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Abstract: Development of a small and highly efficient heat exchanger is an important issue for
energy saving. In this study, the fabrication method of unidirectional (UniPore) composite cellular
structure with long and uniform unidirectional cells was investigated to be applied as a heat
exchanger. The composite UniPore structure was achieved by the unique fabrication method based
on the explosive compaction of a particular arrangement of thin copper and stainless steel pipes.
Slightly smaller thin stainless steel pipes filled with paraffin are inserted into small thin copper pipes,
which are then arranged inside bigger and thicker outer copper pipes. Such an arrangement of pipes is
placed centrally into a cylindrical explosion container and surrounded with explosive. Upon explosive
detonation, the pipes are compacted and welded together, which results in a UniPore structure with a
stainless steel covered inner surface of unidirectional pores to improve the corrosion resistance and
high temperature resistance performance. Two different composite UniPore structures arrangements
were studied. The microstructure of the new composite UniPore structure was investigated to confirm
good bonding between the components (pipes).

Keywords: cellular metal; composite structure; unidirectional cellular metal; explosive welding;
explosive compaction; high-velocity impact welding; high-energy-rate forming

1. Introduction

Cellular metals with countless small pores have various applicable characteristics such as low
density, efficient damping, high grade of deformation, high-energy absorption capability, durability in
dynamic loadings, and high thermal and acoustic isolation [1,2]. They can be used in a wide range
of applications, since various (multi) functions can be obtained by a proper combination of the pore
shape/size/distribution and base metal. Recently, cellular metals have been quite successfully applied as
small and efficient heat exchangers [3–6] to improve energy saving from the viewpoint of environmental
challenges and requirements.

Sato Y. et al. demonstrated that a heat exchanger could be downsized to one-tenth of its usual
size by applying the unidirectional (UniPore) copper structure as the inner pipe of a double-pipe heat
exchanger [7]. Hokamoto et al. proposed the fabrication method of the UniPore copper structure
with an outer copper pipe completely filled with smaller inner copper pipes [8–11]. This proposed
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fabrication method is based on the explosive compaction of cylindrical copper pipes assembly [12–16].
It is possible to fabricate specimens with a constant cross-section in the order of several meters by
using an explosive compaction technique. There is a lotus-type metal that is known to be similar to the
UniPore material and is fabricated by unidirectional solidification in a pressurized gas atmosphere,
as described by Nakajima [17,18]. However, the shape of its pores is mostly non-uniform and the
length of the final products is expected to be limited [17].

Several studies have been conducted on the fabrication method and mechanical properties of
the single metal UniPore structure. For instance, Vesenjak et al. [9] conducted extensive research on
the microstructural and mechanical analyses of UniPore copper and confirmed that the fabricated
UniPore specimens had good compressive properties with high-energy absorption capability under
quasi-static compression. On the other hand, there have been studies regarding the composite cellular
structure [19–21], since it is possible to combine the benefits of each material. Sun et al. [19] proposed a
metal–foam-composite hybrid tubular sandwich structures, which combine low-cost metallic materials
and high-strength composites with low-density cellular materials. In the other case, Gunji Co. Ltd.
(Osaka, Japan) [20] fabricated a grooved double-tube heat exchanger with corrosion resistance and
high temperature resistance by using stainless steel for one inner pipe. This grooved double tube heat
exchanger was fabricated by the drawing process.

In this study, we conducted experiments to fabricate two types of copper & stainless steel composite
UniPore structures as heat exchangers to combine the benefit of copper with high thermal conductivity
and stainless steel with improved corrosion and high temperature resistance. These structures had a
stainless steel cover layer for all of the inner surfaces of the copper pipes. Microstructure analysis of
the fabricated samples demonstrated good interface bonding between the pipe walls.

