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Abstract: The non-linearity of the Electric Arc Furnace (EAF) process and the correlative behavior
between the process variables impose challenges that have to be considered if one aims to create a
statistical model that is relevant and useful in practice. In this regard, both the statistical modeling
framework and the statistical tools used in the modeling pipeline must be selected with the
aim of handling these challenges. To achieve this, a non-linear statistical modeling framework
known as Artificial Neural Networks (ANN) has been used to predict the Electrical Energy (EE)
consumption of an EAF producing stainless steel. The statistical tools Feature Importance (FI),
Distance Correlation (dCor) and Kolmogorov–Smirnov (KS) tests are applied to investigate the most
influencing input variables as well as reasons behind model performance differences when predicting
the EE consumption on future heats. The performance, measured as kWh per heat, of the best model
was comparable to the performance of the best model reported in the literature while requiring
substantially fewer input variables.

Keywords: Electric Arc Furnace; electrical energy consumption; statistical modeling; machine
learning; predictive modeling

1. Introduction

In the light of the increased use of Electric Arc Furnaces (EAF) to produce steel, it has become
of more interest to study ways of reducing the raw material and energy consumption of the process.
Not only will successful attempts reduce the environmental impact, but also increase the financial
result for the company producing the steel. One common tool to evaluate new production strategies
is through the act of modeling. Modeling is a valuable tool because it enables process engineers to
evaluate proposed changes without interfering with the process, which may be more or less harmful to
the steel plant supply chain. These modeling approaches can be, for example, physicochemical
models using established relationships such as the mass- and energy balance equations [1–19].
Another approach is through Computational Fluid Dynamics (CFD) modeling [20]. While these
models are mainly based on physicochemical equations, there is another type of model approach that
is purely based on data. These models are known as statistical models and have frequently been used
to predict the Electrical Energy (EE) consumption, per heat [21–24], or per ton of tapped steel, from the
EAF [25–42].

Several gaps in previous attempts to model the EE consumption using statistical modeling
have recently been highlighted [43]. One such gap is related to the black-box behavior of non-linear
statistical models, such as Artificial Neural Networks (ANN), which imposes lack of trust in the model
in the eyes of the process engineers. Other gaps are related to the statistical modeling framework
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itself. For example, lack of a detailed description of the data- and modeling pipeline, which includes
variable selection, data collection, data cleaning, parameter-search, modelling, and evaluation of model
robustness. Another gap is the lack of connection between metallurgical knowledge and statistical
modeling, both of which must be carefully considered if one aims to create a statistical model that is of
practical use in the steel plant. In some cases, this has led to a lack of relevant variables and in some
other cases an overuse of the number of variables. The aim of this article is to address these gaps in the
context of the aforementioned statistical modeling of an EAF producing stainless steel.

ANN will be used to predict the EE consumption of an EAF producing stainless steel. This is
a suitable algorithm for this prediction problem since some important physicochemical relations
governing the EE consumption are non-linear. The choice of variables to model the EE consumption
will be motivated using both metallurgical reasoning and statistical reasoning. First, the energy balance
equation will be used to highlight the physicochemical relations between the variables governing the
EE consumption [43]. Second, the expected correlative relation between the variables with respect to
the EE consumption will be highlighted. The common thread in both approaches is the use of process
knowledge in the reasoning.

The data- and modeling pipeline will be explained in detail for reproducibility and for reference
to future studies aiming to use statistical models to predict the EE consumption of the EAF. To validate
the models and to address the black-box behavior of the ANN models, statistical analysis tools such
as Feature Importance (FI), Kolmogorov–Smirnov (KS) test, and Distance correlation (dCor), will be
used. These methods have not previously been used in the context of statistical modeling of the EE
consumption in the EAF. The consequences and aspects of this approach will also be discussed.

The results of the modeling shows that it is not necessary to use a high amount of input variables
to create the best performing model. It is enough to select a subset of a set of well-chosen variables
using process knowledge. Using dCor, KS tests, and FI, as complementary tools can aid the process
engineers in both finding the most important variables with respect to the model performance and the
reasons why a model performs differently on previously unseen heats (test data).

2. Background

2.1. EAF Process

The EAF is the main melting process in the mini-mill, type of steel plant. It uses raw material
such as steel scrap and alloys to create molten steel for further processing in downstream processes in
the steel plant.

The EAF process begins with the charging phase during which raw materials are added to the
furnace. The melting phase starts when the electrodes are powered on and bored down into the raw
material. This phase lasts until enough of the raw material has melted to make room for the second
basket of raw material. This is followed by yet another melting phase. During the melting phases,
burners are activated to remove cold spots, which facilitates an even melting behavior of the charged
scrap. After most of the raw material is melted, the refining phase starts during which the steel is
adjusted to a pre-specified composition. Additional raw material such as carbon and silicon are added
in combination with oxygen lancing to facilitate exothermic chemical reactions. This reduces the
amount of EE needed to heat the steel. Lastly, the steel is tapped into a ladle for further processing
in the steel plant. Any necessary preparations are then made for the furnace, such as fettling of the
refractories, before the next heat starts. This generalized EAF process is illustrated in Figure 1.
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Figure 1. An idealized timeline over the EAF process for one heat. The Extended Refining is unique to
the steel plant of study.

2.2. Energy Balance Equation

The energy balance equation of the EAF process makes it possible to express EE consumption,
EEl , as a sum of ingoing and outgoing energy factors (Equations (1)–(3)).

Etot,in = EEl + EChem + EBu (1)

Etot,out = ESteel + ESlag + EGas + EDust + ECooling + ERad + EConv + EEl,loss (2)

Etot,in − Etot,out = 0 (3)

Each of the energy factors are related to physical and chemical entities (see Table 1).

Table 1. Ingoing and outgoing energy terms governing the energy balance equation of the Electric Arc
Furnace (EAF) process.

Energy
Factor Description Equation Proportionality

In EEl

Total Electrical Energy
(EE) output from
transformer

EEl = ηArc · ηEl · PAvg · tPON EEl ∝ tPON

EChem

Total energy from
chemical reactions in
steel and slag

EChem = ∑ ∆Ho
298(products)−∑ ∆Ho

298(reactants)

+
∫ TTap

Ts

[
∑ cp(products)−∑ cp(reactants)

]
dT

EChem ∝ Ts; TTap; composition

EBu
Total energy input
from burner

EBu = ηFuelhFuelVFuel EBu ∝ VFuel ; ηFuel

Out ESteel
Total energy output to
steel ESteel = HMelt,steel + mSteel · cSteel

∫ TTap

Ts

dT ESteel ∝ Ts; TTap; composition

ESlag
Total energy lost in
slag

ESlag = HMelt,slag + mSlag · cSlag

∫ TTap

Ts

dT ESlag ∝ Ts; TTap; composition
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Table 1. Cont.

Energy
Factor Description Equation Proportionality

Out EGas
Total energy lost in
gas

EGas =
PMV̇Gas

R
· tTTT · cGas

∫ TO f f gas

Ts

dT
T

EGas ∝ ln(Ts); ln(TTap); tTTT ; V̇Gas

EDust
Total energy lost in
dust

EDust = ṁDust · tTTT · cDust

∫ TO f f gas

Ts

dT EDust ∝ Ts; TTap; tTTT ; ṁDust

ECooling
Total energy lost in
cooling water

ECooling = kACS(TCS − TH2O) · tTTT ECooling ∝ TCS; tTTT

ERad
Total energy lost
through radiation

ERad = εσAEAFT4
EAF · tTTT ERad ∝ T4

EAF; tTTT

EConv
Total energy lost
through convection

EConv = hAH(TH − TAmb) · tTTT EConv ∝ TH ; TAmb; tTTT

EEl,loss

Energy lost in
electrical system and
arc transfer

EEl,loss = (1− ηArc)(1− ηEl) · EEl EEl,loss ∝ tPON

Calculations of ingoing and outgoing energy in the EAF process have previously been
calculated [9,25,44–46]. This is compiled in Table 2.

Table 2. Ingoing and outgoing energy in the EAF process as percentages of energy sources and energy
sinks, respectively. Values are computed from a synthesis of reported values [9,25,44–46].

Energy Factor Percentage of in and out Energy Balance

In Electric 40–66%
Oxidation 20–50%

Burner/fuel 2–11%

Out Liquid steel 45–60%
Slag and dust 4–10%

Off-gas 11–35%
Cooling 8–29%

Radiation and electrical losses 2–6%

The ingoing and outgoing energy of the EAF, as percentage of each total, provide guidance in
choosing input variables to a statistical model predicting the EE consumption.

2.3. Non-Linearity

Some of the terms in the energy balance equation listed in Table 1 are related to non-linear physical
phenomena in the process. Examples include, EGas and ERad. Breaking down the Tap-to-Tap time
(TTT) into its smaller components Charging, Melting, Refining, Extended Refining, Tapping, and
Preparation, the process evidently becomes considerably more non-linear. The reason is because the
energy loss through convection, conduction, and radiation are very different from these sub-processes
For example, the energy loss through radiation is a lot higher when the steel is molten, i.e., during
refining, compared to the energy loss during the first charging phase. Adding the dynamic timelines
of each sub-process due to varying amounts of scrap, refining times, and various delays between heats,
the physicochemical relation to the EE consumption becomes even more complex.
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Because of the non-linear and non-normal distributed outcome of the process, linear statistical
models, such as Multivariate Linear Regression (MLR), and linear statistical metrics, such as the
Pearson correlation, are sub-optimal as tools in the context of predicting the EE consumption.

2.4. Statistical Modeling

Statistical modeling differs from other types of mathematical modeling such as those based on
physical and chemical relations. See the energy balance equation in Section 2.2 for an example of a
physicochemical model. Physical models act directly upon the values of the input variables to predict
the output variable. Statistical models, on the other hand, act on the value with respect to previous
values of the input variable it has observed in the context of the values of the other input variables.
The value of the output variable is always a probability or a value with the highest probability.
This means that statistical models do not adhere to the physicochemical relations between the variables.
The connection between the physicochemical relations and the model is, by and large, dependent on the
data quality, variations in the data, and correlative behavior between the variables. Hence, statistical
models can seem counter-intuitive in the eyes of a practitioner of physicochemical-based modeling.

Data quality: A bad data quality will negatively impact the performance of a statistical model
since uncertainties are imposed. There are many different ways to get good data quality. The variables
must be correctly defined with respect to what they represent. This may not always be the case because
everything that can go wrong is not possible to account for. For example, if the furnace is considered
closed when the roof is closed, then the charging time of the furnace could still be counted if the roof
is not completely shut even though the furnace is in the melting stage. Connecting plant events to
logged data is not always trivial and fault free. Other examples of where errors are prevalent are from
online measurements and estimations of energies based on those measurements as well as manual
logging of data.

Data variability: Near constant variables add little value to a statistical model because the
variations in the data are what the statistical model learns and then uses to make predictions on
test data. Statistical models require variations in the data to function properly. This is perhaps
one of the most counter-intuitive traits of statistical modeling since a constant term in an arbitrary
physicochemical model is important for its prediction. For example, a statistical model for an EAF
where the total amount of ingoing lance oxygen is constant will not receive any benefit from including
that variable. This is in contrast to a physical model where the amount of added oxygen leads to
exothermic chemical reactions.

Correlation: Strongly correlated variables are in a statistical sense redundant variables. Weakly
correlated variables with respect to the output variable may be redundant. The degree of redundancy
is closely related to the correlation between the input variable and other input variables. It may
be that the input variable in question does not add any further information to the statistical model
with respect to lowering the prediction error. Because of this, some variables that are considered
important for predicting EE consumption in a physical model may appear as not important for the
statistical model. On one hand, correlation does not imply causation, on the other hand, statistical
models cannot distinguish correlation from causation. However, correlation can point to areas were
causation may exist. This stresses the importance of possessing domain-specific knowledge about the
process to distinguish between causative and non-causative relations between the variables governing
the statistical model. Three cases of correlation related to the EAF process with respect to the EE
consumption are presented, which highlight the complex relations between the different entities in the
EAF process governing the EE consumption. These cases are also illustrated in Figure 2.

First, the composition of the ingoing material affects the EE consumption exothermic reactions.
Here, the composition together with oxygen lancing give rise to exothermic reactions which in turn
reduce the EE consumption.

Second, the various sub-processes of the EAF affect the EE consumption in various rates.
For example, during the melting process, EE is added in a more intense rate than, for example, during
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the refining process. Furthermore, the energy loss through radiation, convection, and conduction is
more intense during the refining process when most of the steel is melted. Adding all sub-processes
together gives us the total process time. The delays in the process are added to the sub-process where
the delays occur. Thus, the time variables are both interrelated and have a complex relation to the
EE consumption.

Third, the raw material types that are added to the EAF have a more complicated relation to EE
consumption. Raw material types correlate positively to the EE consumption since they directly add to
the total weight of the ingoing material to be melted. The raw material types are also correlated with
one another since, given a pre-determined charge weight, the raw material types combined must make
up to that specific weight. If one raw material type is not available, another is used as replacement.
Raw material types can also contribute negatively to the EE consumption if the raw material type
contains C, Si, Al, Fe, and Cr, all of which react exothermic with oxygen.

C Si AlO Cr Fe

Exothermal 
reactions

EE

_

Charging RefiningMelting Extended
 refining

Tapping

Process
Time

Oxygen
lancing

Preparation

TTT

Delays

++

Total 
Weight

Metal
Weight

Slag
Weight

Type A
Type B
Type C
Type D

Type F
Type G

Type E

Type N

+

Figure 2. Graph-model describing the expected correlations between the input variables and the output
variable in a statistical model predicting the EE consumption. The arrows illustrate the correlative
relation between the variables. The circled signs illustrate the positive or negative contributions
imposed on EE.

Variable selection comes down to how much additional useful information, with respect to
predictive performance, the model gains after adding another input variable. The three points
previously mentioned also tie closely to the specific EAF where the data comes from. Even though the
interrelations between the input variables to the EE consumption are similar between EAF furnaces,
it is not possible to know, ad hoc, the specific impact on the predictive performance by a setup of
input variables.
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In the supervised statistical modeling framework, which will be used in this paper, each row of
input data has a corresponding output value during the training phase and test phase. The supervised
statistical modeling framework can be abstracted into the following steps.

1. Select statistical model and values for the model-specific parameters.
2. Train the model using training data until the model accuracy converges, i.e., stops improving.
3. Test the model on previously unseen data.
4. Record the accuracy on test data and evaluate its practical applicability.
5. If the accuracy on the test data is satisfactory, deploy the model into production.
6. Re-train the model if the model accuracy has deteriorated. This deterioration is bound to happen

over time in a production setting, partly due to changes in the process.

To find the optimal combination of model parameters, multiple models are trained for each
combination of parameters. This is known as grid-search or parameter-search.

There are also subcategories of supervised statistical models. In the scope of this paper, these
are divided into linear and non-linear statistical models. Linear statistical models can learn linear
relationships between the input variables and the output variables. One such example is Multivariate
Linear Regression (MLR). On the other hand, non-linear statistical models can learn both linear and
non-linear relationships between the input variables and the output variable. One such example is
ANN. Both ANN and MLR have been commonly used to predict the EE consumption in the EAF [43].
While an ANN model can learn non-linear relations in the data, the model is almost impossible to
interpret. This is commonly referred to as a black-box model and is one of the main reasons why such
models are not widely accepted in practice in the context of steel process modeling. However, by
using statistical analysis tools, it is possible for the process engineers to get insights on which input
variables are the most important for the model to make accurate predictions as well as reasons behind
performance differences on test data.

Furthermore, it is always possible to create a more complex statistical model to any given problem.
Nevertheless, one should always strive for model parsimony, which is achieved when picking the
simplest of a group of models achieving similar performance. The model complexity is related to both
the number of input variables as well as the chosen type of statistical model.

3. Method

The workflow explained in this section can be followed in Figure 3.
The software used for all parts of the experiments was Python provided by Anaconda distribution.

