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Abstract: In recent years, various welded details with complex local structure, ambiguous fatigue
performance have appeared in fully welded steel truss bridges, however, they are not covered in
the current design specifications. In order to study the fatigue performance of revised cope-hole
details, fatigue performance experiments were designed and carried out on three specimens of revised
detail with the same dimensions but subjected to different stress amplitude. Local finite element
model of the revised cope-hole detail was established for further stress analysis. The results of finite
element analysis were basically consistent with the static test results at majority of measurement
points. Based on the existing fatigue test data and fatigue strength of cope-hole details defined in
Eurocode and JSSC design code, the fatigue performance of revised cope-hole details was evaluated.
The S-N fitting curve with the failure probability of 2.3% was obtained from the fatigue experiment
results. The fatigue stress amplitude was 59.5 MPa when fatigue loading cycle was 2 × 106. It can be
concluded that the fatigue performance of revised cope-hole detail was better than that of previous
welded detail, which indicated that the revised detail had a significant improvement.

Keywords: steel bridge; revised cope-hole details; cope hole; fatigue performance; S-N curve

1. Introduction

Steel bridge has been widely used in bridge construction because its significant advantages of
superior spanning capacity, light weight, lower construction cost, fast construction speed, and less
maintenance, etc. Because of the rolling capacity of steel manufacturing process, long H-beams for steel
truss girder are obtained from short steel plates using butt weld. However, the butt weld of flange and
web plates may appear intersection welds during this process. For the non-continuous welding, there
are some arc extinguishing points, which can easily cause the local stress concentration. In addition,
the fatigue crack initiates at these points, it leads to significant reduction in the fatigue resistance of
welded details [1]. To avoid the intersection welds of web and flange in the H-beams and minimize the
stress concentration, cope-hole details have been exactingly used in the web, as shown in Figure 1.
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To study the fatigue performance of previous cope-hole welded details, a lot of theoretical and 
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were investigated in the literature [12–14]. The weld ends modeling of welded details with cope-hole 
was studied in the literature [15]. Fatigue performance experiments of three sets of specimens were 
carried out to evaluate the fatigue performance of existing welded detail [6,7]. Their testing results 
indicated that the S-N fitting curve equation was lgN = 11.55−3lgΔσ, with the failure probability of 
2.3% [16]. The fatigue stress amplitude corresponding to cyclic number of N = 2 × 106 was 54.1 MPa. 
However, the fatigue design provisions of revised cope-hole detail (as depicted in Figure 2) are not 
covered in the current fatigue design codes of steel structure. In terms of the geometry structure (there 
are some similar welded details that can be found in the Eurocode3 [17]) and fatigue specification of 
the International Institute of welding [18] material properties of steel, welding technology, 
environmental conditions, local structure ,and the loading mode of these weld details are somehow 
different from the revised cope-hole details. Therefore, the relevant provisions of anti-fatigue design 
in the current design codes for these welded details cannot be directly used. 
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has been presented. The semicircle arc plate is used to fill the cope hole after the welding of the 
member, which is called revised cope-hole detail, as shown in Figure 2. However, the fatigue 
performance of such revised cope-hole detail has been rarely reported. In the study, fatigue 
experiments of revised cope-hole detail subjected to different stress amplitude were carried out. 
Three specimens were prepared with the same dimensions and materials. The fatigue S-N curve 
equation was obtained based on the fatigue testing results. In addition, theoretical analysis and 
numerical simulation were performed to study the fatigue performance, fatigue failure mechanism, 
and fatigue resistance design parameters for revised cope-hole details. Moreover, the fatigue 
experiment results of revised cope-hole details were also compared with those of previous welded 
details. 

Figure 1. Previous cope-hole welded detail.

