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Abstract: The traditional technique used to modify the surface of a metallic material is shot peening;
however, cavitation peening, a more recent technique in which shot is not used, was developed, and
improvements in the fatigue strength of metallic materials were demonstrated. In order to compare
the fatigue properties introduced by shot peening with those introduced by cavitation peening, crack
initiation and crack growth in specimens of austenitic stainless steel (Japanese Industrial Standards
JIS SUS316L) treated using these techniques were investigated. With conventional cavitation peening,
cavitation is produced by injecting a high speed water jet into water. In the case of submerged laser
peening, bubbles are generated using a pulsed laser after laser ablation, and the impact produced
when the bubbles collapse is larger than that due to laser ablation. Thus, in this study, cavitation
peening using a water jet and submerged laser peening were investigated. To clarify the mechanisms
whereby the fatigue strength is improved by these peening techniques, crack initiation and crack
growth in specimens with and without treatment were examined by means of a K-decreasing test,
where K is the stress intensity factor, and using a constant applied stress test using a load controlled
plane bending fatigue tester. It was found that the improvement in crack initiation and the reduction
in crack growth were roughly in a linear relationship, even though the specimens were treated using
different peening methods. The results presented here show that the fatigue strength of SUS316L
treated by these peening techniques is closely related to the reduction in crack growth, rather than
crack initiation.
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1. Introduction

Austenitic stainless steel is a bioinert material commonly used for implants [1,2]; unfortunately,
this type of steel has insufficient fatigue resistance [2]. One of the best ways to enhance the fatigue
life and/or strength of a metal is by shot peening, which introduces compressive residual stress into
the sub-surface and work hardening. However, a disadvantage of shot peening is that there is an
increase in surface roughness due to the physical collision with the shot. Recently, cavitation peening,
in which shot is not used, has been developed [3,4]. To clarify the mechanism through which the
fatigue characteristics are improved by peening, crack initiation and crack growth in peened specimens
are usually investigated. This has been done for shot peened austenitic stainless steel [5]; however, it
has not been done for cavitation peened stainless steel.

To improve the fatigue properties of stainless steel in order to be able to use it for medical implants,
the effect of shot peening on the fatigue properties has been investigated by examining the corrosion
behavior in Ringer’s solution [6]. The effect of the shot peening conditions on the surface properties
and the corrosion behavior of medical grade 316L stainless steel has also been examined [7]. Moreover,
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the effect of the surface roughness of shot peened stainless steel 316L has been investigated for the
purpose of modulating the interaction between the biological environment and the material [8].

Cavitation peening is a shotless peening method, in which the impact is produced by bubbles
collapsing. In the case of conventional cavitation peening, cavitation is produced by injecting a
high speed water jet into a water filled chamber, and the cavitation is generated inside and/or near
the nozzle [9]. A water jet with cavitation is called a cavitating jet. In the case of a cavitating jet,
cavitation clouds shed periodically from the nozzle, develop on the target, then collapse, generating
the impacts [9]. On the other hand, in the case of water jet peening, the impact of the water column at
the center of the jet is used. Please note that the water column at the center of the jet can also peen the
metal; however, the peened area is very limited and the peening intensity is smaller than that due
to cavitation [10]. Soyama proposed a classification map to distinguish between cavitation peening
and water jet peening using the distance between the nozzle and the target, the injection pressure, the
nozzle diameter, and the cavitation number [3].

In the case of laser peening, there are two methods. One is laser peening using a water film on
the target [11–13], and the other method is submerged laser peening, in which the target is placed in
water [14]. In the case of submerged laser peening, bubbles generated after laser ablation develop,
then collapse. As the behavior of these bubbles is similar to that of cavitation bubbles, this is called
laser cavitation. It has been believed that the peening effect is due to laser ablation, as the amplitude of
the shock wave induced by laser ablation is larger than that due to laser cavitation; however, when the
impact through the target was measured using a Polyvinylidene Fluoride (PVDF) sensor [15,16], the
impact due to laser cavitation collapse was found to be larger than that due to laser ablation [3,17].
Soyama proposed a technique for cavitation peening using a pulsed laser without laser ablation by
focusing the laser in the water [18].