The hardware and software specifics are shown in Appendix A.1.

3.1. Furnace Information

The data used in this study comes from an Alternate Current (AC) EAF producing stainless steel.
The furnace nominal capacity is 80 tons of molten steel and the electrical system has a maximum
power of 80 MW. The charged raw material is 100% scrap, and alloys. A preheater, which uses part
of the furnace off-gas enthalpy as energy source and heat transfer medium, is employed to remove
entrained moist and to burn off residual oil and grease in the scrap. Conventional oxy-fuel burners are
used to facilitate an even temperature distribution during melting. Oxygen lancing is used to facilitate
oxidation of elements such as C and Si. The number of heats produced per year is approximately 5000.
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Figure 3. Flowchart explaining the data and statistical modeling pipeline. * The flowchart is split to
emphasize the two different approaches used to select the variable batches for the grid-search.

3.2. Data

3.2.1. Variable Selection

The variable selection process is partly based on the discussion regarding the energy balance
equation, non-linearity, and the reasoning about the correlative relations of the EAF process with
respect to the EE consumption, (see Sections 2.2–2.4). The variables can be divided into four categories:

1. Time: The logged times for the whole process as well as the various EAF sub-processes are
important for predicting the EE demand. Each process sub-stage, Charging, Melting, Extended
refining, Refining, and Tapping, contribute differently to the heat loss. For example, the heat loss
is higher when molten steel is present compared to when the first bucket of scrap is charged. Both
the TTT and the Process Time were included. The total time imposed by delays, defined as the
sum of the deviation from nominal time of each EAF sub-process, was also included.
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Some obvious correlations can be expected with regards to these time variables. As Charging,
Melting, Extended refining, Refining, and Tapping makes up the Process Time and the majority of
TTT, these variables are expected to be relatively highly correlated.

2. Chemical: Oxidation and the oxyfuel-burners can account for as much as 50% and 11% of the
total ingoing energy, respectively (see Table 2). The contribution by the burners was accounted
for by one variable propane. The oxygen gas injected through the burners was not included due
to a near stoichiometric relationship between oxygen gas and propane (5:1). The wt.% of C, Si, Al,
O of the total charged metallic material and the oxygen lancing were also included to account for
exothermic chemical reactions occurring during the process.

The wt.% Fe, Cr, and Ni of the total charged metallic material were included to account for
possible deviations in the process due to the steel grade being produced.

The contents of the charged oxide bearing raw material are, of course, expected to impact the
thermodynamics and kinetics of each reaction. However, there are more complicated factors in
play between the metallic elements in the steel melt and the oxides in the slag. To account for
these complex effects, the following oxides, in wt.% of total charged oxide bearing raw material,
were included: Cr2O3, MgO, CaO, FeO, SiO2, and Al2O3.

It is known, by experience, that the specific heat per volume unit of oxygen is inversely
proportional to total amount of lanced oxygen gas.

3. Charged material: The different material types are expected to contribute differently to the
melting behavior and heat transfer of the scrap. Hence, all 8 of the available Material Types were
included in the list of input variables. The Total Weight of the ingoing material was included
because it is closely connected to the required energy to melt the steel. It was also divided into two
separate variables, Metal Weight and Slag Weight, which represent the total weight of metallic
material and total weight of oxide bearing raw material, respectively.

The sum of all Material Types equals the Total Weight. Hence, the Material Types are expected to
be correlated with the Total Weight. Furthermore, the sum of the Slag Weight and Metal Weight
equals the Total Weight and are also expected to be correlated.

4. Energy: There are numerous energy variables that can be included in the list of input variables.
However, most are in one way or another connected to the already mentioned variables.
For example, heat loss is linearly related to time and amount of ingoing scrap is linearly related to
the heat required to heat and melt the scrap.

The preheating energy was included because the actual preheating is conducted before the start
of the EAF process itself. In the steel plant of study, the scrap is preheated with partial off-gas
from the EAF operation. Hydrocarbons such as grease and oil, and moisture entrenched in the
scrap are burned off. Due to the varying amounts of moisture and hydrocarbons in the scrap,
the preheating energy as ingoing variable is therefore motivated.

EE is well defined in the transformer system and is subject to a negligible error. This means that
the logged EE value can be trusted and is therefore also taken as the true value when training the
statistical model.

The selected variables are shown in Table 3.
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Table 3. The variables used in the models.

Variables Unit Definition

Delays min The sum of all delays, which is defined as all deviations from the nominal
time of each sub-process.

Tap-to-Tap time
(TTT) min The between the end of the tapping from the previous heat to the end of

tapping of the current heat

Charging min Total time needed to charge all baskets

Melting min Total melting time for all scrap baskets

Refining min Total refining time

Extended refining min Total Extended refining time.

Tapping min Total tapping time

Total Weight kg Total weight of all materials added during the EAF process

Propane m3 Total amount of propane gas added by burners

O2-lance m3 Total amount of oxygen added by lance

Preheater energy kWh Estimated thermal energy added to the scrap baskets by the preheater

EE consumption kWh Total EE consumption for the heat. This is the output variable in the models.

Process Time min Defined as the sum of Charging, Melting, Refining, Extended refining, and
Tapping.

C wt%

The weight percent with respect to the total charged metallic material during
the heat. Hence, added dolomite, lime, and carbon by lance are included

Si wt%
Cr wt%
Fe wt%
Ni wt%
O wt%
Al wt%

Cr2O3 wt%

The weight percent with respect to the total charged oxide bearing raw
material during the heat.

MgO wt%
CaO wt%
FeO wt%
SiO2 wt%
Al2O3 wt%

Metal Weight kg Total weight of metallic material

Slag Weight kg Total weight of oxide bearing raw material

Type A kg

All raw material types as defined by the plant engineers.

Type B kg
Type C kg
Type D kg
Type E kg
Type F kg
Type G kg
Type N kg

Correlations between the variables in the 4 categories are also expected. For example, EE demand
should correlate with Total Weight. Another example is Material Types and chemical compositions as
these material categories are partly based on chemical analyses.

The reason correlation is frequently referred to is because it is one of the main underlying factors
that connects the input variables to the output variable by the trained statistical model. Furthermore,
input variables that are correlated “soaks up” parts of the “correlation potential” with respect to the
output variable. This is especially the case when the correlated input variables are correlated with the
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output variable. A simple example is the following correlative relationship between input variables A
and B, and output variable C: A corr−−→ B corr−−→ C.

3.2.2. Variable Batches

The variables in each variable batch in Table 4 are explicitly shown in Table 5.

Table 4. The variable batches governing the domain-specific variable selection approach. The variables
contained within each variable group are shown in Table 5.

Variable Batch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Base x x x x x x x x x x x x x x x x

Process Time x x x x x x x x x x x x x x x x

Sub-processes x x x x x x x x x x x x x x x x

Metallic elements x x x x x x x x

Oxide compounds x x x x x x x x

Met-Slag weight x x x x x x x x

Material Types x x x x x x x x

Variable Batch 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Base x x x x x x x x x x x x x x x x

Process Time

Sub-processes x x x x x x x x x x x x x x x x

Metallic elements x x x x x x x x

Oxide compounds x x x x x x x x

Met-Slag weight x x x x x x x x

Material Types x x x x x x x x

Variable Batch 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Base x x x x x x x x x x x x x x x x

Process Time x x x x x x x x x x x x x x x x

Sub-processes

Metallic elements x x x x x x x x

Oxide compounds x x x x x x x x

Met-Slag weight x x x x x x x x

Material Types x x x x x x x x

Variable Batch 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

Base x x x x x x x x x x x x x x x x

Process Time

Sub-processes

Metallic elements x x x x x x x x

Oxide compounds x x x x x x x x

Met-Slag weight x x x x x x x x

Material Types x x x x x x x x

The motivation behind using a setup of variable batches is to investigate the true impact of each
variable type. The impact of a variable on the model outcome can be diminished if that variable is
partly represented by another variable, i.e., correlated, (see Section 2.4). One clear example is the
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percentage of Cr and a Material Type containing high amounts of Cr. Likewise, the total process time
is partly represented by the melting time because the melting time adds to the total process time.

The decision to divide the variables into the specific variable batches shown in Table 4 was
two-fold. First, there are multiple variables that represents the same effect of a physical phenomenon
on the EE consumption, as motivated previously. Second, the number of model types to create given
the number of combinations using each variable is very large (235 ≈ 3.44 · 109) and it is not possible to
model all variants within a reasonable time frame. Hence, bundling together variables that are of the
same type, for example Material Types, will reduce the number of unique variable batch combinations
to 64 (26).

The base variables were included in all variable batches because they are believed to be strongly
related to the EE consumption. The specific variables in the base variable group are shown in Table 5.

Table 5. Input variables for each variable group. The metallic elements and oxide compounds are the
composition of the total charged metallic material and oxide bearing raw material, respectively.

Variable Group Variables No. Variables Variable Group Variables No. Variables

Base Delays 6 Sub-processes Charging 5
TTT Melting

Total Weight Refining
Propane Extended refining
O2-lance Tapping

Preheater energy Metallic elements C 7

Met-Slag Metal Weight 2 Si
weight Slag Weight Cr

Material Type A 8 Fe
types Type B Ni

Type C O
Type D Al

Type E Oxide Cr2O3 6
Type F compounds MgO
Type G CaO
Type N FeO

Process Time Process Time 1 SiO2
Al2O3

3.2.3. Selection of Test Data

The test data is commonly selected from a random sample of the complete data set. However,
in this regard, the training data and the test data become chronologically intertwined. This shortcoming
has been discussed in previous research [43]. From a practical process perspective, a statistical model
will predict on data from heats that are produced after the training of model. This means that these
heats will always be from a future point in time. To consider this in a model evaluation, the test data
should be selected in chronological order with respect to the training data. In the experiments, the test
data will be from heats produced within 30 days after the last heat in the training data.

3.3. Data Treatment

3.3.1. Purpose

The purpose of data treatment is to clean, and possibly repair, erroneous data or remove data
that is not part of regular production. Data treatment is a double-edged sword. On one hand, the
aim of any given model is to predict well on as many heats as possible. On the other hand, including
unrepresentative data makes it harder to optimize the model enough to make it practically useful.

There are two different categories for data treatment. One is domain-specific, where the values in
the data are assessed to what is physically possible within the application of the model. For example,
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if the EAF has a maximum capacity of 80t, then any value above that value should be viewed as an
erroneous value. The second strategy category is statistical outlier detection. For example, removing
all values that are above 3σ from the mean value of a variable that is normal distributed. However,
it is important to consider that statistical outlier detection methods do not take the application domain
into account. These methods must be used with caution and carefully assessed on a case-to-case basis.

The data used in the modeling was aggregated from two disparate data flows. The first data
flow consists of raw material compositions, raw material types, total charge weight, metal and oxide
bearing raw material weights, energy data, and added propane through burners and oxygen gas
through lance. The second data flow consists of process time, times for different sub-processes during
the EAF process, and delay times.

All data from the two data flows was gathered after the 31 March 2016 and before 18 October 2018.

3.3.2. Domain-Specific Methods

Data flow 1: 12.1% of the raw material entries lacked oxide compositions. These entries were
repaired using previously recorded oxide compositions for the same material entries. This is not
expected to dramatically affect the performance of the models. An average of 176 kg of added material
per heat, amounting to an approximate 0.2% of the total weight, had not available (NA) values for
Rawtype, oxide, and metal composition. These raw material types were categorized into a variable
called Type N. The total number of heats removed due to a raw material input with zero or negative
weight was 59. The resulting number of heats at the end of the flow was 12,805.

Data flow 2: Only heats with logged events “heat started” and “heat ended” were removed.
This was to safeguard against any complications such an error would give rise to in the rest of the
entries. No other data treatment was commenced in this stage. A total of 12,649 heats were gathered
from this data flow.

Aggregated data: Aggregating the two data flows resulted in a total of 12,587 heats. The resulting
number of heats are less than from both data flows due to mismatching overlap of heats. After the
aggregation of the two data flows, domain-specific data treatment rules were applied and are shown
in Table 6.

Table 6. The domain-specific cleaning rules that were applied to the data. The rules were applied to
the training data and test data separately to simulate an applied data filtering system. Rules applied to
the training data must be applied to the test data to safeguard against data points outside the scope of
the statistical model.

Filter Motivation

Removal of all Trial heats Trial heats are not part of regular production since the aim is
primarily to investigate the properties for new scrap types

Heats with EE above 60 MWh Identified as abnormal EE by the process engineers

Heats with Total charged weight above
110,000 kg Physically impossible weight due to furnace size limitations

45 min < TTT < 180 min
45 min are considered unusually short and above 180 min are
likely due to a longer delay in the process or a scheduled stop.
Usually, the TTT is aimed at 60–70 min

Delays < 180 min Heats with delays over 3 h are because of longer stops due to,
for example, broken equipment.

3.3.3. Statistical Methods

Statistical data cleaning methods were not applied to the data set in this study. There are three
reasons for this:
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1. A more robust outlier detection algorithm was used in an attempt to remove outliers [47].
However, the resulting data set became too small after applying the algorithm on just a few
of the variables.

2. It makes sense to not apply statistical outlier detection methods on some variables. For example,
the wt% content in the charged material can vary tremendously depending on what scrap types
are available. Since multiple steel grades are produced using different charging strategies, the wt%
of elements will also vary. Some stainless steel types need more wt% Cr and wt% Ni than others.

3. Most conventional outlier detection methods assume that the data is normal distributed, or normal
distributed with various levels of skewness and kurtosis. This is not always the case in EAF
production data, see Figure 4.

Figure 4. Examples of distribution of variables from real EAF production. All variables are normalized.
Top left: Propane. Top right: Refining time. Bottom left: Total weight. Bottom right: Material Type B.

3.4. Modeling

3.4.1. Artificial Neural Networks (ANN)

ANN, as mentioned earlier, is one type of non-linear statistical model framework. The idea is to
connect the input variables to the output variable using a network of nodes that are fully connected [48].
The first layer is the input layer and the last layer is the output layer. The intermediate layers are called
hidden layers. See Figure 5 for an illustration of a simple ANN.
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Input
Hidden

Output

Figure 5. An Artificial Neural Network (ANN) with two input nodes, one hidden layer with three
nodes, and one output node. Each line drawn between the nodes illustrates the forward flow of
calculations in the network.

The number of hidden layers and the number of nodes in each hidden layer determine the
complexity of the model. In each of the hidden layers, and in the output layer, each node multiplies a
weight with each of the values from the nodes in the previous layer. The resulting values are summed
together. This process can be mathematically expressed as:

sj =
P

∑
i=1

wi · xi (4)

where P is the number of nodes in the previous layer and j is the jth node in the layer.
A function, known as activation function, is then applied on sj resulting in the value that the

current node sends forward in the network. The hyperbolic tangent (tanh) and the logistic sigmoid
functions are two commonly used activation functions.

During the training phase, the training data is sequentially fed into the network upon which the
network weights are updated in the direction of minimizing the loss function. The loss function can be,
for example, the mean squared error (MSE) or R-square (R2). As the output value is a function of all
the weights in the network, it is also possible to express the loss function as a function of the values of
those weights. The updating of the weights is also known as backpropagation, because the errors are
propagated back through the network and the weights updated. Since the loss space is a function of
all weights in the network, finding a good enough local minima requires a well-engineered algorithm.
These types of algorithms are known as gradient-descent algorithms because their aim is to descent to
the most optimal local minima in loss space [48].

The sequentially feeding of training data, and update of the weights, is done numerous iterations
until the accuracy improvement vanishes. One also uses a validation set, a subsample of the training
data, during the training phase to ensure that the model does not overfit on the training data.
Overfitting means that the model has learned the training data so well that it fails to predict well
on unseen data. This is one of the drawbacks with neural network models because of its ability to
learn complex relations even though the relations are not of value to solving the prediction problem.
The validation set is the data set that the model is benchmarked against during the training phase
to account for this drawback. After the training phase is completed, the test data is predicted by the
model and model performance metrics are calculated.