To study the fatigue performance of previous cope-hole welded details, a lot of theoretical and
experimental studies have been done [2–11]. Fatigue strength and local stresses for cope-hole details
were investigated in the literature [12–14]. The weld ends modeling of welded details with cope-hole was
studied in the literature [15]. Fatigue performance experiments of three sets of specimens were carried
out to evaluate the fatigue performance of existing welded detail [6,7]. Their testing results indicated
that the S-N fitting curve equation was lgN = 11.55−3lg∆σ, with the failure probability of 2.3% [16].
The fatigue stress amplitude corresponding to cyclic number of N = 2 × 106 was 54.1 MPa. However,
the fatigue design provisions of revised cope-hole detail (as depicted in Figure 2) are not covered in the
current fatigue design codes of steel structure. In terms of the geometry structure (there are some similar
welded details that can be found in the Eurocode3 [17]) and fatigue specification of the International
Institute of welding [18] material properties of steel, welding technology, environmental conditions,
local structure, and the loading mode of these weld details are somehow different from the revised
cope-hole details. Therefore, the relevant provisions of anti-fatigue design in the current design codes
for these welded details cannot be directly used.
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Figure 2. Revised cope-hole welded detail.

To further improve the fatigue performance of previous welded details, an optimization scheme
has been presented. The semicircle arc plate is used to fill the cope hole after the welding of the member,
which is called revised cope-hole detail, as shown in Figure 2. However, the fatigue performance of
such revised cope-hole detail has been rarely reported. In the study, fatigue experiments of revised
cope-hole detail subjected to different stress amplitude were carried out. Three specimens were
prepared with the same dimensions and materials. The fatigue S-N curve equation was obtained
based on the fatigue testing results. In addition, theoretical analysis and numerical simulation were
performed to study the fatigue performance, fatigue failure mechanism, and fatigue resistance design
parameters for revised cope-hole details. Moreover, the fatigue experiment results of revised cope-hole
details were also compared with those of previous welded details.
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2. Fatigue Experiment of Revised Cope-Hole Details

2.1. Specimen Details

In the study, the dimensions of previous welded detail (Weld Detail 1) is referred to [6]. The revised
cope-hole detail has the same dimensions of the weld detail 1, except that the cope holes are filled
with semicircle arc plate with thickness of 10 mm. Thickness of flange and web plates is 16 mm.
The dimensions for revised cope-hole detail are shown in Figure 3. The three fatigue specimens are
designed and fabricated from Q345C steel plate [19]. The mechanical properties of steel are given in
Table 1.
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Figure 3. Dimensions of revised cope-hole detail. (a) Dimensions of flange (units: mm); (b) dimensions
of web (units: mm).

Table 1. Mechanical properties, data from [19].

Yield Strength
(MPa)

Ultimate Tensile
Strength (MPa)

Elongation (%)
Chemical Composition (wt.%)

C Si Mn P S V Nb

345 470–630 22 0.2 0.55 1–1.6 0.035 0.035 0.02–0.15 0.015–0.06

2.2. Installation of Strain Gauges

The resistance strain gauges are used to measure the strain during the fatigue test. The TMR200
dynamic data acquisition instrument is used to collect strain data, and the influence of temperature
strain is eliminated in the test. Strain measurements should be capable of revealing the local stress
distribution characteristics of welded details and the stress concentration part and stress distribution.
Because of the large stress gradient near the cope hole, dense strain gauges are mounted near the arc
edges of the cope hole, while other locations are rarely installed. At six typical locations, i.e., F4, F5, F7,
F12, F14, and F15 in Figure 4, other strain gauges are glued nearby the cope hole to be as a comparative
reference. Strain gauges with dimensions of 3 mm × 5 mm, electrical resistance of 120 Ω, and the range
of 2 × 104 microstrains are used to determine the strain along with the longitudinal direction of the
specimens under the uniaxial fatigue load. The strain gauge number with “(+)” in Figure 4 indicates
that strain gauges are installed in both surfaces of the plate. The corresponding number of strain gauge
number on the other side of the plate is listed in Table 2.



Metals 2020, 10, 1092 4 of 14
Metals 2020, 10, x FOR PEER REVIEW 4 of 14 

 

 

 

(a) (b) 

Figure 4. Plan view of strain gauge locations. (a) Strain gauge of web (units: mm); (b) strain gauge of 
flange (units: mm). 

Table 2. Corresponding number of strain gauges. 

