPS)
integrates several features, like human perception, sensing, haptic interaction, or commu-
nication. When people interact with robots and other CPS there must exist some degree
of awareness of the human in the loop, in terms of sensing abilities and/or interfaces and
abilities of the technical system to interact and communicate with people [28,41,46].

The fact that robots with such ‘cognitive’ abilities are introduced in a working envi-
ronment means the relation between humans and these machines also evokes the relation
between co-workers and the human resource management strategies in a company [29].
Once the socialisation (the ability to interact with others, or to socialize) of the automated
production systems is achieved, several scientific questions that can only be resolved
through further research remain open. In particular, as the capacities and abilities of
humans and intelligent systems are not similar; thus, the recognition of differences is
most relevant for a balanced architecture, with a better allocation of competencies and
complementarities based on new technologies as Augmented Reality, IIoT [47,48].

3.2. Social-Network Services Based Approach as a Media for Social Interaction

This second approach is based on the use ’Social Network Services’ (SNS) type appli-
cations (e.g., Facebook, Twitter, Instagram, etc.) as a media for social interaction between
human-human, machine-human or machine-machine. Between 1995 and 2020, a conse-
quent raise of internet users and internet-connected devices has been observed [49,50]
(« Internet World Stats » 2020) (Figure 6).

Nomadic communicating objects, such as laptops, smartphones, and tablets, have
become omnipresent in our everyday life. SNS, whose development has been fostered by
these devices, have been defined by [51] as “web-based services that allow individuals to
(1) construct a public or semi-public profile within a bounded system, (2) articulate a list
of other users with whom they share a connection, and (3) view and traverse their list of
connections and those made by others within the system”.

The first consequence of this rise is the generation of huge data among posing data
structuration issues, leading Guinard et al. to the idea of using the structures of existing
SNS to connect IoT devices into a ’Social Web of Things’ (SWoT) [12] (Figure 7). The
SNS’s ability to collect and process data to support the creation or maintenance of social
relationships between their users, is there seen as a new way to structure data exchanges
within a network of intelligent connected objects (i.e., artefact agents).
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Today, this idea is fuelling the development of resilient data collection and sharing
methods aiming to improve reputation, trust, and security between IoT devices [52–54]
(Figure 8). These methods are based on Graphs to structure data-connection between
devices, Degree distribution to quantify a node’s solicitation, and Local Clustering Co-
efficients to group interlinked nodes as network clusters. Combining these methods to
friendship-like relationships ultimate leads to a “social” SNS-based approach.
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But Data structuration is not the only use that has been found for SNSs into systems’
design. Social networking can equally be used as a way to organise manufacturing systems
into distributed Dynamic Resource Communities (DRC) as a “new cyber-physical-social-
connected and service-oriented manufacturing paradigm” [55]. This Social Manufacturing
(SocialM) approach is based on the use of both socialized resources, social media, and
social community inspired self-organization for resources (Figure 9).

Resource agents (here named Production Service Providers or PSPs) are interacting
with each other through a global social relationship network (e.g., the SNS), enabling them
to self-organize into these distributed DRC, aiming to bring resiliency and flexibility to
production systems.
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The notion of social manufacturing can be found again on the work of Romero
et al. on Social Factory Architecture based on Social Networking Services and Production
Scenarios. They define the Social Operator 4.0 as a “type of Operator 4.0 that uses smart
wearable solutions together with advanced human-machine interaction (HMI) technologies
to cooperate with other ‘social operators’, ‘social machines’ and ‘social software systems’
to communicate and exchange information for mutual benefit and align/alter activities as
well as share resources so that more efficient results can be achieved at the smart and social
factory of Industry 4.0” [30].

This will increase the complexity of data management and recurrent amalgamation of
roles (as today occurs with domestic bots of IOS or Google, as examples). Thus, it will be
critical to understand the central role of humans in (also) complex organizational settings.
The new communication tools and platforms can imply new needs of management for
social relations and integrate them with connected objects through IoT. It can be imperative
not to mix the functions of social media and services with humans as social actors. Together
it can transform CPS systems in an “uncanny valley” already described by Mori several
decades ago [56].

To conclude, social interaction will become more complex with SNS and CPS [54].
However, IA applications on manufacturing environments under the concept of Industry
4.0 should not amalgamate the function of humans as social actors. In other words, the



Societies 2021, 11, 98 10 of 15

Operator 4.0 will remain a human and not just a “thing” connected with other cyber-
physical devices.

3.3. Human-Inspired Social Relationships-Based Sociability Model: From Social Integration to
System Integration

This third approach consists in a transposition of human-inspired social relationships
into a technical (e.g., SIoT) or socio-technical system (associating objects and humans).
Some years before, the advent of Industry 4.0, [57] noted a certain lack of consideration
for human factors in the field of CPS, and developments were focused on networked and
next-generation embedded systems [2,37,47]. Therefore, he proposed the concept of “Cyber
Physical Social System” (CPSS) as a “tightly conjoined, coordinated, and integrated with
human and social characteristics” development of CPS.

CPSS is supported by the addition of physiological, psychological, social, and mental
spaces to those of cyber and physical spaces [41,58,59] (Figure 10). Written as the Word
from the Editor for the first issues of the CPSS department of IEEE Intelligent Systems
journal, this first approach stays conceptual, though it has been quickly followed by much
more concrete works.
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Figure 10. From Popper’s three worlds to cyber-physical social systems (see [57]).