3.4.2. Model Performance Metrics

To compare the performance of the models, R2 and the regular error metric will be used.
One should use the adjusted-R2 formula if one aims to compare R2 between models with different

number of input variables. This is because each added predictor slightly increases the R2-value given
that the number of data points is fixed [49]. The formula for the adjusted-R2 can be written as follows

R̄2 = 1− (1− R2)
n− 1

n− p− 1
(5)
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where R2 is the standard R-square, n is the number of data points, and p is the number of
input variables.

The regular error metric is advisable to use over the absolute error metric since an overestimated
prediction is vastly different than an underestimated prediction in a practical steel plant context.
The regular error metric for mean values is written as follows

Eµ =
1
n

n

∑
i=1

(yi − ŷi) (6)

where yi is the true value, ŷi as the predicted value, and i ∈ 1, 2, . . . , n. The standard deviation, Eσ,
is derived from Eµ the ordinary way.

3.4.3. Hyperparameter Optimization

Hyperparameter optimization aims to find the combination of parameters that creates the best
model with respect to minimizing the model error [50]. A common method is to use a pre-specified
grid of these parameters where the framework trains one, or more, models for each combination of
the parameters. This specific method is also known as grid-search. For the experiments in this paper,
parameters include model-specific parameters as well as application-/domain-specific parameters
both of which together totals 36864 parameter combinations. See Table 7.

Table 7. The parameters used in the grid-search of which 2 · 3 · 48 = 288 are model-specific and
64 · 2 = 128 are domain-specific. A total of 288 · 128 = 36,864 parameter combinations.

Model-Specific

Parameter Description Values #

Activation
function

Activation functions have different gradient intensity in the updating step
of each iteration and different upper and lower bounds. This influences
the training phase.

[tanh,
logistic] 2

Learning
rate

A larger learning rate means that the gradient-descent algorithm takes a
larger step in error space and may therefore miss more optimal local
minimum points. Smaller steps, i.e., smaller learning rates, are preferable
to find more optimal local minimum points.

[0.001, 0.01,
0.1] 3

Hidden
node
topology

Increasing number of layers and nodes means increased model
complexity. Here, the goal is to investigate whether or not more hidden
layers leads to a better model. One should always strive for model
simplicity when two models are statistically significant equally good.

(z) or (z, z)
where z ∈
1, 2, ..., 24

48

Domain-Specific

Parameter Description Values #

Input
variables

It is not possible to know, a priori, which combination of input variables
is the most relevant for a statistical model to predict the output variable
with high precision and accuracy. See Section 2.4 for reasoning.

See
Table 4. 64

Validation
set

The effect of a randomized validation set and ordered validation set with
respect to the rest of the training data will be investigated.

ordered,
randomized 2

Parameters which were the same for all model combinations are explained below:

• Validation fraction: 0.2, which specifies the fraction of the training data used as validation set.
• Gradient-descent algorithm : An adaptive learning rate optimization algorithm known as Adam.

This algorithm has been shown to outperform other gradient-descent algorithms in a variety of
models and datasets. The algorithm-specific parameter values were selected as recommended in
the paper [51].

• Early stopping set to True. Specified by the following items. 1. Number of iterations with no
change = 20. Specifies how many iterations of increasing or equal performance are required before
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the training phase stops. 2. Tolerance = 10−7. The tolerance of improvement to reset the number
of iterations with no change.

Each combination of parameters represents one trained model type. Furthermore, each model
type will be instanced 10 times to investigate the stability of the parameter selection and to reduce the
impact of randomness. The metrics used to evaluate the model types based on the 10 instances are
explained in Table 8.

Table 8. The metrics used to evaluate the performance of each model type.

Symbol Definition

R̄2
µ Mean adjusted R-square of the 10 model instances on the test data

R̄2
σ Standard deviation of adjusted R-square of the 10 model instances on the test data

R̄2
min Minimum adjusted R-square of the 10 model instances on the test data

R̄2
max Maximum adjusted R-square of the 10 model instances on the test data

∆µ Mean error of the mean error of the 10 model instances on the test data
∆σ Standard deviation of the mean error of the 10 model instances on the test data.
∆min Minimum error of the mean error of the 10 model instances on the test data.
∆max Maximum error of the mean error of the 10 model instances on the test data.

To determine stability, the idea was to keep the R̄2
min and R̄2

max as close to the R̄2
µ as possible.

Hence, for filter out the best model type of each variable batch, the following algorithm was used.

1. Filter out any model that does not pass the following condition: R̄2
max − R̄2

min ≤ 0.05.
The motivation using this specific condition was to ensure that only stable models were selected
while still enabling at least one model type from each variable batch to pass the condition.

2. Sort the models on decreasing R̄2
µ.

3. Pick the first model in the list.

The reason adjusted R-square was used for determining stability is because the metric indicates
goodness of fit for the model. Mean model error and standard deviation of model error were included
to determine the best model out of models who have close to equal R-square.

3.4.4. Algorithmic Approach

In the algorithmic approach, process knowledge will not be the basis of choosing variable batches.
By contrast, the variables in each batch will be chosen based on their one-to-one correlation with the
EE consumption. In this manner, the approach will be mostly algorithmic except for the chosen setup
of available variables, which are the same as in the domain-specific approach. The proposed algorithm
is described below:

1. Calculate the pair-wise correlation values between the input variables and the output variable
(EE consumption).

2. Use all input variables in the first model.
3. For each subsequent model, remove the input variable with lowest correlation value with respect

to the output variable. Save the performance metric results from all models for further analysis.

In the experiments, dCor will be used as correlation metric due to its ability to detect non-linear
correlative relations between variables. dCor is explained in Section 3.4.5.

The rest of the model-specific and domain-specific parameters will be the same as in the
domain-specific approach. This results in a total of 35 · 2 = 70 domain-specific parameter combinations
and a total of 2 · 3 · 48 = 288 model-specific parameter combinations. Using the algorithmic approach,
a total of 70 · 288 = 20,160 model types were trained. To filter out the best model for each variable
batch, 10 instances of each parameter combination were created and the same algorithm as in the
domain-specific approach was used.
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3.4.5. Model Analysis

To ensure the reliability of a model, its transparency must be highlighted. To achieve this,
three different statistical methods will be used. Two of these methods, KS test and dCor, are model
independent and point to reasons behind model performance deviation from the training and test data.
The third method, FI, is model dependent and explains how important each input variable from the
model’s viewpoint. By using FI in combination with dCor and KS tests, the goal is to home in on the
variables that are the strongest reason behind model performance deviation between the training and
test data.

dCor: Correlation metrics are used to investigate whether a variable is correlated with another
variable. Correlated variables may or may not be causative. Nevertheless, two correlated variables may
provide a hint to a possible causative relationship. Using domain-specific knowledge it is possible to
assess the relative strength of the causative relation based on the correlation value, if there is evidence
of such from physical deliberations.

The commonly used Pearson correlation metric only detects linear and monotonic relationships
between two variables [52]. This severely limits the relevance of the correlation metric within the scope
of this study since it is well known that parameters governing the EAF process are non-linear with
respect to the EE consumption, (see Sections 2.2 and 2.3).

Alternative correlation metrics, such as dCor, can detect both linear and non-linear relationships
between variables [53]. The resulting mathematical expression for dCor is similar to the Pearson
correlation coefficient:

dCor(V1, V2) =
dCov(V1, V2)√

dVar(V1)dVar(V2)
(7)

where dCov(V1, V2) is the distance covariance and dVar(V1), dVar(V2) is the distance variance of
the random variables V1 and V2, respectively. The square root of the latter is the distance standard
deviations of V1 and V2.

To calculate dCor, the task is first to calculate the nxn distance matrices of each random variable,
V1 and V2:

aj,k = ||V1,j −V1,k|| (8)

bj,k = ||V2,j −V2,k|| (9)

where j, k = 1, 2, ..., n and || · || is the Euclidean norm. Using the distance matrices, the doubly centered
distances are calculated as:

Aj,k = aj,k − āj − āk + ā (10)

Bj,k = bj,k − b̄j − b̄k + b̄ (11)

where āj is the row mean of the distance matrix, āk is the column mean of the distance matrix, and ā
is the grand mean of the distance matrix for random variable V1. Analogous for random variable V2.
The distance covariance is then calculated as the following arithmetic average:

dCov2(V1, V2) =
1
n2

n

∑
j=1

n

∑
k=1

Aj,kBj,k (12)

Analogous, the distance variance for V1 and V2 are:

dVar2(V1) = dCov2(V1, V1) =
1
n2

n

∑
j=1

n

∑
k=1

A2
j,k (13)

dVar2(V2) = dCov2(V2, V2) =
1
n2

n

∑
j=1

n

∑
k=1

B2
j,k (14)
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The dCor metric assumes values between 0 and 1, where 0 implies that the variables are
independent and 1 implies that the variables are equal.

It has also been theoretically proven that dCor asymptotically detect deviations from
independence. This implies that dCor is, at least in theory, a solid tool to detect any relationship
between two variables given that enough data is provided. Some alternative correlation metrics with
the similar characteristics as dCor are Hoeffding’s D measure, HHG (Heller, Heller and Gorfine)
measure and MI (Mutual Information) [52]. The use of any particular correlation metric depends
in large on the number of observations and the type of relationship one intends to identify and the
“nature” of the variables. This implicitly justifies that any correlation metric is not necessarily the “holy
grail” of determining variable dependence [52]. It also means that a correlation metric may give low
values if the pattern one intends to identify is challenging for the metric to detect. However, due to the
limitations of the current study to the statistical modeling of the EE consumption in the EAF, dCor
is chosen as the preferred metric due to its ability to detect both linear and non-linear relationships.
Furthermore, for large number of observations, dCor has proven to be reliable for many different types
of dependencies [52].

dCor will be calculated for each input variable to the output variable for both the training and
the test data. A change in dCor between the training and test data indicates that the relation between
the input variable and the output variable has changed. The relationship between the input variables
and the output variable is what a statistical model learns using the training data. Thus, the change
in dCor between the training and test data highlights the variable as a reason behind the model
performance deviation.

In the analysis, input variable pairs with dCor values at or above 0.1 will be referred to as having
relatively high correlation values. The reasoning behind this limit is two-fold. First, most of the dCor
values between the input variables pairs were shown to be lower than 0.1 and most of the expected
correlations between the input variable pairs was higher than 0.1. Second, to the authors knowledge,
a clear guidance in the literature to what is considered a low or high dCor value does not exist.

KS tests: The KS-value is the maximum distance between two cumulative distribution functions
(CDF). The CDF are either two samples of the same variable or one sample and one ideal CDF, such as
the CDF for the normal distribution. Furthermore, the KS test is a non-parametric statistical test which
means that it does not make any presumptions about the distributions governing the samples [54].
Variables from the EAF production are often from varying classes and superpositions of distributions,
see Figure 4. The KS test is conducted by calculating the confidence, the p-value, of the KS-value
under the null hypothesis, H0, that the two samples are from the same distribution. The KS-value
takes values between 0 and 1 where 0 indicates the distributions are identical and 1 indicates that the
distributions are completely different. The p-value is the probability that the two samples are in fact
from the same distribution. Hence, a high KS-value with a low p-value strongly indicates that the two
distributions underlying the two samples are different.

In the experiments, the two-sample KS test is of particular interest because it enables the
study of the difference in two sampled distributions of the same variable. The two-sample KS test
equations follows:

Dn1,n2 = supx|Fn1(x)− Gn2(x)| (15)

where Fn1 and Gn2 are the two distribution functions with n1 and n2 are the number of samples from
the two distributions, respectively. x is the total sample space. sup is the supremum. The two-sample
KS test is illustrated in Figure 6.
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Dn1,n2 = 0.2

Figure 6. An illustration of the two-sample Kolmogorov–Smirnov (KS)-test for the random variables
X1 and X2, where X1 ∼ Norm(200, 25) and X2 ∼ Norm(200, 35) Left: The cumulative distribution
functions (CDF) of X1 and X2 with the D-value as the difference between the upper and lower dashed
lines. 100 samples were drawn from each distribution. Right: The probability density functions of X1
and X2.

The null hypothesis, which is that the samples come from the same distribution, is rejected if:

Dn1,n2 > c(α)
√

n1 + n2

n1 · n2
(16)

where α is the significance level and c is the threshold value calculated using α and the cumulative KS
distribution [55].

One drawback of KS test is that it is sensitive to any difference between the two distributions.
A large, but local, difference between the distributions will be captured by the KS test, but may not
necessarily be representative over the complete distribution space.

The two-sample KS test will be used to investigate the distribution difference between the
training data and the test data for both the input variables and the output variable. Since the neural
network weights are adapted to the training data, any significant difference in distribution between
the training and the test data for any variable (more affect on the most important variables) will affect
the performance of the model on previously unseen data (test data). The aim is to pinpoint variables
that are a probable cause to the performance difference rather than to prove specific performance
changes by each variable. The latter approach is difficult, if at all doable, partly due to the complex
interrelations between the variables in the data.

KS-values above or equal to 0.2 with p-values at or below 0.05 will be considered to be
variables of interest in the analysis. The main reason is to avoid capturing all variables while at
the same time capturing variables that change significantly enough between the training and test data.
The implications of this limit on the KS test will be discussed. Distributions plots for variables above
the KS-value threshold can further help to identify if the difference between the training and test data
is significant enough.

FI: It is important to investigate how much each input variable affects the output variable. A useful
way to do this is to use interpretable machine learning algorithms. One such algorithm is called FI
which ranks each input feature, e.g., variable, in order of importance with respect to all predictions.
Hence, FI is known as a global interpretable machine learning model. Each variable is singly broken
and the recorded error from the model on this new data set is compared with the error from the original,
unbroken, data set. If the error is higher, then the input variable is of some predictive importance with
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respect to the output variable. If the error is statistically indifferent, then one can conclude that the
input variable is of little importance to the model [56]. The algorithm is described as follows:

1. Train a model and record its error L(X).
2. Permute one of the input variables, x̄j, in the input matrix X.
3. Apply the permuted input matrix, Xj, to the trained model and record the error, L(Xj).
4. Repeat steps 2 and 3 for all input variables j ∈ 1, 2, ..., m.
5. Order all variables in the order of decreasing L(Xj).
6. Normalize all L(Xj) on max(L(Xj)) (optional).

where L is the model loss function, X is the complete and non-permuted input data matrix, and m is
the total number of variables.

FI will be applied to both the training data and the test data. FI on training data tells us how much
the model relies on each input variable for making predictions on new data. On the other hand, FI on
test data reveals how important each input variable is to the actual model performance on unseen
data [57]. Hence, both approaches can be viewed as complementary tools for model transparency.
If the training and test data for a given variable come from the same distribution, then the FI value will
be the same given that the number of data points is large enough. A larger deviation in FI indicates
that the underlying relations between the input variables and the output variable have changed. FI will
be calculated 20 times for each variable and data set to account for randomness in the permutations.
The presented values will be the mean FI-values for each variable.

4. Results

4.1. Modeling

See Table 9 for the domain-specific cleaning results. Only 10% of the original data was removed
after all cleaning steps.

Table 9. The remaining data from the domain-specific cleaning rules that were applied to the data.
The training and test data were selected as described in Section 3.2.3.