Number Corresponding Number Number Corresponding Number 

F3(+) F19 F15(+) F27 

F4(+) F20 F16(+) F28 

F5(+) F21 Y4(+) Y21 

F6(+) F22 Y6(+) Y22 

F7(+) F23 Y8(+) Y23 

F12(+) F24 Y13(+) Y24 

F13(+) F25 Y15(+) Y25 

F14(+) F26 Y17(+) Y26 

2.3. Testing and Loading Scheme 

Three revised cope-hole detail specimens are tested under the stress amplitude of 99 MPa, 90 
MPa, and 63 MPa, respectively. Strain data are collected every two hours during the fatigue 
experiment before the formation of fatigue crack. The interval of data acquisition is shortened to be 
every hour after the fatigue crack appeared. During the test, the data acquisition and the fatigue crack 
detection of specimens are carried out simultaneously. An ultrasonic nondestructive flaw detector, 
magnifying glass crack, and observation instrument are used to detect the fatigue cracks. Damaged 
bolts and strain gauges are replaced timely. The fatigue life of welded specimens is defined as the 
fatigue loading time that corresponds to the fatigue fracture failure occurrences. The fatigue 
experiments are carried out by using a sine wave with a load stress ratio of 0.1 and through a MTS 
testing machine (as shown in Figure 5). The loading parameters for fatigue test are shown in Table 3. 
The static test results can check whether the axial load is eccentric or not before the fatigue test, so 
that the loading device can be adjusted in time. At the same time, it can also provide some reference 
for the subsequent loading scheme after a certain number of fatigue cyclic loading. The loading 
parameters of the static test are illustrated in Table 4, where each stress amplitude is divided into five 
load levels when static load is applied from the initial value to the ultimate value. For example, the 
five static load levels corresponding to the stress amplitude of 63 MPa are 34.5 kN, 100 kN, 180 kN, 
260 kN, and 345kN, respectively. 

24

8

40 40 40 40

F1 F8

F2 F9

86.
4

8

F11 F18

F10 F17

8
5.

6

150 150

F3(+) F6(+)

F4(+) F7(+)

F13(+) F16(+)

F5(+)

F14(+)

F12(+) F15(+)

10
8

10
8

Web

Web 

Filler plate

Filler plate

Fillet weld

Flange plate

Strain gauge 

150 150

50
50

8
8

8
8

Y17(+) Y19
Y18 Y20

Y11 Y13(+)
Y12 Y14

40 40 40 40

6.
4 16

11
.6 Y7 Y9

Y8(+) Y10
Y1 Y3
Y2 Y4(+)

Y15(+)
Y16

Y5
Y6(+)

Flange plate

Flange plate

Filler plateWeb Web 

Strain gauge 

Fillet weld

10

Figure 4. Plan view of strain gauge locations. (a) Strain gauge of web (units: mm); (b) strain gauge of
flange (units: mm).

Table 2. Corresponding number of strain gauges.

Number Corresponding Number Number Corresponding Number

F3(+) F19 F15(+) F27
F4(+) F20 F16(+) F28
F5(+) F21 Y4(+) Y21
F6(+) F22 Y6(+) Y22
F7(+) F23 Y8(+) Y23

F12(+) F24 Y13(+) Y24
F13(+) F25 Y15(+) Y25
F14(+) F26 Y17(+) Y26

2.3. Testing and Loading Scheme

Three revised cope-hole detail specimens are tested under the stress amplitude of 99 MPa, 90 MPa,
and 63 MPa, respectively. Strain data are collected every two hours during the fatigue experiment
before the formation of fatigue crack. The interval of data acquisition is shortened to be every hour
after the fatigue crack appeared. During the test, the data acquisition and the fatigue crack detection of
specimens are carried out simultaneously. An ultrasonic nondestructive flaw detector, magnifying
glass crack, and observation instrument are used to detect the fatigue cracks. Damaged bolts and
strain gauges are replaced timely. The fatigue life of welded specimens is defined as the fatigue
loading time that corresponds to the fatigue fracture failure occurrences. The fatigue experiments are
carried out by using a sine wave with a load stress ratio of 0.1 and through a MTS testing machine
(as shown in Figure 5). The loading parameters for fatigue test are shown in Table 3. The static
test results can check whether the axial load is eccentric or not before the fatigue test, so that the
loading device can be adjusted in time. At the same time, it can also provide some reference for the
subsequent loading scheme after a certain number of fatigue cyclic loading. The loading parameters of
the static test are illustrated in Table 4, where each stress amplitude is divided into five load levels
when static load is applied from the initial value to the ultimate value. For example, the five static
load levels corresponding to the stress amplitude of 63 MPa are 34.5 kN, 100 kN, 180 kN, 260 kN, and
345 kN, respectively.
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Table 3. Fatigue loading parameters.