Another common method used to generate cavitation is ultrasonic cavitation. For example, a
vibratory erosion test is commonly used to evaluate the cavitation erosion resistance of materials, i.e.,
ASTM G32 [19]. Please note that an erosion test using a cavitating jet has been standardized as ASTM
G134 [20]. A vibratory horn is placed close to the surface of the material to be treated. It was found
that at submillmeter horn to target distances the aggressive intensity changed drastically [21], and
this was confirmed experimentally and theoretically by Bai et al. [22]. As the sensitivity to distance
of ultrasonic cavitation limits its applications, it was not examined in this paper, and only cavitation
induced by a submerged water jet and using a submerged pulsed laser were investigated. Generally,
peening using a submerged water jet is called cavitation peening (CP), and peening using a submerged
laser is called laser peening (LP). These are the terms used in this paper.

In a study done to compare the effects of different peening methods on austenitic stainless steel
SUS304, it was found that grain boundary hardening and dislocation hardening are the most important
mechanisms [23]. Moreover, it was reported that fatigue loading reduces the compressive residual
stress introduced by peening and that the reduction depends on the particular surface treatment
employed [24–26].

Although an energy-based parameter to describe shot peening was proposed [27], this is not
possible in the case of cavitation peening, since, at present, the intensity of the impact at a particular
energy cannot be simulated theoretically; therefore, experimental studies of cavitation peening are
required. The fatigue life and strength of austenitic stainless steel JIS SUS316L treated by several
peening methods were investigated using a displacement controlled fatigue test [17], and it was shown
that the fatigue strength of cavitation peening was larger than that of shot peening, although the
fatigue life at relatively high applied stress for shot peened specimens was larger than that of cavitation
peened specimens. As mentioned above, as crack initiation and growth affect the fatigue properties,
these need to be investigated.

To investigate crack growth rates, a compact tension specimen is commonly used [28]. However,
it is difficult to evaluate the crack growth in the modified surface layer, as the effect of the underlying
material is much larger than that of the modified layer. As the maximum tensile stress is applied at
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the surface, i.e., in the surface modified layer, a plane bending fatigue test is suitable for evaluating
the crack growth of peened materials. However, the plane bending fatigue testers currently available
cannot be used, because these are displacement controlled machines. With a displacement controlled
plane bending fatigue tester, the applied stress decreases as the crack area increases. Thus, a load
controlled plane bending fatigue tester was developed [29], and using this, it was demonstrated that
the threshold stress intensity factor range ∆Kth and the stress intensity factor range increment ∆(∆K)
were improved by cavitation peening [30]. The load controlled plane bending fatigue tester was used
in these experiments to evaluate crack initiation and growth in surface layers treated by shot peening,
cavitation peening, and laser peening. Please note that K-decreasing test was carried out in order to
determine whether crack initiation or crack growth is important, and also the improvement of the
fatigue life within short crack by cavitation peening was dominant [31].

In this paper, the fatigue properties of austenitic stainless steel after treatment by cavitation
peening, laser peening and shot peening were compared. To make this comparison, crack initiation
and growth in steel specimens were evaluated by a K-decreasing test and a constant applied stress test
using a load controlled plane bending fatigue tester, respectively.

2. Experimental Apparatus and Procedure

2.1. Crack Growth Test

The material under test was austenitic stainless steel JIS SUS316L. Tables 1 and 2 show the chemical
composition and mechanical properties of tested steel. The geometry of the specimens for the fatigue
test is shown in Figure 1. The thickness of the specimens was 4 mm. To investigate the growth of the
crack, a notch was introduced by milling using a 0.5 mm diameter end mill. The width and depth
of the notch was 0.5 mm and 0.25 mm, respectively. The length was 2 mm for the K-decreasing test
and 5 mm for the constant applied stress test. A pre-crack was developed from the notch using the
handmade plane bending fatigue tester. The lengths of the pre-crack before the respective tests were
2.4 mm and 5.4 mm. Figures 2 and 3 show a schematic illustration and a photograph of the load
controlled plane bending fatigue tester [29]. The load is applied to the specimen using a servomotor
(Harmonic Drive Systems Inc., Tokyo, Japan) which has a feedback system that detects the applied
load via a load sensor. The test frequency was 5 Hz and the stress ratio R was −1. The details of the
bending fatigue test were shown in the references [29,30,32].