Filter Training Data Test Data Total Data

Before cleaning 12,183 404 12,587

Removal of all Trial heats 11,530 386 11,916

Heats with EE above 60 MWh 11,530 386 11,916

Heats with Total charged weight above 110,000 kg 11,530 386 11,916

45 min < TTT < 180 min 10,990 362 11,352

Delays < 180 min 10,966 362 11,328

After cleaning (No.) 10,966 362 11,328

(% data loss) 10.0% 10.4% 10.0%

In a practical application context, only the best model will be selected. However, some interesting
observations were made when analyzing the results from both the domain approach and the
algorithmic approach. Therefore, a total of 6 models were selected for further analysis. D1 was
selected because it uses all input variables, D64 was selected because it uses only the base variables in
the domain approach. D15, D17, and D31 were selected because they are the top 3 best performing
models on the test data from the domain approach. A21 was selected because it is the best performing
model from the algorithmic approach. Hence, we refer to D15, D17, D31, and A21, as the best models.
The true EE consumption is plotted against the predicted EE consumption by models D15 and A21 in
Figure 7. The performance of the selected models are presented in Table 10. The performance of the
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best model from each variable batch is presented in Figures A1 and A2 for the domain approach and
algorithmic approach, respectively.

Table 10. Performance of the selected models on the training and test data. Models called D are from
the Domain approach and models called A are from the algorithmic approach. TR and TE are short for
training and test, respectively.

Model D1 D15 D17 D31 D64 A21

No. Variables 35 20 34 19 6 16

Dataset TR TE TR TE TR TE TR TE TR TE TR TE

R̄2
µ 0.790 0.698 0.717 0.731 0.766 0.706 0.660 0.722 0.601 0.697 0.725 0.706

∆µ 1 −331 −2 −554 −23 −266 2 −710 −8 −686 −5 −566
∆σ 1145 1167 1392 1126 1235 1176 1562 1105 1691 1216 1378 1185

∆min −5679 −4249 −6606 −3819 −5275 −3662 −7526 −4089 −8149 −4805 −6519 −4333
∆max 5310 5442 5564 5735 5657 6072 6462 6020 8520 6087 6038 6610

R̄2
µ,train − R̄2

µ,test 0.092 −0.014 0.060 −0.062 −0.096 0.019
∆µ,train − ∆µ,test 332 552 243 712 676 561

Figure 7. The predicted and true EE consumption. The dashed lines represent a perfect model where all
predicted EE consumption values are equal the true EE consumption values. All values are normalized.
Left: Model D15. Right: Model A21.

A significant negative mean error on the test data compared to the training data can be observed
for all selected models. This is also consistent for a majority of the best models from the variable
batches, as can be seen in Figures A1 and A2. The minimum and maximum errors are in the ranges of
−3.7 MWh to −4.8 MWh and 5.4 MWh to 6.6 MWh on the test data, for the best models.

Comparing the performance from the best model to reported ANN models in the literature is
shown in Table 11. The standard deviation of error is better than all reported models evaluated on test
data, while the mean error is worse. The minimum and maximum error are comparable. However,
the number of variables is significantly lower for the best model from the experiments done in this
paper; 20 compared to 82 to 100 in the literature. Furthermore, the results from the models in the
present paper are the average over 10 iterations. No such approach to combat model instability was
done on the models in the literature. In addition, one has to keep in mind that the reported ANN
models, evaluated on test data, in the literature lack R2 for all models and % cleaned data for all but
one model [43].



Metals 2020, 10, 36 23 of 53

Table 11. The best model compared with ANN models created by Baumert et al. [21–23]. Only models
that were tested on test data and presented the number of test heats are reported. Dashed entries
indicate missing information.

Model Baumert C1 Baumert D1 Baumert E1 Baumert E2 D15

No. Hidden layers 1 10 10 11 1
Total No. Hidden nodes 7 50 50 58 11

No. Variables 100 84 82 95 20
Train/test split 375/20 668/150 707/62 921/1011 10,966/362
% cleaned data - 2.6% - - 10%

R2 - - - - 0.731
Mean error (kWh/heat) ~0 −100 ~0 −300 −554

Standard deviation of error (kWh/heat) 1300 3300 1800 1900 1126
Minimum error (kWh/heat) −3500 - - −8000 −3819
Maximum error (kWh/heat) 6000 - - 5000 5735

The best model from the algorithmic approach is almost as good as the best model from the
domain approach with a difference in R̄2

µ of only 0.025.
The model with the least amount of input variables, D64, has a R̄2

µ that is only 0.001 higher than
the R̄2

µ for the model with the highest number of input variables, D1.
The performance on the test data is better than on the training data for D15, D31, D64, and

D21. Significantly so for D31 and D64 where a difference in R̄2
µ 0.062 and 0.096 are observed. This is

somewhat unexpected since a model usually performs worse on test data.

4.2. Model Analysis

Assuming a threshold p-value of 0.05, all variables except Delays, Type B, Type C, and Type F, are
of particular interest for further analysis of the KS-values, see Table 12. MgO shows an unusually large
KS-value of 0.85. Al, Metal Weight, Slag Weight, and Cr2O3 have KS-values of 0.34, 0.41, 0.5, and 0.36,
respectively. Then there is a plethora of variables that have KS-values between 0.20 and 0.30. From the
Base variables these are, Total Weight, Propane, O2-lance, Preheater. From the time variables, Refining
is the only variable. From the oxide composition, these variables are CaO, FeO, Al2O3. For the raw
material types, Type N satisfies the criteria. EE consumption has a KS-value of 0.25. The distributions
for the training and test data for EE consumption are shown in Figure 8.

The dCor between the input variables and the EE consumption are shown in Table 12. Changes in
dCor above 0.1 between the training and test data are observed for Delays, TTT, Total Weight, Propane,
Process Time, Extended refining, C, Si, O, Metal Weight, Type C, Type E, and Type N, raw materials.

Expected correlations between variables, as discussed in Section 2.4, can be observed in Table A4.
dCor calculations between time variables and time variables have higher dCor values compared
to dCor calculations between time variables against other variable types. The intra-correlation for
metal composition, oxide compositions, and raw material types, are expected since the sum of the
compositions are equal to one and the sum of the raw material types are bound by the total weight.
The inter-correlation between metal compositions, oxide compositions, and the raw material types,
indicates the complex relationship between these variables. Furthermore, the differences in dCor
between the training and test data for all variables are explicitly shown in Table A3. While some
larger changes in dCor can be observed for the time variables, the variables with the most number of
larger dCor changes are the weight variables, metal composition, oxide composition, and raw material
type variables.
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Table 12. Two-sample KS tests for the training data against the test data for all input variables and
the EE consumption. Distance correlation (dCor) for training and test data sets are calculated as a
one-to-one correlation between the input variables and EE consumption. The difference in dCor is
defined as dCor(training)− dCor(test).

Variable KS-Value p-Value dCor EE Train dCor EE Test dCor EE Diff

Delays 0.04 0.49 0.135 0.270 −0.135
TTT 0.13 0.16 0.262 0.396 −0.134

Total Weight 0.24 0.0 0.325 0.116 0.209
Propane 0.22 0.0 0.082 0.217 −0.135
O2-lance 0.24 0.0 0.123 0.114 0.009

Preheater energy 0.23 0.0 0.060 0.074 −0.014

Process Time 0.18 0.0 0.399 0.534 −0.135
Charging 0.08 0.01 0.025 0.095 −0.07
Melting 0.08 0.02 0.107 0.087 0.02
Refining 0.24 0.0 0.448 0.499 −0.051

Extended refining 0.08 0.03 0.237 0.463 −0.226
Tapping 0.18 0.0 0.152 0.129 0.023

C 0.07 0.04 0.226 0.096 0.129
Si 0.16 0.0 0.105 0.216 −0.111
Cr 0.19 0.0 0.131 0.139 −0.008
Fe 0.13 0.0 0.095 0.181 −0.086
Ni 0.16 0.0 0.097 0.187 −0.09
O 0.11 0.0004 0.032 0.257 −0.225
Al 0.34 0.0 0.098 0.140 −0.042

Cr2O3 0.36 0.0 0.095 0.099 −0.004
MgO 0.85 0.0 0.193 0.241 −0.048
CaO 0.24 0.0 0.057 0.131 −0.074
FeO 0.20 0.0 0.032 0.123 −0.091
SiO2 0.13 0.0 0.079 0.111 −0.032

Al2O3 0.26 0.0 0.130 0.210 −0.08

Metal Weight 0.41 0.0 0.344 0.135 0.208
Slag Weight 0.5 0.0 0.108 0.179 −0.071

Type A 0.18 0.0 0.064 0.094 −0.03
Type B 0.07 0.06 0.111 0.180 −0.069
Type C 0.07 0.08 0.150 0.291 −0.141
Type D 0.14 0.0 0.187 0.271 −0.084
Type E 0.18 0.0 0.128 0.300 −0.172
Type F 0.02 0.98 0.041 0.046 −0.005
Type G 0.19 0.0 0.151 0.155 −0.004
Type N 0.23 0.0 0.098 0.303 −0.205

EE consumption 0.25 0.0 - - -

FI for the 6 selected models are presented in Table 13. Delays, TTT, and Total Weight are the three
most important variables for all models, except for model D15, with respect to the training data. Some
significant changes in FI from the training and test data sets are also observed. These are marked with
bold and underlined numbers in Table 13.



Metals 2020, 10, 36 25 of 53

Table 13. Feature importance (FI) for the selected models. Models called D are from the Domain
approach and models called A are from the algorithmic approach. TR and TE are short for training and
test, respectively. Significant changes in FI are indicated in underlined bold font.

D1 D15 D17 D31 D64 A21

TR TE TR TE TR TE TR TE TR TE TR TE

Delays 0.85 0.75 1.37 1.30 0.65 0.62 1.21 1.13 1.90 1.71 0.71 0.58
TTT 1.15 1.34 1.35 1.58 0.94 1.14 1.71 1.96 2.58 2.91 0.82 0.88

TotWeight 1.15 0.70 0.16 0.02 1.16 0.63 0.15 0.04 0.13 0.03 0.43 0.40
Propane 0.07 0.01 0.05 0.00 0.03 0.00 0.02 0.0 0.02 0.0 - -
O2-lance 0.03 0.0 0.02 0.0 0.02 0.0 0.0 0.0 0.02 0.0 - -
Preheater 0.03 0.02 0.03 0.01 0.02 0.00 0.02 0.01 0.02 0.01 - -

Process Time 0.08 0.05 0.23 0.49 - - - - - - 0.20 0.30
Charging 0.01 0.0 0.01 0.01 0.01 0.0 0.01 0.0 - - - -
Melting 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 - - - -
Refining 0.09 0.06 0.05 0.04 0.09 0.02 0.05 0.05 - - 0.03 0.03
Ext. ref. 0.03 0.06 0.03 0.07 0.03 0.15 0.03 0.12 - - 0.03 0.06
Tapping 0.03 0.0 0.05 0.04 0.00 0.00 0.0 0.0 - - 0.07 0.06

C 0.01 0.0 - - 0.01 0.00 - - - - 0.01 0.0
Si 0.09 0.14 - - 0.08 0.09 - - - - - -
Cr 0.02 0.0 - - 0.01 0.0 - - - - 0.01 0.01
Fe 0.13 0.27 - - 0.02 −0.02 - - - - - -
Ni 0.07 0.05 - - 0.01 0.04 - - - - - -
O 0.08 0.11 - - 0.07 0.07 - - - - - -
Al 0.04 0.03 - - 0.03 0.01 - - - - - -

Cr2O3 0.03 −0.01 - - 0.01 0.00 - - - - - -
MgO 0.15 0.0 - - 0.13 0.01 - - - - 0.07 0.0
CaO 0.44 0.82 - - 0.32 0.61 - - - - - -
FeO 0.05 0.14 - - 0.03 0.10 - - - - - -
SiO2 0.24 0.46 - - 0.19 0.38 - - - - - -

Al2O3 0.06 0.05 - - 0.07 0.03 - - - - 0.01 −0.01

Metal 0.44 0.29 - - 0.49 0.25 - - - - 0.15 0.16
Slag 0.06 0.01 - - 0.04 0.00 - - - - - -

Type A 0.03 0.0 0.02 0.00 0.01 0.01 0.01 0.01 - - - -
Type B 0.02 0.0 0.04 0.02 0.01 0.01 0.03 0.02 - - - -
Type C 0.04 0.02 0.07 0.01 0.06 0.0 0.01 0.01 - - 0.05 0.04
Type D 0.02 0.04 0.05 0.08 0.02 0.01 0.03 0.07 - - 0.01 0.02
Type E 0.05 0.14 0.02 0.0 0.02 0.04 0.0 0.0 - - 0.01 0.04
Type F 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 - - - -
Type G 0.10 0.13 0.05 0.04 0.09 0.08 0.04 0.02 - - 0.08 0.12
Type N 0.02 0.0 0.03 0.01 0.02 0.0 0.0 0.0 - - - -

Training and test data distributions for some of the most important variables for the 6 selected
models are shown in Figure 8. These are Delays, TTT, Process Time, Total Weight, and Metal Weight.
EE is also plotted because of its KS-value of 0.25. Metal compositions, oxide compositions, and raw
material types were not included because of their complex relationships shown by the relatively high
inter-correlation and intra-correlation, (see Tables A4 and A5). Analyzing their combined impact on
the EE consumption is too extensive for this article.
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EE

TTT

Total Weight Metal Weight

Delays

Process Time

Figure 8. Distributions for the training data (black) and test data (gray) for EE and the 5 of the variables
with higher FI for the 6 selected models. The vertical dashed lines show the mean of each distribution.
Both the training and test data are normalized with the mean error and standard deviation of error of
the training data.

The EE consumption have increased in the test data set. So have the TTT, Process Time, Total
Weight, and Metal Weight. The delay is about equal on average between the training and test data sets.

4.3. Grid-Search Metadata

The parameters from the models passing the R̄2
max − R̄2

min ≤ 0.05 criterion (see Section 3.4.3) and
the parameters from the best models are summarized in Tables 14 and 15, respectively. Validating on
chronologically ordered data during training is not always beneficial as the ordered is only present in
27% of the best models. Number of hidden layers, which is a proxy for model complexity, is equal to
one for 87% of the best models. A similar reasoning can be made for the algorithmic approach, which
metadata is presented in the same tables.
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Table 14. Parameter metadata for the models passing the R̄2
max − R̄2

min ≤ 0.05 criterion
(see Section 3.4.3). The upper row is for the domain-specific approach and the bottom row is for
the algorithmic approach.

Learning 0.1 0.01 0.001 Activation L T Ordered Yes No Hidden 1 2
rate 2% 19% 79% function 68% 32% 39% 61% layers 60% 40%

Learning 0.1 0.01 0.001 Activation L T Ordered Yes No Hidden 1 2
rate 9% 32% 59% function 65% 35% 48% 52% layers 55% 45%

Table 15. Parameter metadata for the best model from each variable batch. The upper row is for the
domain-specific approach and the bottom row is for the algorithmic approach.

Learning 0.1 0.01 0.001 Activation L T Ordered Yes No Hidden 1 2
rate 0% 6% 94% function 69% 31% 19% 81% layers 88% 12%

Learning 0.1 0.01 0.001 Activation L T Ordered Yes No Hidden 1 2
rate 5% 40% 54% function 63% 37% 23% 77% layers 69% 31%

5. Discussion

5.1. Modeling

The best model from the domain approach has a R̄2
µ of 0.706 while the best model from the

algorithmic approach has a R̄2
µ of 0.731. These values were calculated from the average of 10 model

instances, and the difference is not large. This means that the algorithmic approach can be used
as a tool to select variables that governs a model that will have a top-tier accuracy. However, it is
important to consider the domain-specific reasoning behind the initial selection of the 35 available
input variables. It is, therefore, not suggested that one should blindly select variables stored in an
arbitrary EAF-database and then perform the algorithmic variable selection explained in this paper.
While this could work, it is not what is intended using the algorithmic approach.