Specimen Number Stress Amplitude (MPa) Load Amplitude (kN) Loading Frequency (Hz)

CHT1 99 54.20~542.00 3.00
CHT2 90 49.28~492.80 3.00
CHT3 63 34.50~345.00 3.20

Note: CHT represents the name of the specimens.

Table 4. Static loading parameters (kN).

Level 34.50~345.00 49.28~492.80 54.20~542.00

1 34.50 49.28 54.20
2 100.00 140.00 150.00
3 180.00 240.00 250.00
4 260.00 340.00 350.00
5 345.00 492.80 542.00

3. Finite Element Analysis of Revised Cope-Hole Detail

3.1. Modeling and FEA Results

According to the geometrical dimensions of welded specimens, they include one core research
segment and two anchorage segments, as shown in Figure 3. The core research segment is 300 mm in
the middle of the specimen, and the other two portions of the specimen are the anchorage segments.
The main concern in the experiment and fatigue performance analysis is the state of stress and strain
of the core research section of revised cope-hole detail. In order to reduce the computational time,
only the core research section is modelled in the finite element analysis. Besides, the finite element
model is extended along the length of the specimens to exclude the effect of end loading and boundary
constraint on local stress distribution of the core research section. The elastic modulus of steel Q345C
is 2.06 × 105 MPa and the Poisson’s ratio is set to be 0.3 in the finite element model.

The connection between the plates is fillet weld and the solid element is used to simulate the
weld. The fillet weld in the finite element model is simplified as a triangular cross-section. The flange
plate, web, fillet weld, and butt weld are simulated by using the solid element SOLID45 with 8 nodes.
The hexagonal element is used for meshing and the cell size is 0.5 cm. Surface loads are applied at
one end of the model, and the other end of the model is the fixed constraint, as shown in Figure 6.
There are 70,320 elements and 80,887 nodes in the finite element model. The applied pure tension load
in the modeling analysis is 70 MPa. The linear elastic analysis of the finite element model is carried
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out by ANSYS12.0.1 (ANSYS Inc., Canonsburg, PA, USA). The influence of welding residual stress
and initial defect on it is not considered in the finite element analysis, and the cracking stage of the
specimen is not considered. The finite element analysis does not consider the influence of residual
stresses. The finite element model and the analytical results are presented in Figure 7.
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Figure 7. Finite element model and analytical results. (a) Finite element model of the core research
segment; (b) stress distribution of web (unit: Pa); (c) stress distribution of flange (unit: Pa).

As shown in Figure 7, the stresses of the web and flange plate are symmetrically distributed
under axial load, in which the maximum stress and minimum stress of the web are −18.7 MPa and
138.0 MPa, respectively.
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3.2. Analysis of Static Test Results

According to the static loading parameters in Table 3, the fatigue specimens are subjected to static
loading after cyclic number of 5 × 105. There are five static load steps or levers for each stress amplitude.
The static loading is divided into five loading steps (for example: 34.5 kN, 100 kN, 180 kN, 260 kN,
and 345 kN) from the minimum to the maximum, as shown in Table 4. The testing results of the static
loading before fatigue loading are summarized in Table 5. At the beginning of loading, there are no
visible damage or failure caused by fatigue loads, which is consistent with the assumption of idealized
finite element model. Besides, these results are compared to the calculation results of the finite element
model. Comparison analysis results of CHT3’s typical measure points are listed in this Table 5.

Table 5. Comparison between static loading test results and finite element ones.

Code Measured
Value/µε

FEA/µε Difference/% Code Measured
Value/µε

FEA/µε Difference/%

F1 368 322 14 Y4 276 354 22
F2 356 325 10 Y6 316 364 13
F5 470 507 7 Y8 272 354 23
F8 374 322 16 Y24 294 369 20
F9 370 325 14 Y26 290 369 21

F10 392 325 21 F25 336 374 10
F14 572 507 13 F26 330 349 6
F17 374 325 15 F27 408 374 9
F18 386 322 20 F28 344 368 7
F20 412 368 12 F22 394 374 5