2. Experimental Investigation

2.1. Sample Preparation

Two types of metal composite samples were produced in this study. Sample A, shown in Figure 1a,
consists of an arrangement of inner pipes completely filling the inside of the outer pipe while Sample
B, shown in Figure 1b, comprises a concentric arrangement of pipes and rods positioned between the
outer and central pipes. Figure 1 shows the composite UniPore structures: the inner pipes in Figure 1a
consist of a copper pipe and a steel pipe from the outside, and there is a steel inner pipe and copper
inner solid bar in Figure 1b.
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Figure 1. Schematic illustration of samples. (a) Sample A; (b) Sample B. 
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The original UniPore copper structures [8] consist of the outer copper pipe being completely
filled with a number of inner copper pipes [9–11]. Sample A represents the upgraded UniPore copper
structure, where slightly smaller and corrosion resistant stainless steel pipes were inserted into the



Metals 2020, 10, 193 3 of 10

inner copper pipes. The inner pipes in both cases were filled with paraffin to prevent their collapse
during explosive compaction. The dimensions and number of used pipes to fabricate Sample A are
given in Table 1, while the arrangement of pipes before the explosive compaction is shown in Figure 2.

Table 1. Dimensions and composition of Sample A.

Component Material Outer Diameter (mm) Inner Diameter (mm) Number Length (mm)

Outer pipe Cu (JIS-C1220) 30 27 1 210
Inner pipe Cu (JIS-C1220) 4.0 3.4 35 260
Inner pipe Stainless Steel 304 3.3 2.3 35 260
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Sample B consists of a concentric structure of the outer and center copper pipe. Solid copper bars
and stainless steel pipes with paraffin were placed in the space between the outer and the central pipe.
Table 2 provides the dimension and composition of Sample B, while Figure 3 shows its assembly before
explosive compaction.

Table 2. Dimensions and composition of Sample B.

Component Material Outer Diameter (mm) Inner Diameter (mm) Number Length (mm)

Outer pipe Cu (JIS-C1220) 30 27 1 210
Center pipe Cu (JIS-C1220) 20 17 1 200

Inner solid bar Cu (JIS-C1220) 3.0 - 12 200
Inner pipe Stainless Steel 304 3.0 2.4 12 200

For reference, the mechanical characteristics of copper, stainless steel, and paraffin are shown
in Table 3.

Table 3. Value of mechanical characteristics.

Material Density (kg/m3)
Ultimate Tensile Strength (MPa,

Lower Limit) (Source: JIS)
Elongation at Break

(Lower Limit) (Source: JIS)

JIS-C1220 8940 315 -
Stainless Steel 304 8000 520 35

Paraffin 918 - -
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Figure 3. The pipe assembly of Sample B before explosive compaction (concentric outer and center
copper pipe, inner solid copper bars, and steel pipes with paraffin).

2.2. Fabrication Method

The UniPore structure is produced by the cylindrical explosion welding method. Figure 4 shows
the schematic setup of the fabrication method based on the principle of the radial explosion welding
method [8]. A vinyl chloride pipe (PVC tube with outer diameter 89 mm, inner diameter 83 mm
and length 270 mm, Figure 4) was used as the explosion container. The sample was aligned with the
central axis of the PVC tube by acrylic support plates (PMMA). The space between the PVC tube and
the UniPore specimen was filled with the primary explosive (ANFO-A: initial density 764 kg⁄m3 and
initial internal energy 1.254 MJ/kg, ratio of the specific heat 1.98), as shown in Figure 4. The electric
detonator was used for the ignition of the high-performance explosive (SEP: density 1310 kg/m3,
Chapman-Jouguet detonation velocity 6.7 km/s, Chapman-Jouguet detonation pressure 15.9 GPa,
source [22]), acting as a booster (to prevent any unexploded primary explosive), which was mounted
at the center top of the PVC tube. A cylindrical plaster was placed on the top of the sample to absorb
and reduce the impact from the top.
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The pipes filled with paraffin were welded together by high radial pressure acting toward the
central axis of the assembly upon explosive detonation (Figure 5), resulting in the UniPore cellular
structure [8]. The length and porosity of the proposed cellular metals can be easily controlled by
changing the diameter, thickness and number of the outer and inner pipes.
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Figure 5. Schematic illustration of the top view of the fabrication process.

3. Results and Discussion—Sample A

The recovered Sample A is shown in Figure 6. No cracks or wrinkles or any other damage were
observed after the fabrication process. Figure 7a shows the transversal cross-section of the sample of
Sample A after cutting off both ends of the recovered structure, and the outer and inner diameter after
forming are shown in Figure 7b. The remained paraffin in the sample was easily removed by melting
just by heating the sample up to 373 K. All cells were empty and completely separated between each
other, thus a fluid could flow through them without physical interaction. However, a few unevenly
shaped cells could be noticed, since some inner pipes in the outer layer deformed more during the
fabrication process. This can be attributed to the slightly irregular arrangement of the inner pipes in
this region before explosive compaction [7], as can be seen in Figure 2. However, the shape of the cells
can be improved with respect to uniformity by setting up a regular arrangement of the inner pipes.
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Figure 7. The transversal cross-section of Sample A: (a) final state form and enlarged view and (b) the
approximate diameter of pipes after the experiment.