Using a large scale grid-search with over 57,000 model types, using both a domain-specific
approach and an algorithmic approach, the best model type achieved an R2

µ of 0.731, a mean error of
−554 kWh/heat, a standard deviation of error of 1126 kWh, a minimum error of−3819 kWh/heat, and
a maximum error of 5735 kWh/heat. The best model in the literature had a mean error of approximately
zero, a standard deviation of error of 1300 kWh/heat, a minimum error of −3500 kWh/heat, and a
maximum error of 6000 kWh/heat. The errors from both models are similar. However, the literature
model did not report averages of 10 model iterations. Therefore, it is not possible to know if the
performance is stable or purely based on luck. The models in this paper were selected after a filtering
criterion, R̄2

max − R̄2
min ≤ 0.05 (see Section 3.4.3). After this filtering, the best models based on the

highest R̄2
µ on the test data were selected. In addition, the model from the literature did not report

R2
µ and was only evaluated on 20 test data points compared to 362 test data points for the best model

produced in this paper. Assuming a production of 20 heats per day, this represents a model evaluation
difference of approximately 17 production days. Furthermore, neither the data treatment specifics nor
the percentage of cleaned data were specified for that model. Model reporting shortfalls, of which some
are mentioned above, are frequently occurring in the available literature on the subject of statistical
modeling to predict the EE consumption in the EAF. It is important to clearly describe all steps in
the data- and modeling pipeline that impose changes to the end result. In the context of this paper,
the end result is the best model. The best model presented in this paper is also less complex than the
best reported model in the literature even though both models perform similarly. While the number
of hidden layers are equal between both models, the model reported in the literature has 100 input
variables compared to 20 input variables for the best model produced in this paper. In the interest
of model parsimony, simplicity should be followed when creating any model. On the same note,
the model using 6 of the base variables has an R2

µ that is not significantly better (a difference of only
0.001) than the model using all 36 input variables, and the best model uses only 20 variables. Hence,
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adding a lot of input variables does not necessarily create a model with better performance. One has
to search for the optimal combination of variables using either a purely domain-specific approach or
an algorithmic approach, such as the one presented in this paper. Tables 14 and 15 further support
model simplicity since models with 2 layers are not preferred over models with 1 layers with respect
to model stability (the R̄2

max − R̄2
min ≤ 0.05 criterion, see Section 3.4.3) or with respect to the best model

from each variable batch.
3 of the 6 selected models perform better on the test data than on the training data. This is

somewhat contradictory since models usually perform worse on test data. However, the selection of the
best models from each variable batch was based on the performance on the test data. The performance
on the training data was not considered since, in a practical environment, only the performance on test
data is important.

5.2. Model Analysis

Investigating the dCor-matrix for the training data, Table A4, one can observe many relatively
high 1-to-1 correlation among the metal composition, oxide composition, and raw material type
variables. This is in line with what is expected from a process-metallurgical perspective. Because
of this trait, these variables share information between one another to a large extent. For example,
Type D is relatively highly correlated with all metal composition and oxide composition variables.
Simplified, Type D has the potential to account for the metal and oxide composition which renders
those variables less important to the models performance. This is the reason adding a lot of input
variables does not necessarily create a model with better performance, and the reason variables that
are important in a physical model may be next to worthless in a statistical model. Changes in dCor
from the training data to the test data, see Table A3, indicate that the underlying relation between
the variables have changed. This is not as frequently occurring for the time variables as for the metal
composition, oxide composition, and raw material types where changes to both lower and higher dCor
are present. Due to changes in dCor, changes in the model performance are also expected. However,
analyzing a 36 × 36 correlation matrix in depth is both impractical and does not show which variables
are the most important for the performance of the model.

Table 12 shows the results from the KS tests performed on each variable on training and test
data sets. KS-values greater than or equal to 0.20 were considered of significant change given that
the p-value is 0.05, or less. In conjunction with FI for the selected models, see Table 13, it is possible
to identify reasons behind the performance differences from training to test. Delays, TTT, Process
Time, Total Weight, and Metal Weight are some of the most important variables for the 6 selected
models. Out of these variables, Total Weight and Metal Weight are variables with KS-values above
0.20. Process Time, TTT, and Delays, had KS-values of 0.18, 0.13, and 0.04, respectively. Furthermore,
the KS-value for EE consumption is 0.25, which indicates that the EE consumption has also changed
from the training to test data. However, KS-values do only provide a difference in the CDF and do not
indicate whether the variable has increased or decreased. Observing the variable distributions for the
training and test data for these variables in Figure 8, it is clear that all of these variables, except Delays,
have increased from the training data to test data. Since the EE consumption increases with the amount
of charged materials and longer process times, and because these input variables are important for the
models, it is highly probable that these variables give rise to the decrease in ∆µ and the change in R̄2

µ

for the 6 selected models.
Please note that the limitation of demarcating “interesting” variables to only those at or above

0.2 KS-value becomes clear when observing the clear and consistent increase in Process Time and
TTT in Figure 8. Nevertheless, using KS test in conjunction with FI and the additional distribution
plots enabled the discovery of the implications on the model performance due to the changes in
these variables.

∆µ is defined as the average error for all predictions across all 10 model instances. Each error is in
turn defined as the true value minus the predicted value. Since all 6 selected models get a significant
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negative ∆µ on the test data, the models overestimate the EE consumption due to the changes in
the variables with the highest FI. In particular, the Total Weight, Metal Weight, TTT and Process
Time. This behavior is not unexpected since any statistical model will predict the value of the highest
probability with respect to the data it has used to adapt its parameters. In this case, the 10,966 training
data points have adapted the ANN weights. Any change to the distribution of the variables with high
FI will affect the models prediction on data sampled from this aggregated distribution.

6. Conclusions

One of the aims with the present work was to address the previously reported shortcomings
in the statistical modeling approach to predict the EE consumption of the EAF [43]. In addition to
addressing these shortcomings with a detailed data- and modeling pipeline, the choice of statistical
modeling framework and statistical analysis tools was adapted to the non-linearity of the EAF process
and the complex correlative relations between the selected process variables. The main conclusions of
the modeling approach, and suggested future work, may be summarized as follows:

6.1. Modeling

• In the interest of model parsimony, increasing the number of input variables does not
automatically increase model performance. This is both observed when comparing the best
model from the experiments to the best model reported in the literature and when comparing
model D64, which uses 6 variables, and model D1, which uses 35 variables. It is sufficient to
choose several variables from an initial selection demarcated by the use of process knowledge.

• Similar performance was retrieved by the best models from the algorithmic approach and the
domain approach, respectively. Given a setup of variables that are selected with process expertise,
an algorithmic approach can find an optimal selection of variables. This is important from a
practical applicability standpoint since less time need to be invested in searching for the optimal
number of variables and the optimal subset of variables.

• Neural networks with many layers, increasing the model complexity, are not necessary to produce
state-of-the-art model performance. This was observed both in the grid-search performed in
the experiments and in comparing the best model from the experiments with the best models
reported in the literature.

• The mean error is slightly higher, and the standard deviation of error is better for the best model
compared to the best model reported in the literature. The minimum and maximum errors
are approximately the same as the best model reported in the literature. However, these are
−3.8 MWh to 5.7 MWh, respectively, which are quite high from a practical application context.

6.2. Model Analysis

• Using KS test and FI as complementary tools, it was possible to identify an increase in Total
Weight, Metal Weight, and Process Times as a highly probable cause behind the performance
change from the training to test data for the 6 selected models.

• An analysis of the ∆µ error from the selected models on the test data indicates that the models
overestimate the EE consumption with regards to the change in the most important variables to
the models. In particular, the Total Weight, Metal Weight, TTT, and Process Time variables.

• High intra-correlation between the metal composition, oxide composition, and raw material type
variables was found using dCor on the training data. This explains why some of these variables
get a high FI in some of the models. The changes in dCor from the training to test data were also
prominent for these variables and can explain part of the performance changes for the selected
models attributing higher FI to some of these metal composition, oxide composition, and raw
material type variables.
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6.3. Future Work

Based on the present work carried out and the conclusions drawn, it is suggested to further
investigate the following:

• Use upsampling on the training data to get more data points as outliers. Could potentially solve
the problem with large maximum and minimum errors.

• Develop a more advanced variable selection algorithm based on dCor that takes into account
one-to-many correlations for each input variable. The current algorithm only considers the
correlation between the EE and each input variable.

• Apply dCor to groups of variables and the EE consumption instead of variables in a 1-to-1 fashion.
This feature of dCor should be explored further.

• Use other non-linear correlation metrics to determine appropriate variable selection. These
include Hoeffding’s, MI, and HHG.

• Investigate the effects of different types of scrap on the EE consumption using new classifications
based on density, and heat and melting behavior.

• The effect on models by normalized variables that are not normally distributed is not known.
See Figure 4 for a few examples.
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Nomenclature

Etot,in Total ingoing energy
EEl Total Electrical Energy (EE) output from transformer
EChem Total energy from chemical reactions in steel and slag
EBu Total energy input from burner
Etot,out Total outgoing energy
ESteel Total energy output into steel
ESlag Total energy lost in slag
EGas Total energy lost in gas
EDust Total energy lost in dust
ECooling Total energy lost in cooling water
ERad Total energy lost through radiation
EConv Total energy lost through convection
EEl,loss Total energy lost in electrical system and arc transfer
TCS The temperature of the cooling panels
TEAF The temperature of the surface area subject to radiation losses
Ts Temperature of ingoing material and gas at the start of the EAF process
TTap Temperature of the steel at tapping
TO f f gas Temperature of the off-gas leaving the EAF through the off-gas system
TH2O Temperature of the cooling water
TH The temperature of the surface area subject to convection losses
TAmb The temperature of the air surrounding the EAF
mSteel Mass of ingoing metallic material
mSlag Mass of ingoing oxidic material
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ṁDust Mass flow of dust in the off-gas system
cSteel The heat capacity of steel at constant pressure
cSlag The heat capacity of slag at constant pressure
cDust The heat capacity of dust at constant pressure
cGas The heat capacity of EAF ambient gas at constant pressure
cp(reactants) The heat capacity of reactants at constant pressure
cp(products) The heat capacity of products at constant pressure
∆Ho

298(reactants) Standard heat of formation for reactants at 298K
∆Ho

298(products) Standard heat of formation for products at 298K
∆HMelt,steel Heat of fusion for steel
∆HMelt,slag Heat of fusion for slag
k Conductivity of the cooling panels
h Heat transfer coefficient of the EAF ambient gas
ε Emissivity factor of the radiating surface area of the EAF
σ Stefan-Boltzmann constant
ηEl Efficiency factor for the transformer system
ηArc Efficiency factor for the energy transferred from the arcs
ηFuel Efficiency factor for burning the fuel in the burners
hFuel Heat generated per volume unit of fuel
VFuel Volume of the fuel consumed by the burners
AH Surface area of the EAF subject to convection losses
AAC Surface area of the cooling panels
AEAF Surface area of the EAF subject to radiation losses
PAvg Average power of the transformer system
P Furnace pressure
M Molar mass of the furnace gas
R Universal gas constant
V̇Gas Volume flow of gas in the off-gas system
tTTT Tap-to-tap time
tPON Power-on time
R2 Coefficient of determination
R̄2 Coefficient of determination adjusted for number of data points and variables
n Number of data points
p Number of input variables
yi True value of the output variable for data point i
ŷi Predicted value of the output variable for data point i
P Number of nodes in the previous layer.
sj Summation of the input values for jth node in the current layer.
wi Weight of node i in the previous layer.
xi Value of node i in the previous layer.
∆µ Mean error of the mean error of the 10 model instances on the test data
∆σ Standard deviation of the mean error of the 10 model instances on the test data
∆min Minimum of the mean error of the 10 model instances on the test data
∆max Maximum of the mean error of the 10 model instances on the test data
R̄2

µ Mean adjusted R-square of the 10 model instances
R̄2

σ Standard deviation of adjusted R-square of the 10 model instances
R̄2

min Minimum of adjusted R-square of the 10 model instances
R̄2

max Maximum of adjusted R-square of the 10 model instances
V1 Random variable
V2 Random variable
dCor(V1, V2) Distance correlation between V1 and V2

dCov(V1, V2) Distance covariance between V1 and V2

dVar(V1) Distance standard deviation for V1
dVar(V2) Distance standard deviation for V2
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dVar2(V1) Distance variance for V1
dVar2(V2) Distance variance for V2

aj,k Distance between values j and k for random variable V1

bj,k Distance between values j and k for random variable V2

V1,j Value j for random variable V1

V2,j Value j for random variable V2

Aj,k Doubly centered distance for value j and k for random variable V1

Bj,k Doubly centered distance for value j and k for random variable V2

aj,k
āj Row mean of the distance matrix for the random variable V1

āk Column mean of the distance matrix for the random variable V1
ā Grand mean of the distance matrix for random variable V1
bj,k
b̄j Row mean of the distance matrix for the random variable V2

b̄k Column mean of the distance matrix for the random variable V2

b̄ Grand mean of the distance matrix for random variable V2

n1 Number of samples from the first distribution in the KS test
n2 Number of samples from the second distribution in the KS test
Dn1,n2 KS-value from the KS test between Fn1 and Gn2

x The total sample space in the KS test
Fn1 First distribution function in the two-sample KS test
Gn2 Second distribution function in the two-sample KS test
H0 Null hypothesis
α Significance level
c Threshold value calculated from the cumulative KS distribution
L Model error function
X Input matrix
x̄j Input variable j
Xj Input matrix with permuted variable j
Eµ Mean error
Eσ Standard deviation of error

Abbreviations

The following abbreviations are used in this manuscript:

CFD Computational Fluid Dynamics
EE Electrical Energy
EAF Electric Arc Furnace
AC Alternate Current
MLR Multivariate Linear Regression
ANN Artificial Neural Network
MSE Mean Squared Error
FI Feature Importance
KS Kolmogorov–Smirnov
CDF Cumulative distribution function
dCor Distance correlation
MI Mutual Information
HHG Heller, Heller and Gorfine
TTT Tap-to-Tap Time
TR Training
TE Test
NA Not Available
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Appendix A

Appendix A.1. Hardware and Software

Table A1. Hardware specifications.

Computer model Dell Latitude E5570
CPU Intel Core i7 2376 MHz
RAM 16,203 MB

Table A2. Software specifications for the experiments.

Purpose Software/Package Version

Operating system Microsoft Windows 7 Professional 6.1.7601 Service Pack 1 Build 7601

Programming
language Python 3 3.7.1

Python distribution Anaconda 3 4.6.7

Data handling Pandas 0.23.4

Numpy 1.17.4

Statistical modeling Scikit-learn 0.20.1

Feature importance eli5 0.8.1

Distance correlation dcor 0.3

KS test scipy 0.15.0

Visualization Matplotlib 3.0.2
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Appendix A.2. Variable Batch Performance

Figure A1. The modeling results from the domain approach. Top panels: Mean error plots for the best models of the 64 variable batches. The solid line with circles,
∆µ. The dashed line without circles, ∆σ. The dashed lines with circles, ∆min and ∆max, respectively. The solid line represents zero error and is used as reference for
clarity purposes. The R̄2

µ of each model. The model with the highest R̄2
µ is model 15 with R̄2

µ = 0.731. Bottom panels: The difference in ∆µ and R̄2
µ between the

training and the test data.
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Figure A2. The modeling results from the algorithmic approach. Top panels: Mean error plots for the best models for each of the 36 models in the algorithmic
approach. The solid line with circles, ∆µ. The dashed line without circles, ∆σ. The dashed lines with circles, ∆min and ∆max, respectively. The solid line represents zero
error and is used as reference for clarity purposes. The R̄2

µ of each model. The model with the highest R̄2
µ is model 21 with R̄2

µ = 0.716. Bottom panels: The difference
in ∆µ and R̄2

µ between the training and the test data.
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Appendix A.3. Distance Correlation (dCor) Matrices

Table A3. Difference in Variable-variable distance correlation (dCor) between the training and test data.
dCor values at ±0.1, or above, is bold and underlined.