As seen from Table 5, the comparative analysis results show that the strain far away from the
weld has slight difference from the testing results of revised cope-hole detail, which is obtained from
the finite element model. The differences between testing data and the finite element analysis ones are
smaller than 22%, but some difference are relatively great at a few measurement points. There are three
possible reasons to explain this. First, the local stress gradient of core research section is large and the
local stress changes rapidly, and the node location for extracted node stress has certain difference from
the actual installation location of strain gauge. Besides, the local mean deformation in a tiny region is
obtained by the strain gauge in the fatigue experiment, which is different from extracted longitudinal
node stress from the finite element analysis. Second, the influence of eccentric load does not exist
in the finite element analysis, while it is existed unavoidably in the fatigue experiment. In addition,
the welding residual stress, weld penetration depth, plate space, the actual weld shape, and geometric
initial defection are not considered.

3.3. Strain Comparisons

When a semicircular arc plate is filled in the weld hole of the original welding detail, the local
stress field distribution of the welding detail is significantly changed. Table 6 lists the stress comparison
results at the typical measuring points between the original welding detail and the revised one.

Table 6. Strain comparison between revised cope-hole details and previous welded details.

Code
Previous Welded

Details (µε)

Revised Cope-Hole Details (µε) Difference (%)

Flat Surface Slotting
Surface

Flat
Surface

Slotting
Surface

F21 716 349 507 51 29
Y8 434 354 369 18 15

Y22 492 364 395 18 14
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As shown in Table 6, when a semicircular arc plate is filled in the original welding detail, the stress
at the top of the hole is changed most significantly. The maximum stress on the flat surface and the
slotted surface are reduced by 51% and 29%, respectively. For the flange plate, the stress at a typical
measuring point near the weld has reduced by about 14–18%.

4. Fatigue Test Results and Comparisons

4.1. Fatigue Failure Process

From the fatigue experiment observation for all revised cope-hole specimens (CHT specimens),
the fatigue initiation crack of CHT specimens under fatigue loads appeared at the intersection edges of
filler-flange and web-flange longitudinal butt weld, as shown in Figure 8. The fatigue crack growth
and fatigue fracture failure of CHT specimens are depicted in Figures 9–13. The fatigue failure process
of the specimens of revised cope-hole detail is described as follows. At initial certain fatigue loading
cycles, a few fatigue cracks appeared first at the intersection edges. Then, fatigue cracks of the specimen
extended simultaneously along the filler-web edge at the flange width direction with the increasing of
fatigue loading cycles. As the fatigue loading cycles continues, the fatigue cracks kept propagating
along the filler-web edge direction. The propagation direction changed to the web width direction
before it extended to the top of circular holes. With the continuous increase of fatigue loading cycles,
the fatigue damage gradually accumulated during the process, so the effective bearing area reduced
significantly. The fatigue fracture failure finally appeared on the specimens when the remaining area
was not sufficiently large or the specimen was not suitable for continue loading for the safety concern.
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Some similarities noted from the fatigue failure process between CHT and previous welded detail
specimens. The fatigue cracks appeared on the flange and web after a certain number of fatigue
loading cycles, and the final fracture failure was caused by the insufficient remaining effective area
of specimens to resist fatigue loading. However, the path and pattern of fatigue crack propagation
presents some differences for two details. The initial fatigue crack of the previous welded details
specimens appeared and extended in flange plate, and the fatigue crack of web first extended to the top
of cope hole. But the fatigue crack of the CHT specimen extended simultaneously along the flange and
the web. The main reasons are that the local stress field distribution and local support constraints of
CHT specimens with filler plate are different. The filler plate reduces the stress concentration effectively.
Therefore, under the same stress amplitude, the fatigue performance of the CHT specimen is better
than that of the previous welded detail, which indicates that the revised cope-hole detail has a good
improvement effect.

4.2. Strain Results of Fatigue Tests

According to Table 2, the corresponding fatigue loads were applied to all specimens of revised
cope-hole detail. The strain curve of the specimens versus the fatigue loading cycles was depicted in
Figure 14.
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Figure 14. Strain of measure points vs fatigue cyclic loading times. (a) Strain of CHT1′s measure points;
(b) strain of CHT2′s measure points; (c) strain of CHT3′s measure points.

The fatigue damage increases with the fatigue load times. The strain state at measurement points
gradually transfers from elastic strain into elastoplastic strain. Fatigue cracks appears on the specimens
when the total strain exceeds the tensile strain limit of steel. The strain at some measure points
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continues to increase or remains, while decreases after cracking at some other measurement points.
The main reason is that the stress of the measurement points near the fatigue crack is released by the
stable propagation crack.