The magnified transversal cross-section of the sample at the welded pipes junction is shown in
Figure 8. Here, the cross-section of the sample was observed by polishing in the etching process with
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ammonia solution and a small amount of hydrogen peroxide. It was confirmed that the copper pipes
were tightly joined together with only a few points, where welding between the copper pipe and
stainless-steel pipe was not achieved. This can be attributed to the insufficient velocity to achieve
explosive welding since the copper pipe could sustain only a limited acceleration due to insufficient
gap between the pipes. Wavy interfaces commonly encountered in impact welding were not observed
in Figure 8, and the cause was also related to the low collision velocity between the pipes. Since
it is difficult to obtain the collision by experiment, the information during compression such as the
collision velocity, the impact pressure, etc. shall be analyzed by computational simulation in future.
The Vickers hardness test was used to determine the bonding strength at the pipe junctions, Figure 9.
The original hardness of the phosphorous deoxidized copper and stainless steel before explosive
compaction was approximately HV 120 and HV 280, respectively. A significant decrease in hardness
was observed in the melted area at the triple collision point located at the center of the joint boundary,
while the hardness of the pipes generally increased elsewhere due to the work-hardening process. In
addition, the interfacial bonding between the pipes was analyzed by scanning electron microscopy
(SEM; JEOL Ltd., Tokyo, Japan, JSM-6390LV). From the result of the SEM measurements shown in
Figure 10, strong bonding was achieved since the bonding interface could not be observed.

Metals 2020, 10, 193 6 of 11 

 

  

Figure 7. The transversal cross-section of Sample A: (a) final state form and enlarged view and (b) the 
approximate diameter of pipes after the experiment. 

The magnified transversal cross-section of the sample at the welded pipes junction is shown in 
Figure 8. Here, the cross-section of the sample was observed by polishing in the etching process with 
ammonia solution and a small amount of hydrogen peroxide. It was confirmed that the copper pipes 
were tightly joined together with only a few points, where welding between the copper pipe and 
stainless-steel pipe was not achieved. This can be attributed to the insufficient velocity to achieve 
explosive welding since the copper pipe could sustain only a limited acceleration due to insufficient 
gap between the pipes. Wavy interfaces commonly encountered in impact welding were not 
observed in Figure 8, and the cause was also related to the low collision velocity between the pipes. 
Since it is difficult to obtain the collision by experiment, the information during compression such as 
the collision velocity, the impact pressure, etc. shall be analyzed by computational simulation in 
future. The Vickers hardness test was used to determine the bonding strength at the pipe junctions, 
Figure 9. The original hardness of the phosphorous deoxidized copper and stainless steel before 
explosive compaction was approximately HV 120 and HV 280, respectively. A significant decrease in 
hardness was observed in the melted area at the triple collision point located at the center of the joint 
boundary, while the hardness of the pipes generally increased elsewhere due to the work-hardening 
process. In addition, the interfacial bonding between the pipes was analyzed by scanning electron 
microscopy (SEM; JEOL Ltd., Tokyo, Japan, JSM-6390LV). From the result of the SEM measurements 
shown in Figure 10, strong bonding was achieved since the bonding interface could not be observed. 

 

(a) 

 

(b) 

  

Figure 8. The magnified transversal cross-section of Sample A: (a) the copper pipes were tightly 
joined together and (b) welding between the copper pipe and stainless-steel pipe was not achieved. 

Figure 8. The magnified transversal cross-section of Sample A: (a) the copper pipes were tightly joined
together and (b) welding between the copper pipe and stainless-steel pipe was not achieved.Metals 2020, 10, 193 7 of 11 

 

 
Figure 9. The results of the Vickers hardness test in the vicinity of the triple collision point (transversal 
cross-section of Sample A). 

 
Figure 10. The results of scanning electron microscopy (SEM) in the vicinity of the triple collision 
point (transversal cross-section of Sample A). 