Delays TTT Process Charging Ext. Ref. Melting Refining Tapping

Delays 0.0 −0.035 −0.054 0.018 −0.112 −0.041 −0.063 −0.048
TTT −0.035 0.0 −0.046 0.036 −0.121 −0.022 −0.076 −0.028
Process −0.054 −0.046 0.0 0.074 −0.212 −0.009 −0.059 −0.009
Charging 0.018 0.036 0.074 0.0 −0.058 −0.088 −0.078 −0.059
Ext. ref. −0.112 −0.121 −0.212 −0.058 0.0 −0.103 −0.015 0.007
Melting −0.041 −0.022 −0.009 −0.088 −0.103 0.0 −0.017 −0.067
Ext. ref. −0.063 −0.076 −0.059 −0.078 −0.015 −0.017 0.0 −0.002
Tapping −0.048 −0.028 −0.009 −0.059 0.007 −0.067 −0.002 0.0
Propane −0.181 −0.188 −0.241 −0.073 −0.121 −0.068 −0.017 −0.142
O2 −0.044 −0.056 −0.044 −0.081 −0.06 −0.031 −0.037 −0.024
TotWeight −0.018 0.007 0.081 −0.003 −0.054 −0.007 −0.078 0.016
Metal −0.047 −0.005 0.087 −0.031 −0.055 −0.016 −0.037 0.015
Slag −0.027 −0.032 −0.014 −0.042 −0.067 −0.016 0.013 −0.112
%Fe −0.043 −0.034 −0.052 −0.008 −0.125 −0.056 −0.092 −0.028
%O −0.052 −0.055 −0.065 −0.045 −0.06 −0.06 −0.039 −0.073
%Al −0.055 −0.039 −0.031 −0.053 −0.053 −0.042 −0.115 −0.021
%Cr −0.056 −0.06 −0.021 −0.036 −0.068 −0.056 0.022 −0.049
%Si −0.048 −0.055 −0.077 −0.058 −0.058 −0.052 −0.113 −0.093
%C −0.042 −0.015 −0.031 −0.063 −0.162 −0.073 0.079 −0.018
%Ni −0.067 −0.059 −0.09 −0.028 −0.112 −0.06 −0.078 −0.039
%FeO −0.066 −0.046 −0.035 −0.08 −0.035 −0.062 −0.067 −0.039
%SiO2 −0.044 −0.041 −0.031 −0.041 −0.068 −0.057 −0.116 −0.058
%Al2O3 −0.089 −0.076 −0.056 −0.134 −0.088 −0.043 −0.166 −0.041
%Cr2O3 −0.116 −0.128 −0.072 −0.112 −0.114 −0.05 −0.119 −0.031
%Mgo −0.074 −0.082 −0.087 −0.044 −0.056 −0.026 −0.038 −0.021
%CaO −0.039 −0.029 −0.026 −0.048 −0.065 −0.045 −0.084 −0.054
Type A −0.061 −0.062 −0.054 −0.051 −0.059 −0.073 −0.229 −0.041
Type B −0.033 −0.03 −0.055 −0.053 −0.088 −0.038 −0.016 −0.057
Type C −0.006 −0.016 −0.049 −0.012 −0.035 −0.078 −0.192 −0.054
Type D −0.036 −0.026 −0.038 −0.033 −0.063 −0.077 −0.137 −0.03
Type E −0.049 −0.054 −0.056 −0.047 −0.058 −0.062 −0.015 −0.088
Type F −0.034 −0.022 −0.023 −0.043 −0.02 −0.042 −0.071 −0.096
Type G −0.06 −0.07 −0.161 −0.038 −0.112 −0.081 −0.202 −0.076
Type N −0.133 −0.164 −0.127 −0.048 −0.126 −0.087 −0.091 −0.031
PreHeater −0.055 −0.055 −0.029 −0.069 −0.066 −0.052 −0.151 −0.066
EE −0.135 −0.134 −0.135 −0.07 −0.226 0.02 −0.051 0.023
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Table A3. Cont.

Propane O2 TotWeight Metal Slag %Fe %O %Al

Delays −0.181 −0.044 −0.018 −0.047 −0.027 −0.043 −0.052 −0.055
TTT −0.188 −0.056 0.007 −0.005 −0.032 −0.034 −0.055 −0.039
Process −0.241 −0.044 0.081 0.087 −0.014 −0.052 −0.065 −0.031
Charging −0.073 −0.081 −0.003 −0.031 −0.042 −0.008 −0.045 −0.053
Remelting −0.121 −0.06 −0.054 −0.055 −0.067 −0.125 −0.06 −0.053
Melting −0.068 −0.031 −0.007 −0.016 −0.016 −0.056 −0.06 −0.042
Ext. ref. −0.017 −0.037 −0.078 −0.037 0.013 −0.092 −0.039 −0.115
Tapping −0.142 −0.024 0.016 0.015 −0.112 −0.028 −0.073 −0.021
Propane 0.0 0.174 0.201 0.197 −0.057 −0.077 −0.144 0.012
O2 0.174 0.0 0.135 0.141 −0.025 −0.048 −0.049 −0.022
TotWeight 0.201 0.135 0.0 0.001 −0.219 −0.08 −0.209 0.076
Metal 0.197 0.141 0.001 0.0 −0.058 −0.186 −0.154 −0.096
Slag −0.057 −0.025 −0.219 −0.058 0.0 0.098 −0.066 0.155
%Fe −0.077 −0.048 −0.08 −0.186 0.098 0.0 −0.075 0.025
%O −0.144 −0.049 −0.209 −0.154 −0.066 −0.075 0.0 −0.089
%Al 0.012 −0.022 0.076 −0.096 0.155 0.025 −0.089 0.0
%Cr −0.038 −0.02 0.044 −0.125 0.018 0.133 −0.038 −0.066
%Si −0.025 0.045 −0.219 −0.041 −0.094 −0.183 −0.326 −0.059
%C 0.056 −0.126 −0.012 −0.034 −0.046 −0.007 −0.068 −0.004
%Ni −0.058 −0.055 −0.137 −0.254 0.118 −0.058 −0.081 0.033
%FeO 0.062 0.049 0.09 −0.066 0.141 −0.055 −0.139 −0.05
%SiO2 0.017 −0.003 0.143 −0.131 0.222 −0.122 −0.145 −0.046
%Al2O3 −0.168 −0.059 −0.011 −0.125 −0.054 −0.125 −0.296 −0.133
%Cr2O3 −0.127 −0.098 0.056 −0.194 0.193 −0.182 −0.088 −0.108
%MgO −0.035 0.065 −0.018 −0.079 0.117 −0.180 −0.236 0.030
%CaO 0.038 0.014 0.123 −0.145 0.264 −0.119 −0.223 −0.052
Type A −0.036 −0.042 −0.211 −0.292 −0.025 −0.171 −0.093 −0.224
Type B −0.057 −0.047 −0.089 −0.099 −0.036 −0.168 −0.214 −0.095
Type C −0.02 0.003 −0.110 −0.119 −0.085 −0.054 −0.15 −0.071
Type D −0.047 −0.019 −0.140 −0.144 0.01 0.0 −0.094 −0.109
Type E −0.123 −0.02 −0.160 −0.130 0.043 −0.117 −0.189 −0.027
Type F −0.025 0.018 −0.02 −0.036 −0.034 −0.096 −0.114 −0.038
Type G −0.028 0.150 −0.205 0.006 0.101 −0.366 −0.344 −0.241
Type N 0.164 0.244 0.106 0.135 −0.089 −0.108 −0.104 −0.036
PreHeater −0.055 −0.035 −0.066 −0.043 −0.137 −0.095 −0.06 −0.086
EE −0.135 0.009 0.209 0.208 −0.071 −0.086 −0.225 −0.042
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Table A3. Cont.

%Cr %Si %C %Ni %FeO %SiO2 %Al2O3

Delays −0.056 −0.048 −0.042 −0.067 −0.066 −0.044 −0.089
TTT −0.06 −0.055 −0.015 −0.059 −0.046 −0.041 −0.076
Process −0.021 −0.077 −0.031 −0.09 −0.035 −0.031 −0.056
Charging −0.036 −0.058 −0.063 −0.028 −0.08 −0.041 −0.134
Ext. ref. −0.068 −0.058 −0.162 −0.112 −0.035 −0.068 −0.088
Melting −0.056 −0.052 −0.073 −0.06 −0.062 −0.057 −0.043
Refining 0.022 −0.113 0.079 −0.078 −0.067 −0.116 −0.166
TT −0.049 −0.093 −0.018 −0.039 −0.039 −0.058 −0.041
Propane −0.038 −0.025 0.056 −0.058 0.062 0.017 −0.168
O2 −0.02 0.045 −0.126 −0.055 0.049 −0.003 −0.059
TotWeight 0.044 −0.219 −0.012 −0.137 0.09 0.143 −0.011
Metal −0.125 −0.041 −0.034 −0.254 −0.066 −0.131 −0.125
Slag 0.018 −0.094 −0.046 0.118 0.141 0.222 −0.054
%Fe 0.133 −0.183 −0.007 −0.058 −0.055 −0.122 −0.125
%O −0.038 −0.326 −0.068 −0.081 −0.139 −0.145 −0.296
%Al −0.066 −0.059 −0.004 0.033 −0.05 −0.046 −0.133
%Cr 0.0 −0.066 0.028 0.016 −0.136 −0.092 −0.135
%Si −0.066 0.0 −0.146 −0.184 −0.101 −0.225 −0.337
%C 0.028 −0.146 0.0 −0.04 0.024 0.035 −0.069
%Ni 0.016 −0.184 −0.04 0.0 −0.047 −0.065 −0.130
%FeO −0.136 −0.101 0.024 −0.047 0.0 −0.04 0.025
%SiO2 −0.092 −0.225 0.035 −0.065 −0.04 0.0 −0.082
%Al2O3 −0.135 −0.337 −0.069 −0.130 0.025 −0.082 0.0
%Cr2O3 −0.009 −0.258 −0.006 −0.118 −0.087 −0.091 0.116
%MgO −0.058 −0.196 0.025 −0.158 0.053 −0.016 −0.351
%CaO −0.077 −0.238 0.045 −0.053 −0.110 −0.071 −0.117
Type A −0.143 −0.174 −0.065 −0.185 −0.244 −0.049 0.129
Type B −0.084 −0.213 −0.053 −0.106 −0.089 −0.165 −0.177
Type C 0.003 −0.155 0.085 −0.058 0.027 −0.06 −0.261
Type D −0.004 −0.131 0.183 −0.017 −0.05 −0.039 −0.194
Type E −0.015 −0.217 −0.029 −0.087 −0.165 −0.197 −0.238
Type F −0.021 −0.165 −0.041 −0.065 −0.018 −0.056 −0.036
Type G −0.212 −0.231 −0.154 −0.291 −0.112 −0.339 −0.122
Type N −0.043 0.068 0.021 −0.126 −0.028 −0.056 −0.094
PreHeater −0.092 −0.04 −0.112 −0.096 0.043 −0.036 −0.119
EE −0.008 −0.111 0.129 −0.09 −0.091 −0.032 −0.08
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Table A3. Cont.

%Cr2O3 %MgO %CaO Type A Type B Type C Type D Type E

Delays −0.116 −0.074 −0.039 −0.061 −0.033 −0.006 −0.036 −0.049
TTT −0.128 −0.082 −0.029 −0.062 −0.03 −0.016 −0.026 −0.054
Process −0.072 −0.087 −0.026 −0.054 −0.055 −0.049 −0.038 −0.056
Charging −0.112 −0.044 −0.048 −0.051 −0.053 −0.012 −0.033 −0.047
Ext. ref. −0.114 −0.056 −0.065 −0.059 −0.088 −0.035 −0.063 −0.058
Melting −0.05 −0.026 −0.045 −0.073 −0.038 −0.078 −0.077 −0.062
Refining −0.119 −0.038 −0.084 −0.229 −0.016 −0.192 −0.137 −0.015
Tapping −0.031 −0.021 −0.054 −0.041 −0.057 −0.054 −0.03 −0.088
Propane −0.127 −0.035 0.038 −0.036 −0.057 −0.02 −0.047 −0.123
O2 −0.098 0.065 0.014 −0.042 −0.047 0.003 −0.019 −0.02
TotWeight 0.056 −0.018 0.123 −0.211 −0.089 −0.110 −0.140 −0.160
Metal −0.194 −0.079 −0.145 −0.292 −0.099 −0.119 −0.144 −0.130
Slag 0.193 0.117 0.264 −0.025 −0.036 −0.085 0.01 0.043
%Fe −0.182 −0.180 −0.119 −0.171 −0.168 −0.054 0.0 −0.117
%O −0.088 −0.236 −0.223 −0.093 −0.214 −0.150 −0.094 −0.189
%Al −0.108 0.03 −0.052 −0.224 −0.095 −0.071 −0.109 −0.027
%Cr −0.009 −0.058 −0.077 −0.143 −0.084 0.003 −0.004 −0.015
%Si −0.258 −0.196 −0.238 −0.174 −0.213 −0.155 −0.131 −0.217
%C −0.006 0.025 0.045 −0.065 −0.053 0.085 0.183 −0.029
%Ni −0.118 −0.158 −0.053 −0.185 −0.106 −0.058 −0.017 −0.087
%FeO −0.087 0.053 −0.110 −0.244 −0.089 0.027 −0.05 −0.165
%SiO2 −0.091 −0.016 −0.071 −0.049 −0.165 −0.06 −0.039 −0.197
%Al2O3 0.116 −0.351 −0.117 0.129 −0.177 −0.261 −0.194 −0.238
%Cr2O3 0.0 −0.226 −0.052 0.03 −0.141 −0.136 −0.017 −0.173
%Mgo −0.226 0.0 −0.254 −0.126 −0.206 −0.033 −0.044 −0.164
%CaO −0.052 −0.254 0.0 −0.076 −0.236 −0.003 −0.008 −0.243
Type A 0.03 −0.126 −0.076 0.0 −0.106 −0.225 −0.226 −0.127
Type B −0.141 −0.206 −0.236 −0.106 0.0 0.011 −0.025 −0.210
Type C −0.136 −0.033 −0.003 −0.225 0.011 0.0 −0.122 −0.065
Type D −0.017 −0.044 −0.008 −0.226 −0.025 −0.122 0.0 −0.01
Type E −0.173 −0.164 −0.243 −0.127 −0.210 −0.065 −0.01 0.0
Type F 0.017 −0.034 −0.058 −0.065 −0.028 0.006 −0.084 −0.118
Type G −0.398 −0.048 −0.302 −0.256 −0.072 −0.209 −0.281 −0.230
Type N −0.088 −0.086 −0.054 −0.107 −0.054 −0.039 −0.063 −0.078
PreHeater −0.179 0.027 −0.05 −0.112 −0.062 −0.091 −0.124 −0.015
EE −0.004 −0.048 −0.074 −0.03 −0.069 −0.141 −0.084 −0.172
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Table A3. Cont.