The strain data at symmetric measurement point on the flange are not consistent. This may be
because of the influence of eccentric load. The fatigue crack propagation length along the flange plate
surface is inconsistent. According to the observation of the fatigue experiment and the measured strain
data, strain constantly changes at the initiation and propagation periods of the fatigue crack.

4.3. Fatigue Life Analysis

The fatigue test data of welded details with cope-hole are given in references [1,13,20–22].
Eurocode3 [17], IIW recommendation [18], and JSSC recommendation [23] provide the fatigue strengths
that correspond to the welded details with cope-hole when the number of loading cycles is 2 million.
The fatigue test data of previous welded details are given in reference [16], as shown in Table 7. In the
fatigue tests, the fatigue loading cycles of revised cope-hole details are collected when the surface
cracks near the cope-hole are 30 mm and 60 mm, as listed in Table 8.

Table 7. Fatigue life of previous welded details.

Code
Stress

Amplitude
Fatigue Loading Cycles (×104) Average Fatigue Loading Cycles (×104)

30 mm 60 mm 30 mm 60 mm

Ts11 63 158.7 200.1
145.8 169.6Ts12 63 136.5 159.8

Ts13 63 142.3 148.8
Ts21 81 84.5 88.9

82.3 88.6Ts22 81 76.4 86.9
Ts23 81 85.9 90.1
Ts31 99 42.5 45.2

43.8 46.0Ts32 99 46.2 48.2
Ts33 99 42.7 44.6

Table 8. Fatigue life of revised cope-hole details.

Code Stress Amplitude
Fatigue Loading Cycles (×104)

30 mm 60 mm

CHT1 63 211.7 224.7
CHT2 81 111.9 120.8
CHT3 99 73.6 78.1

According to the comparison between Tables 7 and 8, the fatigue life of revised cope-hole details are
greatly improved than that of previous welded details, regardless of the stress amplitudes. The fatigue
life at the stress amplitude of 99 MPa improves the most, which is about 75%.

Based on the fatigue life of the revised cope-hole detail obtained from the fatigue experiments,
regression analysis was performed for the stress amplitude and fatigue loading times through the least
squares method [24]. The S-N curves of revised cope-hole details are obtained accordingly.

The S-N curve generally meets the following expression:

N = C·∆σ−m (1)

where m is negative reciprocal of the slope of S-N curve and is generally related to the material property,
C is a material related constant. m and C are constants to be fitted. In many standards and codes, it is
recommended that m set to 3 for cope-hole details. That is to say, it is assumed that the fatigue design
curves have the same constant slope.
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The Equation (1) can be transformed into:

lgN = lgC − m·lg∆σ (2)

Based on the fatigue life of three revised cope-hole details specimens, the S-N curve is determined
as follow:

lgN = 11.81 − 3lg∆σ (3)

where the standard deviation is 0.19. The design S-N curve equation with a failure probability of 2.3%
is determined as follow:

lgN = 11.62 − 3lg∆σ (4)

The S-N fitting curves and test results of revised cope-hole details and previous welded details
are depicted in Figure 15.Metals 2020, 10, x FOR PEER REVIEW 13 of 14 
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It can be concluded from Equation (4) that the fatigue stress amplitude with a failure probability
of 2.3% is 59.5 MPa when the cyclic number N is 2 × 106. The fatigue stress amplitude of revised
cope-hole details is greater than 54.1 MPa for the previous welded details [16]. This indicates that the
revised cope-hole details significantly improve the fatigue performance of previous welded details.

5. Conclusions

The following conclusions are drawn from the fatigue performance experiments and finite element
analysis of revised cope-hole details:

(1) The fatigue performance of the revised cope-hole detail is better than that of the previous
welded detail, which indicates that the revised cope-hole detail has a good improvement effect.

(2) The results of finite element analysis are in good agreement with the static test results, and the
error at majority of measurement points is less than 22%.

(3) The S-N fitting curve of revised cope-hole details with the failure probability of 2.3% is
lgN = 11.62−3lg∆σ. The fatigue stress amplitude with the failure probability of 2.3% is 59.5 MPa when
the cyclic number N is 2 × 106.
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