Table 1. Chemical composition of the stainless steel used in the tests (mass %).

C Si Mn P S Ni Cr Mo

0.014 0.63 0.97 0.030 0.004 12.03 17.45 2.05

Table 2. Mechanical properties of the stainless steel used in the tests.

Yield Strength (0.2%) Tensile Strength Elongation

304 MPa 576 MPa 52%Metals 2020, 10, x FOR PEER REVIEW 4 of 16 
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To investigate crack initiation and growth in the surface layer, the stress intensity factor range ∆K
and the crack growth rate da/dn were evaluated using the plane bending fatigue tester. The applied
bending stress σa was calculated from the bending moment M, the width of the specimen W and the
thickness of the specimen t using the following equation:

σa =
6 M
W t2 (1)

∆K was calculated using the Newman-Raju equation [33], as follows:

∆K = ∆σa
√

π b
J
φ

S H (2)

where b is the depth of the crack, ∆σa is 2 σa, and J, φ, S and H are shape factors. Although the crack
propagates in three dimensions, the depth of the crack b is estimated from the length of the crack 2a.

At the surface. Specimens were tested at certain number of cycles, and put into the furnace
to oxidize the crack propagation area, i.e., half elliptic region, and fractured (see Figure 6 in the
reference [30]). The length of the crack 2a was measured by a digital microscope at 1000×magnification.
Under the present conditions, the relationships between 2a and b for the peened and non-peened
specimens were the same [30]. The following relationship between 2a and b was obtained by observation
of the crack shape, enabling b to be estimated by measuring 2a on the surface (see Figure 7 in the
reference [30]).

b = b0 + C1[1− exp
{
C2(2a− 2a0)

}
] (3)
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where 2a0 and b0 are the length and the depth of the notch, and C1 and C2 are constants obtained from
experimental data using the least squares method. For the present experiments, 2a0, b0, C1 and C2 were
2, 0.25, 2.51 and −0.51 for the K-decreasing test and 5, 0.25, 2.26 and −0.28 for the crack growth test at
constant applied stress, respectively.

The effect of peening on crack initiation was examined by determining the threshold stress
intensity factor range, ∆Kth. The crack length was measured after each 105 cycles using an optical
microscope, then da/dn and ∆K were calculated. Please note that the secant method [28] was used for
computing the crack growth rate da/dn. A K-decreasing test was carried out, and ∆Kth is given by the
value of ∆K at da/dn = 10−10 m/cycle.

The stress intensity factor range increment, ∆(∆K), was used in order to investigate the effect of
peening on crack growth, considering a previous report [30]. Larger values of ∆(∆K) signify greater
reductions in crack growth. In the present study, the domain for Paris’ law is from da/dn = 10−9 m/cycle
to da/dn = 10−8 m/cycle. da/dn is plotted against ∆K on a log-log scale in this domain in Figure 4 [30].
The intercepts A and B at da/dn = 10−8 m/cycle, and C and D at da/dn = 10−9 m/cycle were obtained for
non-peened and peened specimens, respectively. The average value m of the values of AC and BD was
determined. ∆(∆K) is defined as 10m. For the crack growth test at constant applied load, the applied
stress was 160 MPa for the non-peened specimen and 200 MPa for the peened specimen.
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∆(∆K) = 10m.

To confirm repeatability and reproducibility, two sets of non-peened, cavitation peening, laser
peening and shot peening at tp = 0.88 s/mm were tested at the K-decreasing test and the constant
applied stress test. In Section 3. Result, the averaged value and error bar, which show the maximum
value and minimum value, were shown.