Type F Type G Type N PreHeater EE

Delays −0.034 −0.06 −0.133 −0.055 −0.135
TTT −0.022 −0.07 −0.164 −0.055 −0.134
Process −0.023 −0.161 −0.127 −0.029 −0.135
Charging −0.043 −0.038 −0.048 −0.069 −0.07
Ext. ref. −0.02 −0.112 −0.126 −0.066 −0.226
Melting −0.042 −0.081 −0.087 −0.052 0.02
Refining −0.071 −0.202 −0.091 −0.151 −0.051
Tapping −0.096 −0.076 −0.031 −0.066 0.023
Propane −0.025 −0.028 0.164 −0.055 −0.135
O2 0.018 0.150 0.244 −0.035 0.009
TotWeight −0.02 −0.205 0.106 −0.066 0.209
Metal −0.036 0.006 0.135 −0.043 0.208
Slag −0.034 0.101 −0.089 −0.137 −0.071
%Fe −0.096 −0.366 −0.108 −0.095 −0.086
%O −0.114 −0.344 −0.104 −0.06 −0.225
%Al −0.038 −0.241 −0.036 −0.086 −0.042
%Cr −0.021 −0.212 −0.043 −0.092 −0.008
%Si −0.165 −0.231 0.068 −0.04 −0.111
%C −0.041 −0.154 0.021 −0.112 0.129
%Ni −0.065 −0.291 −0.126 −0.096 −0.09
%FeO −0.018 −0.112 −0.028 0.043 −0.091
%SiO2 −0.056 −0.339 −0.056 −0.036 −0.032
%Al2O3 −0.036 −0.122 −0.094 −0.119 −0.08
%Cr2O3 0.017 −0.398 −0.088 −0.179 −0.004
%MgO −0.034 −0.048 −0.086 0.027 −0.048
%CaO −0.058 −0.302 −0.054 −0.05 −0.074
Type A −0.065 −0.256 −0.107 −0.112 −0.03
Type B −0.028 −0.072 −0.054 −0.062 −0.069
Type C 0.006 −0.209 −0.039 −0.091 −0.141
Type D −0.084 −0.281 −0.063 −0.124 −0.084
Type E −0.118 −0.230 −0.078 −0.015 −0.172
Type F 0.0 −0.195 −0.02 −0.028 −0.005
Type G −0.195 0.0 0.116 −0.068 −0.004
Type N −0.02 0.116 0.0 −0.126 −0.205
PreHeater −0.028 −0.068 −0.126 0.0 −0.014
EE −0.005 −0.004 −0.205 −0.014 0.0
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Table A4. Variable-variable dCor for the training data. dCor values at ±0.1, or above, is bold and
underlined.

Delays TTT Process Charging Ext. Ref. Melting Refining Tapping Propane

Delays 1.0 0.944 0.488 0.557 0.148 0.131 0.054 0.199 0.09
TTT 0.944 1.0 0.558 0.557 0.189 0.146 0.139 0.218 0.102
Process 0.488 0.558 1.0 0.351 0.29 0.203 0.309 0.44 0.212
Charging 0.557 0.557 0.351 1.0 0.013 0.029 0.024 0.025 0.072
Ext. ref. 0.148 0.189 0.29 0.013 1.0 0.022 0.048 0.072 0.051
Melting 0.131 0.146 0.203 0.029 0.022 1.0 0.103 0.018 0.066
Refining 0.054 0.139 0.309 0.024 0.048 0.103 1.0 0.115 0.144
Tapping 0.199 0.218 0.440 0.025 0.072 0.018 0.115 1.0 0.118
Propane 0.09 0.102 0.212 0.072 0.051 0.066 0.144 0.118 1.0
O2 0.042 0.029 0.044 0.052 0.033 0.046 0.098 0.057 0.322
TotalWeight 0.057 0.082 0.206 0.07 0.014 0.110 0.078 0.131 0.301
Met 0.043 0.082 0.186 0.053 0.011 0.106 0.164 0.112 0.298
Slag 0.035 0.042 0.068 0.034 0.018 0.067 0.208 0.054 0.089
%Fe 0.043 0.06 0.066 0.072 0.045 0.059 0.151 0.052 0.066
%O 0.033 0.041 0.036 0.037 0.013 0.029 0.134 0.08 0.045
%Al 0.046 0.051 0.063 0.055 0.033 0.055 0.153 0.062 0.124
%Cr 0.05 0.045 0.071 0.086 0.039 0.062 0.198 0.051 0.059
%Si 0.046 0.034 0.04 0.031 0.031 0.063 0.067 0.049 0.192
%C 0.032 0.065 0.074 0.026 0.03 0.04 0.193 0.057 0.159
%Ni 0.034 0.05 0.039 0.052 0.039 0.059 0.181 0.044 0.052
%FeO 0.038 0.055 0.042 0.057 0.04 0.038 0.124 0.036 0.166
%SiO2 0.046 0.06 0.066 0.057 0.031 0.062 0.187 0.038 0.105
%Al2O3 0.021 0.029 0.051 0.024 0.018 0.047 0.049 0.037 0.059
%Cr2O3 0.027 0.03 0.055 0.03 0.016 0.061 0.127 0.082 0.056
%MgO 0.026 0.033 0.037 0.059 0.017 0.054 0.129 0.071 0.086
%CaO 0.047 0.062 0.067 0.054 0.029 0.069 0.185 0.041 0.127
Type A 0.017 0.026 0.029 0.033 0.014 0.035 0.107 0.05 0.073
Type B 0.031 0.03 0.029 0.015 0.013 0.025 0.068 0.038 0.04
Type C 0.054 0.079 0.062 0.063 0.073 0.035 0.181 0.053 0.096
Type D 0.047 0.087 0.085 0.049 0.06 0.036 0.235 0.067 0.068
Type E 0.041 0.043 0.045 0.035 0.014 0.047 0.134 0.047 0.059
Type F 0.017 0.022 0.025 0.016 0.014 0.02 0.045 0.024 0.031
Type G 0.019 0.026 0.032 0.036 0.028 0.037 0.06 0.071 0.092
Type N 0.025 0.034 0.07 0.042 0.048 0.043 0.108 0.118 0.278
PreHeater 0.021 0.032 0.051 0.022 0.025 0.029 0.055 0.052 0.132
EE 0.135 0.262 0.399 0.025 0.237 0.107 0.448 0.152 0.082
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Table 4A. Cont.

O2 TotWeight Metal Slag %Fe %O %Al %Cr %Si

Delays 0.042 0.057 0.043 0.035 0.043 0.033 0.046 0.05 0.046
TTT 0.029 0.082 0.082 0.042 0.06 0.041 0.051 0.045 0.034
Process 0.044 0.206 0.186 0.068 0.066 0.036 0.063 0.071 0.04
Charging 0.052 0.07 0.053 0.034 0.072 0.037 0.055 0.086 0.031
Ext. ref. 0.033 0.014 0.011 0.018 0.045 0.013 0.033 0.039 0.031
Melting 0.046 0.110 0.106 0.067 0.059 0.029 0.055 0.062 0.063
Refining 0.098 0.078 0.164 0.208 0.151 0.134 0.153 0.198 0.067
Tapping 0.057 0.131 0.112 0.054 0.052 0.08 0.062 0.051 0.049
Propane 0.322 0.301 0.298 0.089 0.066 0.045 0.124 0.059 0.192
O2 1.0 0.235 0.262 0.067 0.056 0.047 0.071 0.055 0.137
TotWeight 0.235 1.0 0.793 0.342 0.273 0.151 0.274 0.260 0.154
Metal 0.262 0.793 1.0 0.170 0.309 0.173 0.132 0.220 0.274
Slag 0.067 0.342 0.170 1.0 0.341 0.379 0.500 0.354 0.287
%Fe 0.056 0.273 0.309 0.341 1.0 0.533 0.336 0.571 0.426
%O 0.047 0.151 0.173 0.379 0.533 1.0 0.206 0.266 0.603
%Al 0.071 0.274 0.132 0.500 0.336 0.206 1.0 0.479 0.174
%Cr 0.055 0.260 0.220 0.354 0.571 0.266 0.479 1.0 0.233
%Si 0.137 0.154 0.274 0.287 0.426 0.603 0.174 0.233 1.0
%C 0.042 0.112 0.151 0.186 0.274 0.129 0.200 0.269 0.071
%Ni 0.051 0.246 0.249 0.387 0.822 0.377 0.450 0.488 0.241
%FeO 0.134 0.228 0.184 0.356 0.356 0.200 0.611 0.333 0.225
%SiO2 0.086 0.358 0.203 0.570 0.429 0.255 0.612 0.405 0.205
%Al2O3 0.048 0.222 0.091 0.243 0.269 0.177 0.118 0.126 0.154
%Cr2O3 0.04 0.318 0.116 0.447 0.318 0.248 0.271 0.308 0.096
%MgO 0.138 0.184 0.150 0.328 0.132 0.158 0.212 0.137 0.151
%CaO 0.099 0.321 0.205 0.577 0.434 0.239 0.585 0.411 0.263
Type A 0.03 0.245 0.109 0.426 0.318 0.231 0.253 0.184 0.100
Type B 0.038 0.085 0.101 0.115 0.296 0.140 0.099 0.146 0.165
Type C 0.127 0.255 0.214 0.389 0.450 0.259 0.484 0.424 0.176
Type D 0.079 0.226 0.230 0.547 0.548 0.308 0.508 0.533 0.196
Type E 0.07 0.100 0.179 0.361 0.509 0.658 0.254 0.354 0.655
Type F 0.059 0.034 0.057 0.074 0.082 0.081 0.04 0.056 0.046
Type G 0.255 0.086 0.238 0.389 0.111 0.235 0.063 0.061 0.388
Type N 0.334 0.281 0.286 0.049 0.051 0.044 0.076 0.055 0.203
PreHeater 0.054 0.063 0.091 0.059 0.035 0.048 0.063 0.029 0.07
EE 0.123 0.325 0.344 0.108 0.095 0.032 0.098 0.131 0.105
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Table 4A. Cont.

%C %Ni %FeO %SiO2 %Al2O3 %Cr2O3 %Mgo %CaO

Delays 0.032 0.034 0.038 0.046 0.021 0.027 0.026 0.047
TTT 0.065 0.05 0.055 0.06 0.029 0.03 0.033 0.062
Process 0.074 0.039 0.042 0.066 0.051 0.055 0.037 0.067
Charging 0.026 0.052 0.057 0.057 0.024 0.03 0.059 0.054
Ext. ref. 0.03 0.039 0.04 0.031 0.018 0.016 0.017 0.029
Melting 0.04 0.059 0.038 0.062 0.047 0.061 0.054 0.069
Refining 0.193 0.181 0.124 0.187 0.049 0.127 0.129 0.185
Tapping 0.057 0.044 0.036 0.038 0.037 0.082 0.071 0.041
Propane 0.159 0.052 0.166 0.105 0.059 0.056 0.086 0.127
O2 0.042 0.051 0.134 0.086 0.048 0.04 0.138 0.099
TotWeight 0.112 0.246 0.228 0.358 0.222 0.318 0.184 0.321
Metal 0.151 0.249 0.184 0.203 0.091 0.116 0.150 0.205
Slag 0.186 0.387 0.356 0.570 0.243 0.447 0.328 0.577
%Fe 0.274 0.822 0.356 0.429 0.269 0.318 0.132 0.434
%O 0.129 0.377 0.200 0.255 0.177 0.248 0.158 0.239
%Al 0.200 0.450 0.611 0.612 0.118 0.271 0.212 0.585
%Cr 0.269 0.488 0.333 0.405 0.126 0.308 0.137 0.411
%Si 0.071 0.241 0.225 0.205 0.154 0.096 0.151 0.263
%C 1.0 0.237 0.125 0.195 0.068 0.159 0.130 0.209
%Ni 0.237 1.0 0.360 0.434 0.236 0.349 0.152 0.426
%FeO 0.125 0.360 1.0 0.719 0.243 0.174 0.251 0.667
%SiO2 0.195 0.434 0.719 1.0 0.311 0.530 0.334 0.891
%Al2O3 0.068 0.236 0.243 0.311 1.0 0.631 0.121 0.343
%Cr2O3 0.159 0.349 0.174 0.530 0.631 1.0 0.145 0.524
%MgO 0.130 0.152 0.251 0.334 0.121 0.145 1.0 0.177
%CaO 0.209 0.426 0.667 0.891 0.343 0.524 0.177 1.0
Type A 0.141 0.322 0.227 0.495 0.448 0.508 0.225 0.450
Type B 0.066 0.263 0.212 0.191 0.084 0.082 0.119 0.179
Type C 0.288 0.440 0.492 0.496 0.092 0.263 0.183 0.470
Type D 0.355 0.527 0.524 0.603 0.138 0.385 0.212 0.576
Type E 0.146 0.373 0.220 0.264 0.243 0.217 0.177 0.296
Type F 0.031 0.062 0.069 0.084 0.056 0.105 0.047 0.076
Type G 0.106 0.089 0.225 0.175 0.099 0.067 0.219 0.180
Type N 0.126 0.04 0.110 0.073 0.039 0.036 0.118 0.064
PreHeater 0.094 0.035 0.128 0.106 0.035 0.026 0.103 0.089
EE 0.226 0.097 0.032 0.079 0.130 0.095 0.193 0.057
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Table 4A. Cont.

Type A Type B Type C Type D Type E Type F Type G Type N PreHeater

Delays 0.017 0.031 0.054 0.047 0.041 0.017 0.019 0.025 0.021
TTT 0.026 0.03 0.079 0.087 0.043 0.022 0.026 0.034 0.032
Process 0.029 0.029 0.062 0.085 0.045 0.025 0.032 0.07 0.051
Charging 0.033 0.015 0.063 0.049 0.035 0.016 0.036 0.042 0.022
Ext. ref. 0.014 0.013 0.073 0.06 0.014 0.014 0.028 0.048 0.025
Melting 0.035 0.025 0.035 0.036 0.047 0.02 0.037 0.043 0.029
Refining 0.107 0.068 0.181 0.235 0.134 0.045 0.06 0.108 0.055
Tapping 0.05 0.038 0.053 0.067 0.047 0.024 0.071 0.118 0.052
Propane 0.073 0.04 0.096 0.068 0.059 0.031 0.092 0.278 0.132
O2 0.03 0.038 0.127 0.079 0.07 0.059 0.255 0.334 0.054
TotWeight 0.245 0.085 0.255 0.226 0.100 0.034 0.086 0.281 0.063
Metal 0.109 0.101 0.214 0.230 0.179 0.057 0.238 0.286 0.091
Slag 0.426 0.115 0.389 0.547 0.361 0.074 0.389 0.049 0.059
%Fe 0.318 0.296 0.450 0.548 0.509 0.082 0.111 0.051 0.035
%O 0.231 0.140 0.259 0.308 0.658 0.081 0.235 0.044 0.048
%Al 0.253 0.099 0.484 0.508 0.254 0.04 0.063 0.076 0.063
%Cr 0.184 0.146 0.424 0.533 0.354 0.056 0.061 0.055 0.029
%Si 0.100 0.165 0.176 0.196 0.655 0.046 0.388 0.203 0.07
%C 0.141 0.066 0.288 0.355 0.146 0.031 0.106 0.126 0.094
%Ni 0.322 0.263 0.440 0.527 0.373 0.062 0.089 0.04 0.035
%FeO 0.227 0.212 0.492 0.524 0.220 0.069 0.225 0.110 0.128
%SiO2 0.495 0.191 0.496 0.603 0.264 0.084 0.175 0.073 0.106
%Al2O3 0.448 0.084 0.092 0.138 0.243 0.056 0.099 0.039 0.035
%Cr2O3 0.508 0.082 0.263 0.385 0.217 0.105 0.067 0.036 0.026
%MgO 0.225 0.119 0.183 0.212 0.177 0.047 0.219 0.118 0.103
%CaO 0.450 0.179 0.470 0.576 0.296 0.076 0.180 0.064 0.089
Type A 1.0 0.075 0.329 0.414 0.194 0.054 0.05 0.042 0.035
Type B 0.075 1.0 0.252 0.198 0.205 0.056 0.158 0.034 0.039
Type C 0.329 0.252 1.0 0.807 0.294 0.116 0.112 0.084 0.055
Type D 0.414 0.198 0.807 1.0 0.372 0.043 0.07 0.043 0.041
Type E 0.194 0.205 0.294 0.372 1.0 0.059 0.257 0.107 0.075
Type F 0.054 0.056 0.116 0.043 0.059 1.0 0.026 0.026 0.03
Type G 0.05 0.158 0.112 0.07 0.257 0.026 1.0 0.238 0.032
Type N 0.042 0.034 0.084 0.043 0.107 0.026 0.238 1.0 0.062
PreHeater 0.035 0.039 0.055 0.041 0.075 0.03 0.032 0.062 1.0
EE 0.064 0.111 0.150 0.187 0.128 0.041 0.151 0.098 0.06
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Table 4A. Cont.