4. Results and Discussion—Sample B 

The longitudinal and transversal views of Sample B are shown in Figures 11 and 12, respectively. 
It can be seen that during the fabrication process, the outer pipe did not crack. All inner pipes with 
an initially circular cross-section were formed into a rectangular shape by explosive compaction [8]. 
It was confirmed that the inner pipes were well-bonded and that the transversal cross-section 
remained generally uniform through the length of the specimen. 

 
Figure 11. The recovered Sample B (longitudinal direction). 

Figure 9. The results of the Vickers hardness test in the vicinity of the triple collision point (transversal
cross-section of Sample A).



Metals 2020, 10, 193 7 of 10

Metals 2020, 10, 193 7 of 11 

 

 
Figure 9. The results of the Vickers hardness test in the vicinity of the triple collision point (transversal 
cross-section of Sample A). 

 
Figure 10. The results of scanning electron microscopy (SEM) in the vicinity of the triple collision 
point (transversal cross-section of Sample A). 

4. Results and Discussion—Sample B 

The longitudinal and transversal views of Sample B are shown in Figures 11 and 12, respectively. 
It can be seen that during the fabrication process, the outer pipe did not crack. All inner pipes with 
an initially circular cross-section were formed into a rectangular shape by explosive compaction [8]. 
It was confirmed that the inner pipes were well-bonded and that the transversal cross-section 
remained generally uniform through the length of the specimen. 

 
Figure 11. The recovered Sample B (longitudinal direction). 

Figure 10. The results of scanning electron microscopy (SEM) in the vicinity of the triple collision point
(transversal cross-section of Sample A).

4. Results and Discussion—Sample B

The longitudinal and transversal views of Sample B are shown in Figures 11 and 12, respectively.
It can be seen that during the fabrication process, the outer pipe did not crack. All inner pipes with
an initially circular cross-section were formed into a rectangular shape by explosive compaction [8].
It was confirmed that the inner pipes were well-bonded and that the transversal cross-section remained
generally uniform through the length of the specimen.
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The Vickers hardness test was performed on the transversal cross-section of Sample B to check 
and confirm the bonding strength. In Figure 14, the melted area at the triple collision point between 
the outer pipe, inner pipe, and inner solid bar is shown. The hardness of the stainless steel was 
remarkably increased due to work hardening by plastic deformation of the materials. However, the 
hardness of the outer copper pipe and inner copper bar decreased in the melted area. The reason for 
this is presumed to be the thermal effect during the compaction process. Strong bonding was 
achieved between the outer copper pipes and copper bar, which can be deduced from the high 
hardness in the welding area, Figure 15. 

Figure 12. The transversal cross-section of Sample B.

Figure 13 shows the transversal cross-section of one cell of Sample B observed with an optical
microscope. The inner pipes and inner solid bars were well joined together without any gaps.
The connectivity of the interfaces confirmed good bonding conditions during the fabrication process.
In Figure 13a, the melted parts generated during the compaction process were observed and confirmed
by optical microscopy.
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Figure 13. The transversal cross-section of Sample B. (a) Inner pipe and (b) inner solid bar.

The Vickers hardness test was performed on the transversal cross-section of Sample B to check
and confirm the bonding strength. In Figure 14, the melted area at the triple collision point between the
outer pipe, inner pipe, and inner solid bar is shown. The hardness of the stainless steel was remarkably
increased due to work hardening by plastic deformation of the materials. However, the hardness of the
outer copper pipe and inner copper bar decreased in the melted area. The reason for this is presumed
to be the thermal effect during the compaction process. Strong bonding was achieved between the
outer copper pipes and copper bar, which can be deduced from the high hardness in the welding
area, Figure 15.
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5. Conclusions

The fabrication method of a novel composite metal UniPore structure with longitudinal pores was
investigated in this study. For the first time, the surfaces of the longitudinal copper cellular structure
were covered by a second metal, a thin layer of corrosion resistant stainless steel. Two assembly
arrangements of the copper UniPore structure with stainless steel pipes layered at the inner surface
of the inner copper pipes were successfully fabricated. Microstructure analysis of the fabricated
samples demonstrated good interface bonding between the component walls as well as providing
efficient and mechanical properties in the case of structural applications. The authors believe that
the proposed composite UniPore structures have corrosion resistance, high temperature resistance,
and high efficiency when used as heat exchangers or heat sinks, which will be proven in further study.
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