The surface residual stress, surface Vickers hardness and surface roughness of the peened surfaces
were measured. The residual stress in the longitudinal direction was measured by a 2D X-ray diffraction
method using Kα X-rays from a Cr-tube operating at 35 kV and 40 mA [34]. The X-rays passed through
a 0.8 mm diameter collimator and a monochromator, and the X-ray diffraction patterns obtained. The
diffraction angle from the γ-Fe (2 2 0) plane without strain was 128 degrees. Twenty-four diffraction
rings were detected from the specimens at various angles using a two-dimensional detector (Bruker
Japan Co., Ltd., Yokohama, Japan), considering the conditions used in a previous report [35]. The load
used in measuring the Vickers hardness was 0.2 kgf, i.e., 1.96 N. The surface roughness was evaluated
using a stylus type profilometer (Mitutoyo Corporation, Kawasaki, Japan).

2.2. Submerged Water Jet System

Figure 5 shows an illustration of a submerged water jet system for cavitation peening. Water,
pressurized by a plunger pump, is injected into a water filled stainless steel tank through a test nozzle.
The test nozzle has a cavitator and a guide pipe which were optimized to enhance the aggressive
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intensity of the cavitating jet [36]. As the length L and diameter D of the outlet bore at the nozzle exit
also affect the aggressive intensity of the jet, L and D were optimized experimentally [37]. The nozzle
throat diameter d was 2 mm, the diameter of the cavitator dc was 3 mm, the injection pressure was 30
MPa and the standoff distance was 222 mm, the same as used in a previous study [17]. Cavitation
develops as cloud cavitation, and becomes ring vortex cavitation at the surface, before collapsing.
Thus, the specimens were placed in a recess so that the whole surface was flat.
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The processing time per unit length, tp is defined as follows.

tp =
n
v

(4)

where n and v are the number of passes and the scanning speed of the nozzle, respectively. For these
experiments, the processing time per unit length was chosen to be tp = 8 s/mm, the same as in the
previous study [17].

2.3. Submerged Pulse Laser System

Figure 6 shows the set up for submerged laser peening. The specimen is placed on a stage in a
water filled glass chamber, and the stage is moved horizontally and vertically by stepping motors.
The chamber walls are 3 mm thick. The laser pulses are generated by a Q-switched Nd:YAG laser
(Continuum Inc., San Jose, CA, USA) with a fundamental wavelength of 1064 nm. The optimum
standoff distance is partly in air sa and partly in water sw. The maximum energy, the beam diameter,
the pulse width, and the repetition frequency of the laser pulses used in the experiments for this study
were 0.35 J, 6 mm, 6 ns and 10 Hz, respectively. The focal length of the final convex lens was 100 mm
and the spot size of the laser on the target was about 0.8 mm in diameter in these experiments, the
laser pulse density was chosen to be 4 pulse/mm2, the same as in the previous study [17].Metals 2020, 10, x FOR PEER REVIEW 7 of 16 
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2.4. Recirculating Shot Peening Accelerated by Water Jet System

Shot peening was carried out using recirculating shot accelerated by a water jet system, which
was developed by Naito et al. [38], and was used by us in the previous study [17]. Figure 7 shows a
schematic diagram of the shot peening system. The conditions were chosen to be the same as those
used in the previous work [17]. The shot, made of stainless steel JIS SUS440C, were installed in the
chamber and accelerated by pressurized water coming through three 0.8 mm diameter holes. The
diameter and the number of shot were 3.2 mm and 500, respectively. The standoff distance and the
injection pressure were 50 mm and 12 MPa, respectively. Please note that no compressive residual
stress was introduced into the stainless steel by the water jet alone under the same conditions. To avoid
loose shot, the specimen was placed in a recess to make the surface flat, and the chamber was scanned
across the surface. The processing time per unit length is defined in the same way as for cavitation
peening (Equation (4)). In the case of shot peening, tp was chosen to be 0.18, 0.29, 0.58 and 0.88 s/mm
considering the results obtained and presented in the previous report [17].
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3. Results

3.1. Improvement of ∆Kth and ∆(∆K) by Peening

To compare the effect of the peening methods on crack initiation, Figure 8 shows the relationship
between the stress intensity factor range ∆K and the crack growth rate da/dn obtained by the K-decreasing
test. In Figure 8, in the case of non-peened, cavitation peening, laser peening and shot peening at tp