EE

Delays 0.135
TTT 0.262
Process 0.399
Charging 0.025
Ext. ref. 0.237
Melting 0.107
Refining 0.448
Tapping 0.152
Propane 0.082
O2 0.123
TotWeight 0.325
Metal 0.344
Slag 0.108
%Fe 0.095
%O 0.032
%Al 0.098
%Cr 0.131
%Si 0.105
%C 0.226
%Ni 0.097
%FeO 0.032
%SiO2 0.079
%Al2O3 0.130
%Cr2O3 0.095
%MgO 0.193
%CaO 0.057
Type A 0.064
Type B 0.111
Type C 0.150
Type D 0.187
Type E 0.128
Type F 0.041
Type G 0.151
Type N 0.098
PreHeater 0.06
EE 1.0
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Table A5. Variable-variable distance correlation for the test data.

Delays TTT Process Charging Ext. Ref. Melting Refining Tapping

Delays 1.0 0.979 0.542 0.539 0.26 0.172 0.117 0.247
TTT 0.979 1.0 0.604 0.521 0.31 0.168 0.215 0.246
Process 0.542 0.604 1.0 0.277 0.502 0.212 0.368 0.449
Charging 0.539 0.521 0.277 1.0 0.071 0.117 0.102 0.084
Ext. ref. 0.26 0.31 0.502 0.071 1.0 0.125 0.063 0.065
Melting 0.172 0.168 0.212 0.117 0.125 1.0 0.12 0.085
Refining 0.117 0.215 0.368 0.102 0.063 0.12 1.0 0.117
Tapping 0.247 0.246 0.449 0.084 0.065 0.085 0.117 1.0
Propane 0.271 0.29 0.453 0.145 0.172 0.134 0.161 0.26
O2 0.086 0.085 0.088 0.133 0.093 0.077 0.135 0.081
TotWeight 0.075 0.075 0.125 0.073 0.068 0.117 0.156 0.115
Metal 0.09 0.087 0.099 0.084 0.066 0.122 0.201 0.097
Slag 0.062 0.074 0.082 0.076 0.085 0.083 0.195 0.166
%Fe 0.086 0.094 0.118 0.08 0.17 0.115 0.243 0.08
%O 0.085 0.096 0.101 0.082 0.073 0.089 0.173 0.153
%Al 0.101 0.09 0.094 0.108 0.086 0.097 0.268 0.083
%Cr 0.106 0.105 0.092 0.122 0.107 0.118 0.176 0.1
%Si 0.094 0.089 0.117 0.089 0.089 0.115 0.18 0.142
%C 0.074 0.08 0.105 0.089 0.192 0.113 0.114 0.075
%Ni 0.101 0.109 0.129 0.08 0.151 0.119 0.259 0.083
%FeO 0.104 0.101 0.077 0.137 0.075 0.1 0.191 0.075
%SiO2 0.09 0.101 0.097 0.098 0.099 0.119 0.303 0.096
%Al2O3 0.11 0.105 0.107 0.158 0.106 0.09 0.215 0.078
%Cr2O3 0.143 0.158 0.127 0.142 0.13 0.111 0.246 0.113
%MgO 0.1 0.115 0.124 0.103 0.073 0.08 0.167 0.092
%CaO 0.086 0.091 0.093 0.102 0.094 0.114 0.269 0.095
Type A 0.078 0.088 0.083 0.084 0.073 0.108 0.336 0.091
Type B 0.064 0.06 0.084 0.068 0.101 0.063 0.084 0.095
Type C 0.06 0.095 0.111 0.075 0.108 0.113 0.373 0.107
Type D 0.083 0.113 0.123 0.082 0.123 0.113 0.372 0.097
Type E 0.09 0.097 0.101 0.082 0.072 0.109 0.149 0.135
Type F 0.051 0.044 0.048 0.059 0.034 0.062 0.116 0.12
Type G 0.079 0.096 0.193 0.074 0.14 0.118 0.262 0.147
Type N 0.158 0.198 0.197 0.09 0.174 0.13 0.199 0.149
PreHeater 0.076 0.087 0.08 0.091 0.091 0.081 0.206 0.118
EE 0.27 0.396 0.534 0.095 0.463 0.087 0.499 0.129
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Table 5A. Cont.

Propane O2 TotWeight Metal Slag %Fe %O %Al

Delays 0.271 0.086 0.075 0.09 0.062 0.086 0.085 0.101
TTT 0.29 0.085 0.075 0.087 0.074 0.094 0.096 0.09
Process 0.453 0.088 0.125 0.099 0.082 0.118 0.101 0.094
Charging 0.145 0.133 0.073 0.084 0.076 0.08 0.082 0.108
Ext. ref. 0.172 0.093 0.068 0.066 0.085 0.17 0.073 0.086
Melting 0.134 0.077 0.117 0.122 0.083 0.115 0.089 0.097
Refining 0.161 0.135 0.156 0.201 0.195 0.243 0.173 0.268
Tapping 0.26 0.081 0.115 0.097 0.166 0.08 0.153 0.083
Propane 1.0 0.148 0.1 0.101 0.146 0.143 0.189 0.112
O2 0.148 1.0 0.1 0.121 0.092 0.104 0.096 0.093
TotWeight 0.1 0.1 1.0 0.792 0.561 0.353 0.36 0.198
Metal 0.101 0.121 0.792 1.0 0.228 0.495 0.327 0.228
Slag 0.146 0.092 0.561 0.228 1.0 0.243 0.445 0.345
%Fe 0.143 0.104 0.353 0.495 0.243 1.0 0.608 0.311
%O 0.189 0.096 0.36 0.327 0.445 0.608 1.0 0.295
%Al 0.112 0.093 0.198 0.228 0.345 0.311 0.295 1.0
%Cr 0.097 0.075 0.216 0.345 0.336 0.438 0.304 0.545
%Si 0.217 0.092 0.373 0.315 0.381 0.609 0.929 0.233
%C 0.103 0.168 0.124 0.185 0.232 0.281 0.197 0.204
%Ni 0.11 0.106 0.383 0.503 0.269 0.88 0.458 0.417
%FeO 0.104 0.085 0.138 0.25 0.215 0.411 0.339 0.661
%SiO2 0.088 0.089 0.215 0.334 0.348 0.551 0.4 0.658
%Al2O3 0.227 0.107 0.233 0.216 0.297 0.394 0.473 0.251
%Cr2O3 0.183 0.138 0.262 0.31 0.254 0.5 0.336 0.379
%MgO 0.121 0.073 0.202 0.229 0.211 0.312 0.394 0.182
%CaO 0.089 0.085 0.198 0.35 0.313 0.553 0.462 0.637
Type A 0.109 0.072 0.456 0.401 0.451 0.489 0.324 0.477
Type B 0.097 0.085 0.174 0.2 0.151 0.464 0.354 0.194
Type C 0.116 0.124 0.365 0.333 0.474 0.504 0.409 0.555
Type D 0.115 0.098 0.366 0.374 0.537 0.548 0.402 0.617
Type E 0.182 0.09 0.26 0.309 0.318 0.626 0.847 0.281
Type F 0.056 0.041 0.054 0.093 0.108 0.178 0.195 0.078
Type G 0.12 0.105 0.291 0.232 0.288 0.477 0.579 0.304
Type N 0.114 0.09 0.175 0.151 0.138 0.159 0.148 0.112
PreHeater 0.187 0.089 0.129 0.134 0.196 0.13 0.108 0.149
EE 0.217 0.114 0.116 0.136 0.179 0.181 0.257 0.14
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Table 5A. Cont.

%Cr %Si %C %Ni %Feo %Sio2 %Al2o3

Delays 0.106 0.094 0.074 0.101 0.104 0.09 0.11
TTT 0.105 0.089 0.08 0.109 0.101 0.101 0.105
Process 0.092 0.117 0.105 0.129 0.077 0.097 0.107
Charging 0.122 0.089 0.089 0.08 0.137 0.098 0.158
Ext. ref. 0.107 0.089 0.192 0.151 0.075 0.099 0.106
Melting 0.118 0.115 0.113 0.119 0.1 0.119 0.09
Refining 0.176 0.18 0.114 0.259 0.191 0.303 0.215
Tapping 0.1 0.142 0.075 0.083 0.075 0.096 0.078
Propane 0.097 0.217 0.103 0.11 0.104 0.088 0.227
O2 0.075 0.092 0.168 0.106 0.085 0.089 0.107
TotWeight 0.216 0.373 0.124 0.383 0.138 0.215 0.233
Metal 0.345 0.315 0.185 0.503 0.25 0.334 0.216
Slag 0.336 0.381 0.232 0.269 0.215 0.348 0.297
%Fe 0.438 0.609 0.281 0.88 0.411 0.551 0.394
%O 0.304 0.929 0.197 0.458 0.339 0.4 0.473
%Al 0.545 0.233 0.204 0.417 0.661 0.658 0.251
%Cr 1.0 0.299 0.241 0.472 0.469 0.497 0.261
%Si 0.299 1.0 0.217 0.425 0.326 0.43 0.491
%C 0.241 0.217 1.0 0.277 0.101 0.16 0.137
%Ni 0.472 0.425 0.277 1.0 0.407 0.499 0.366
%FeO 0.469 0.326 0.101 0.407 1.0 0.759 0.218
%SiO2 0.497 0.43 0.16 0.499 0.759 1.0 0.393
%Al2O3 0.261 0.491 0.137 0.366 0.218 0.393 1.0
%Cr2O3 0.317 0.354 0.165 0.467 0.261 0.621 0.515
%MgO 0.195 0.347 0.105 0.31 0.198 0.35 0.472
%CaO 0.488 0.501 0.164 0.479 0.777 0.962 0.46
Type A 0.327 0.274 0.206 0.507 0.471 0.544 0.319
Type B 0.23 0.378 0.119 0.369 0.301 0.356 0.261
Type C 0.421 0.331 0.203 0.498 0.465 0.556 0.353
Type D 0.537 0.327 0.172 0.544 0.574 0.642 0.332
Type E 0.369 0.872 0.175 0.46 0.385 0.461 0.481
Type F 0.077 0.211 0.072 0.127 0.087 0.14 0.092
Type G 0.273 0.619 0.26 0.38 0.337 0.514 0.221
Type N 0.098 0.135 0.105 0.166 0.138 0.129 0.133
PreHeater 0.121 0.11 0.206 0.131 0.085 0.142 0.154
EE 0.139 0.216 0.097 0.187 0.123 0.111 0.21
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Table 5A. Cont.

%Cr2O3 %Mgo %CaO Type A Type B Type C Type D Type E

Delays 0.143 0.1 0.086 0.078 0.064 0.06 0.083 0.09
TTT 0.158 0.115 0.091 0.088 0.06 0.095 0.113 0.097
Process 0.127 0.124 0.093 0.083 0.084 0.111 0.123 0.101
Charging 0.142 0.103 0.102 0.084 0.068 0.075 0.082 0.082
Ext. ref. 0.13 0.073 0.094 0.073 0.101 0.108 0.123 0.072
Melting 0.111 0.08 0.114 0.108 0.063 0.113 0.113 0.109
Refining 0.246 0.167 0.269 0.336 0.084 0.373 0.372 0.149
Tapping 0.113 0.092 0.095 0.091 0.095 0.107 0.097 0.135
Propane 0.183 0.121 0.089 0.109 0.097 0.116 0.115 0.182
O2 0.138 0.073 0.085 0.072 0.085 0.124 0.098 0.09
TotWeight 0.262 0.202 0.198 0.456 0.174 0.365 0.366 0.26
Metal 0.31 0.229 0.35 0.401 0.2 0.333 0.374 0.309
Slag 0.254 0.211 0.313 0.451 0.151 0.474 0.537 0.318
%Fe 0.5 0.312 0.553 0.489 0.464 0.504 0.548 0.626
%O 0.336 0.394 0.462 0.324 0.354 0.409 0.402 0.847
%Al 0.379 0.182 0.637 0.477 0.194 0.555 0.617 0.281
%Cr 0.317 0.195 0.488 0.327 0.23 0.421 0.537 0.369
%Si 0.354 0.347 0.501 0.274 0.378 0.331 0.327 0.872
%C 0.165 0.105 0.164 0.206 0.119 0.203 0.172 0.175
%Ni 0.467 0.31 0.479 0.507 0.369 0.498 0.544 0.46
%FeO 0.261 0.198 0.777 0.471 0.301 0.465 0.574 0.385
%SiO2 0.621 0.35 0.962 0.544 0.356 0.556 0.642 0.461
%Al2O3 0.515 0.472 0.46 0.319 0.261 0.353 0.332 0.481
%Cr2O3 1.0 0.371 0.576 0.478 0.223 0.399 0.402 0.39
%MgO 0.371 1.0 0.431 0.351 0.325 0.216 0.256 0.341
%CaO 0.576 0.431 1.0 0.526 0.415 0.473 0.584 0.539
Type A 0.478 0.351 0.526 1.0 0.181 0.554 0.64 0.321
Type B 0.223 0.325 0.415 0.181 1.0 0.241 0.223 0.415
Type C 0.399 0.216 0.473 0.554 0.241 1.0 0.929 0.359
Type D 0.402 0.256 0.584 0.64 0.223 0.929 1.0 0.382
Type E 0.39 0.341 0.539 0.321 0.415 0.359 0.382 1.0
Type F 0.088 0.081 0.134 0.119 0.084 0.11 0.127 0.177
Type G 0.465 0.267 0.482 0.306 0.23 0.321 0.351 0.487
Type N 0.124 0.204 0.118 0.149 0.088 0.123 0.106 0.185
PreHeater 0.205 0.076 0.139 0.147 0.101 0.146 0.165 0.09
EE 0.099 0.241 0.131 0.094 0.18 0.291 0.271 0.3
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Table 5A. Cont.

Type F Type G Type N PreHeater EE

Delays 0.051 0.079 0.158 0.076 0.27
TTT 0.044 0.096 0.198 0.087 0.396
Process 0.048 0.193 0.197 0.08 0.534
Charging 0.059 0.074 0.09 0.091 0.095
Ext. ref. 0.034 0.14 0.174 0.091 0.463
Melting 0.062 0.118 0.13 0.081 0.087
Refining 0.116 0.262 0.199 0.206 0.499
Tapping 0.12 0.147 0.149 0.118 0.129
Propane 0.056 0.12 0.114 0.187 0.217
O2 0.041 0.105 0.09 0.089 0.114
TotWeight 0.054 0.291 0.175 0.129 0.116
Metal 0.093 0.232 0.151 0.134 0.136
Slag 0.108 0.288 0.138 0.196 0.179
%Fe 0.178 0.477 0.159 0.13 0.181
%O 0.195 0.579 0.148 0.108 0.257
%Al 0.078 0.304 0.112 0.149 0.14
%Cr 0.077 0.273 0.098 0.121 0.139
%Si 0.211 0.619 0.135 0.11 0.216
%C 0.072 0.26 0.105 0.206 0.097
%Ni 0.127 0.38 0.166 0.131 0.187
%FeO 0.087 0.337 0.138 0.085 0.123
%SiO2 0.14 0.514 0.129 0.142 0.111
%Al2O3 0.092 0.221 0.133 0.154 0.21
%Cr2O3 0.088 0.465 0.124 0.205 0.099
%MgO 0.081 0.267 0.204 0.076 0.241
%CaO 0.134 0.482 0.118 0.139 0.131
Type A 0.119 0.306 0.149 0.147 0.094
Type B 0.084 0.23 0.088 0.101 0.18
Type C 0.11 0.321 0.123 0.146 0.291
Type D 0.127 0.351 0.106 0.165 0.271
Type E 0.177 0.487 0.185 0.09 0.3
Type F 1.0 0.221 0.046 0.058 0.046
Type G 0.221 1.0 0.122 0.1 0.155
Type N 0.046 0.122 1.0 0.188 0.303
PreHeater 0.058 0.1 0.188 1.0 0.074
EE 0.046 0.155 0.303 0.074 1.0
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