We can notably cite the ‘Social Internet of Things’ (SIoT), developed by [60] (Figure 11).
Equally based on the identification of the need to structure data into the growing Internet,
the goal of this development differs from [61], for it does not focuses on the reuse of existing
SNS structures, but rather on the development of a new architecture that would be “a
social network of intelligent objects bounded by social relationships” [62]. This is based on
5 main social relationships inspired by human systems, such as those developed by [63].
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According to Fiske [63], human societies are regulated by four elementary forms of
sociability, namely: Communal Sharing (CS), Authority Ranking (AR), Equality Matching
(EM), and Market Pricing (MP). This work represents a first attempt to create a typol-
ogy of social relations, which Atzori and colleagues used as a basis to develop their own
typology [64]. They defined the following five inter-object relationships: Parental Object Re-
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lationship (POR), Ownership Object Relationship (OOR), Co-Working Object Relationship
(C-WOR), Social Object relationship (SOR) and Co-Location Object Relationship (C-LOR).

Simultaneously, Atzori and colleagues [60,64] have developed a support architecture
for object-object interactions and the discovery of services and resources within a network
of connected objects. Social relationships are established and exploited among objects, but
not between their human beneficiaries.

Contrasting with previous social approaches, this one relies on human inspired social
mechanisms to improve the integration of purely technological systems. However, the
relationships expressed in SIoT pave the way for the realization of a paradigm evoked
earlier: the ‘Cyber-Physical Society’. It encompasses the definition of Society 5.0 already
referred above. Valette et al. [65] have proposed a transposition of those relationships to a
Social Holonic Manufacturing control in CPS based factories

It was defined by Shi and Zhuge (Figure 12) as a ‘Cyber-Physical Socio-Ecosystem’
(CPSE) where natural physical space, social space, mental space and cyberspace interact
and co-evolve with each other [59]. CPSE deals with the relationships between individuals
in a cyber-physical environment and cyber-physical social system.
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If a robot, or other machines with AI can be equipped with general information about
social behaviour, than it should be able to detect situations as appropriate in certain classes
of social behaviours and apply them. That is specially the case when it is needed to include
information about possible human operator actions in the programming phase.

With more developed devices, such capacity can also feature the intuition capacity
in the interaction with humans [28]. In such cases, machines can have an autonomous
“reasoning’” about how best to achieve its goals in a given social context and should have
the ability to express itself in ways that will help it complete tasks in a wide range of social
situations. The expression must not be verbal but can be in written forms, allowing it to be
understood by the human operator.

The frames of goal achievement must be settled in work environments. In other
words, the “higher the capacity is for ‘autonomous reasoning’, the higher must be the
intuition for humans to interact with robots” [28]. This means the cyber-physical space
must be designed and programmed according to the social system, for example, the one
presented in a model of work organization [25,26,66,67]. In such way, we can talk about a
potential symbiosis between the physical space (machinery, tools) and social space (mental
references, identities, communication language, organizational roles, decision-making)
referred also as Cyber-Physical Society or Socio-Ecosystem, or even Social System (CPSS),
as mentioned above.
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This logic is also found in the work of Pintus and colleagues [68]. These authors define
the ‘Humanized Internet of Things’ (HIoT) as a classic machine–machine oriented IoT
coupled with SIoT and the ‘Internet of People’ (IoP) [68]. In a manufacturing environment,
the goal is to propose a social factory supporting human workers under any condition and
engaging him to contribute to knowledge creation. In such a system, human, machine, and
software agents would be considered as equal and provided “just in time” and “just in
quality” with necessary information [14,31,46,69,70].

It is easy to perceive, behind this assemblage of paradigms, a larger vision of a socio-
technical system of agents, artefacts, and human beings, organized governed by a set of
social relations. Nevertheless, there is still a lot of work to be done before reaching a better
acceptability of these systems, to reduce their complexity while guaranteeing their agility
when facing changes of environment and to allow a better integration of the human being,
either as an individual with its variabilities and as a part of a collective society through the
concept of social inclusion [6,13].

4. Conclusions and Prospects

Automation has significantly increased in most production sectors, and the question
remains whether there remains space for human autonomy and creativity at a working level.
Does automation increase the dependency of the workers within these new systems? What
are the qualitative changes of work on a shop floor level in regard to speed, expectations,
demands and complexity of work? How are workers integrated into the configuration of
these working arrangements? Why is the ongoing process of automation still implicitly a
part of development?

Today’s new technological advances associated with CPS and IoT are paving the
way for the new generation of automated production systems with promising objectives
of efficiency, agility, and adaptation to user needs. New levels of automation will be
accomplished based on these systems with a better balance between human and machine
works. This is a promise of Industry 4.0.

The purpose of this study was to explore how human/social dimensions were consid-
ering in CPS and IoT based production systems. The focus was conducted on the sociability
models to ease the human social/system integration into automated production systems.
The first model deals with the classical human-system interaction interfaces, where many
works are done to propose new interactive interfaces or embedded sensing systems. The
second model aims to take advantage of the form of existing social network services (as
social websites like Facebook, Twitter . . . ) that offer a variety of features facilitating the
socialization based on the internet. The last model relates to the design of an industrial
system as a society, linking smart connected objects through a typology of social relations
and paving the way to a good human-system integration.

Certainly, all these models described above have as their aim to increase productivity.
At the same time, these systems increase the possibilities for intuitive interaction between
humans and machines, and to contribute to ease the working conditions for operators
in complex environments. The design of these elements may be a need for most auto-
mated environments that apply the concept of Industry 4.0 and articulate most CPS in
production systems.

When reflecting on such automatization processes it is necessary to mention the
economic, political, and ethical challenges. There are not only technical ones. The economic
challenges have implications on society, and the political and ethical have a direct influence
on the legal framework. Taking these issues into consideration, a number of scientific
questions remain open to develop and explore future perspectives for a conscious and
human cyber-physical society to reinforce the role and the contribution of industry to
society, leading to, what today we name, Industry 5.0.
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