= 0.88 s/mm, the 1st set was shown by closed symbols and the 2nd set was shown by open symbols.
In Figure 8, the number after “Shot peening (SP)” shows the processing time per unit length. For
example, “SP0.18” means shot peened at tp = 0.18 s/mm. As shown in Figure 8, the ∆K-da/dn curves of
the peened specimens have shifted to the right. ∆Kth was calculated from these curve at da/dn = 1010

m/cycle, and the values are 3.71 ± 0.11 MPa
√

m for the non-peened specimen, 6.33 ± 0.20 MPa
√

m for
the laser peened specimen, 6.46 ± 0.25 MPa

√
m for the cavitation peened specimen and 6.52 ± 0.17

MPa
√

m for the shot peened specimen at 0.88 s/mm, as shown in Table 3. In the case of shot peening
with short processing times per unit length, tp = 0.18, 0.29 and 0.58 s/mm, ∆Kth is 5.51, 5.74 and 6.49
MPa

√
m, respectively. As reported in the previous reference [17], the optimum value of tp is 0.88 s/mm,

thus ∆Kth cannot be improved by reducing tp. Thus, it can be concluded that peening at the optimum
value of tp increases ∆Kth by more than 70%.
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Table 3. Threshold stress intensity factor range ∆Kth, stress intensity factor range increment ∆(∆K) and
fatigue strength σfs.

Process ∆Kth MPa
√

m ∆Kth’ ∆(∆K)
Fatigue

Strength σfs
MPa

σfs’

Non-peened 3.71 ± 0.11 1.00 ± 0.03 1.00 ± 0.05 278.9 ± 5.2 1.00 ± 0.02
Shot peening 6.52 ± 0.17 1.76 ± 0.07 2.21 ± 0.05 325.0 ± 8.7 1.17 ± 0.04

Cavitation peening 6.46 ± 0.25 1.74 ± 0.09 2.32 ± 0.05 348.1 ± 8.4 1.25 ± 0.04
Laser peening 6.33 ± 0.20 1.71 ± 0.07 2.05 ± 0.23 303.2 ± 8.4 1.09 ± 0.04

Figure 9 shows the crack length changing with number of cycle obtained by the constant applied
stress test. In Figure 9, in the case of non-peened, cavitation peening, laser peening and shot peening at
tp = 0.88 s/mm, the 1st set was shown by closed symbols and the 2nd set was shown by open symbols.
As shown in Figure 9, the number of cycles to fracture was extended by peening. The longest number
of cycle to fracture was obtained with cavitation peening, followed by shot peening at tp = 0.88 s/mm.

Figure 10 shows the fractured surface after the constant applied stress test. As shown in Figure 10,
the crack propagated in a semi-elliptical shape from the notch, then fractured. The steps near the
surface was generated by the secondary cracks.

To compare the effect of the peening methods on crack growth, Figure 11 shows the relationship
between the stress intensity factor range ∆K and the crack growth rate da/dn obtained by the constant
applied stress test. Figure 11a,c show the complete data range and Figure 11b.
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obtained by the constant applied stress test (continued).

And (d) show the data in the Paris’ law domain, i.e., da/dn = 10−9 m/cycle to da/dn = 10−8 m/cycle.
The constants of Paris’ law and correlation coefficient of the data in Figure 11b,d are shown in Table 4.
The number of data points and the probability of non-correlation were also shown in Table 4. The
probability of non-correlation was less than 1% except shot peening at tp = 0.18 s/mm. Namely
the relationship in Figure 11 is worth to discussing. The constant C was reduced by shot peening,
cavitation peening and laser peening remarkably. In addition, the constant m of cavitation peening
and laser peening increased. This result suggested that the crack growth at initial stage was reduced
by cavitation peening and laser peening. As shown in Figure 11a–d, the ∆K-da/dn curves shift to
the right and down after peening. This means that at equivalent values of ∆K, da/dn decreases after
peening. If equivalent values of da/dn are compared, ∆K increases after peening. ∆(∆K) was calculated
as described in Section 2.1, and is 2.05 ± 0.23 for laser peening, 2.21 ± 0.05 for shot peening at tp = 0.88
s/mm, and 2.32 ± 0.05 for cavitation peening. These values are also shown in Table 3. At the present
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condition base on the longer fatigue test changing with processing time per unit length and pulse
density [17], both ∆Kth and ∆(∆K) of laser peening were slightly smaller than those of shot peening
at tp = 0.88 s/mm, as shown in Table 3. If the laser peening condition was changed, the result would
be changed. In the case of shot peening at shorter tp, ∆(∆K) is 1.68 ± 0.32 for tp = 0.18 s/mm, 1.69 ±
0.10 for tp = 0.29 s/mm and 1.99 ± 0.11 for tp = 0.58 s/mm. As with ∆Kth, ∆(∆K) does not improve with
shorter tp. Thus, both ∆Kth and ∆(∆K) increase with tp under the conditions used here.

Table 4. Paris’ law constants and correlation coefficient.

Heading Paris’ Law Constants Correlation
Coefficient

Number of
Data Points

Probability of
Non-Correlation

(%)C m/cycle m

Non-peened 3.8 × 10−10 1.4 ± 0.4 0.67 18 0.23

Shot peening
(tp = 0.18 s/mm) 6.5 × 10−10 1.1 ± 1.5 0.38 5 53

Shot peening
(tp = 0.29 s/mm) 5.5 × 10−11 2.0 ± 0.4 0.80 19 0.004

Shot peening
(tp = 0.58 s/mm) 1.2 × 10−10 1.4 ± 0.4 0.55 29 0.2

Shot peening
(tp = 0.88 s/mm) 7.6 × 10−11 1.6 ± 0.3 0.66 52 0.001

Cavitation
peening 3.7 × 10−11 1.8 ± 0.4 0.66 33 0.3

Laser peening 5.3 × 10−11 1.8 ± 0.3 0.71 36 0.013

As shown in Figure 11, the data scatter for SP0.18 was higher than the others. To clarify the
reason, Figure 12 shows the aspect of shot peened surface at tp = 0.18 and 0.29 s/mm. Please note that
aspects of the peened surface treated by cavitation peening, laser peening and shot peening at tp =

0.88 s/mm were shown in the reference [17]. As shown in Figure 12, in the case of SP0.18 and SP0.29,
plastic deformation pits introduced by the shots did not cover whole area, and not-peened surface was
observed. This is one of reasons why data of SP0.18 was more scattered compared to the others.
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Figure 13 shows the relationship between ∆Kth and ∆(∆K). As ∆(∆K) is an improvement ratio
against non-peened specimen, ∆Kth is revealed by ∆Kth’ which is normalized by non-peened one.
As shown in Figure 13, ∆Kth’ and ∆(∆K) are roughly in a linear relationship. Please note that the
correlation coefficient for the 7 points is 0.963. This means that the probability of non-correlation is less
than 0.05%. Thus, it can be said that the relationship between ∆Kth’ and ∆(∆K) is highly significant.
The values of ∆Kth’ for cavitation peening and shot peening are similar. On the other hand, in the
case of ∆(∆K), this is slightly larger for cavitation peening than for shot peening as shown in Table 3.



Metals 2020, 10, 63 12 of 17

This suggests that the effect on reducing crack growth is slightly larger for cavitation peening than for
shot peening.Metals 2020, 10, x FOR PEER REVIEW 12 of 16 
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3.2. Effect of the Mechanical Properties on ∆Kth and ∆(∆K)

To investigate the effect of the mechanical properties on ∆Kth and ∆(∆K), Figures 14 and 15 show
∆Kth and ∆(∆K) as functions of the mechanical properties, including (a) the Vickers hardness HV,
(b) the maximum height of the roughness Rz and (c) the surface residual stress σR. The correlation
coefficients for each of these curves are 0.855 for Figure 14a, 0.830 for Figure 14b, 0.924 for Figure 14c,
0.912 for Figure 15a, 0.658 for Figure 15b and 0.930 for Figure 15c. These results show that both ∆Kth and
∆(∆K) increase with increasing Vickers hardness and compressive residuals stress. As is well known,
peening is a mechanical surface treatment used for work hardening and introducing compressive
residual stress by generating local plastic deformation. The surface roughness is increased by shot
peening, laser peening and cavitation peening. This is why ∆Kth and ∆(∆K) increase with increasing
Rz. However, the increase in roughness also increases crack initiation. Thus, a small increase in surface
roughness by peening is best for improving the fatigue properties.

When the different peening methods are compared, ∆Kth and ∆(∆K) are similar to each other as
shown in Table 3. As shown in Figures 14a and 15a, the Vickers hardness after shot peening, laser
peening and cavitation peening are very close to each other. On the other hand, the surface roughness
after cavitation peening is smoother than that after shot peening and laser peening, as shown in Figures
14b and 15b. This shows that ∆Kth and ∆(∆K) can be improved by cavitation peening with a smaller
increase in surface roughness compared with shot peening and laser peening. When the compressive
residual stress at the surface is compared as shown in Figures 14c and 15c, the largest value is for
shot peening, with cavitation peening second and laser peening the smallest. It can be concluded that
the smallest possible surface roughness is obtained with cavitation peening, and that shot peening
introduces the largest compressive residual stress, but with the greatest increase in surface roughness.
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4. Discussions

To investigate the relationship between the fatigue strength and crack growth, Figures 16 and 17
show the fatigue strength σfs as a function of ∆Kth and ∆(∆K), respectively. The value of the fatigue
strength of austenitic stainless JIS SUS316L was obtained from reference [17], and is shown in Table 3.
In Figures 16 and 17, σfs is revealed by σfs’ which is normalized by non-peened one. As mentioned
above, there are no big differences between the values of ∆Kth’. The correlation coefficient between σfs’
and ∆Kth’ is 0.806. This means that the probability of non-correlation is larger than 20%. On the other
hand, the correlation coefficient between σfs’ and ∆(∆K) is 0.884, and the probability of non-correlation
is about 12%. Thus, it can be concluded that the decrease in the crack growth rate rather than in crack
initiation is the main reason for the improvement in fatigue strength.Metals 2020, 10, x FOR PEER REVIEW 14 of 16 
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5. Conclusions

To clarify the mechanism by which the mechanical properties of austenitic stainless steel is
improved by mechanical surface treatments, austenitic stainless steel JIS SUS316L was treated by shot
peening, cavitation peening using a submerged water jet and cavitation peening using a submerged
pulsed laser. To avoid confusion, these latter two are referred to as cavitation peening and laser
peening, respectively. Comparisons between crack initiation and growth in the surface layer after
being subjected to these different peening processes was investigated by determining the threshold
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stress intensity factor range ∆Kth and the stress intensity factor range increment ∆(∆K) obtained by
means of a K-decreasing test and a constant applied stress test, respectively. Please note that in the
present experiments, a load controlled plane bending fatigue tester was used. The results obtained for
the material under test, JIS SUS316L, which were treated by shot peening, cavitation peening and laser
peening, can be summarized as follows.

(1) The values of ∆Kth’ and ∆(∆K) are roughly in a linear relationship, even though the specimens
were treated using different peening methods. Please note that ∆Kth’ is ∆Kth normalized by
non-peened one. The reduction in crack growth after cavitation peening is larger than that after
the other peening methods at equivalent values of ∆Kth’.

(2) The correlation between ∆(∆K) and the fatigue strength of the stainless steel specimens treated by
the various peening processes is better than that between ∆Kth’ and the fatigue strength.

(3) ∆Kth and ∆(∆K) are increased with increasing surface hardness and compressive residual stress.
(4) The values of ∆Kth and values of ∆(∆K) of the specimens after treatment by the different peening

methods are each roughly the same. When the mechanical properties of the peened specimens
were compared, it was found that the cavitation peened specimen was smoother than the others.
The compressive residual stress at the surface introduced by shot peening was larger than that
introduced by the other peening methods.
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