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Abstract: Electron backscatter diffraction (EBSD) has been attracting enormous interest in the
microstructural characterization of metals in recent years. This characterization technique has
several advantages over conventional ones, since it allows obtaining a wide range of characterization
possibilities in a single method, which is not possible in others. The grain size, crystallographic
orientation, texture, and grain boundary character distribution can be obtained by EBSD analysis.
Despite the limited resolution of this technique (20–50 nm), EBSD is powerful, even for nanostructured
materials. Through this technique, the microstructure can be characterized at different scales and
levels with a high number of microstructural characteristics. It is known that the mechanical properties
are strongly related to several microstructural aspects such as the size, shape, and distribution of
grains, the presence of texture, grain boundaries character, and also the grain boundary plane
distribution. In this context, this work aims to describe and discuss the possibilities of microstructural
characterization, recent advances, the challenges in sample preparation, and the application of the
EBSD in the characterization of metals.

Keywords: EBSD; microstructural characterization; grain size; texture; grain boundary; strain; in-situ
EBSD; misorientation; metals

1. Introduction

Electron backscatter diffraction (EBSD) is a microstructural characterization technique that
provides crystallographic information in the scanning electron microscopy (SEM). The diffraction
patterns obtained are used to determine the crystal orientation, grain size, phase identification, texture,
grain boundary character, and strain. The quality of the diffraction patterns, which influences the
confidence of the indexing, strongly depends on the sample preparation. The preparation for EBSD is
very challenging and time-consuming, since the samples must be perfectly flat and without damage at
the surface to obtain high-quality Kikuchi patterns.

Regarding the resolution of this technique, it depends on several factors, namely the sample
preparation, the SEM equipment to be used, and the type of material to be analyzed. For instance,
the spatial resolution of EBSD has a limit to approximately 20 nm for dense materials and up to 50 nm
for lightweight materials such as aluminum [1–3]. Additionally, EBSD samples are typically tilted
toward the detector by 70◦, as can be seen in Figure 1, and the resolution down the tilted surface is
approximately three times worse.
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Figure 1. Schematic illustration showing the experimental setup for electron backscatter diffraction 

(EBSD) analyses. 

The use of EBSD in the characterization of materials has undergone rapid acceptance. In recent 
years, this use has increased due to the total availability of SEM, the high speed of data acquisition, 
and the access to complementary information about the microstructure on the submicron scale [4,5]. 
The EBSD technique has been applied in several areas of investigation, increasing the knowledge and 
implementation of processes related to metallic materials. In manufacturing processes, such as 
joining processes [6–25], deformation processes [26–41], powder metallurgy routes [42–50], and 
additive manufacturing (AM) [51–59], it has been a powerful technique to characterize and evaluate 
the influence of parameters and various stages of production on the final microstructure of the 
component. For example, in AM processes, EBSD presents itself as a technique that can be used in 
the determination and implementation of the production conditions. Besides, the EBSD technique 
has also been widely used to evaluate and characterize the effect of surface treatments [60–63], in-situ 
mechanically tested samples [64–69], or even to study processes related to the dynamic 
recrystallization [70–82] of metallic materials. 

The measurement of characteristics such as crystal lattice, crystallographic orientation, or 
domain/grain dimensions at the nanoscale is a primary key for the nanomaterials research 
development. As is well known, the characterization of nanomaterials is essential for the 
development and application of these materials with unique properties. However, the 
microstructural and mechanical characterization methods of these materials are quite challenging. 
Thorough knowledge of the structure of these materials makes it possible to understand their 
mechanical properties better. EBSD in the SEM is one of the techniques that provide the best chances 
for generating precise quantitative information about crystallographic orientation, crystal structure, 
or strain from ultrafine domains. However, the lateral spatial resolution did not allow the evaluation 
of isolated nanoscale volumes such as nanoparticles or single grains in ultrathin films. Transmission 
Kikuchi diffraction (TKD), also known as transmission EBSD (t-EBSD), can significantly improve the 
spatial resolution limited of the conventional EBSD [83]. The critical difference between TKD and 
EBSD is that the sample is electron-transparent and mounted horizontally or back tilted away from 
the EBSD detector. This geometry results in the diffraction pattern originating from the sample 
bottom surface and a smaller diffraction source volume. 

This review’s main objective is to describe the potential of the EBSD technique in the advanced 
microstructural characterization of metallic materials. The basic concepts of the technique will be 
included, as well as the type of analysis possible. A more detailed presentation will be made in the 
recent application of the EBSD in several research areas of characterization of metals. 
  

Figure 1. Schematic illustration showing the experimental setup for electron backscatter diffraction
(EBSD) analyses.

The use of EBSD in the characterization of materials has undergone rapid acceptance. In recent
years, this use has increased due to the total availability of SEM, the high speed of data acquisition,
and the access to complementary information about the microstructure on the submicron scale [4,5].
The EBSD technique has been applied in several areas of investigation, increasing the knowledge and
implementation of processes related to metallic materials. In manufacturing processes, such as joining
processes [6–25], deformation processes [26–41], powder metallurgy routes [42–50], and additive
manufacturing (AM) [51–59], it has been a powerful technique to characterize and evaluate the
influence of parameters and various stages of production on the final microstructure of the component.
For example, in AM processes, EBSD presents itself as a technique that can be used in the determination
and implementation of the production conditions. Besides, the EBSD technique has also been
widely used to evaluate and characterize the effect of surface treatments [60–63], in-situ mechanically
tested samples [64–69], or even to study processes related to the dynamic recrystallization [70–82] of
metallic materials.

The measurement of characteristics such as crystal lattice, crystallographic orientation,
or domain/grain dimensions at the nanoscale is a primary key for the nanomaterials research
development. As is well known, the characterization of nanomaterials is essential for the development
and application of these materials with unique properties. However, the microstructural and mechanical
characterization methods of these materials are quite challenging. Thorough knowledge of the structure
of these materials makes it possible to understand their mechanical properties better. EBSD in the SEM
is one of the techniques that provide the best chances for generating precise quantitative information
about crystallographic orientation, crystal structure, or strain from ultrafine domains. However,
the lateral spatial resolution did not allow the evaluation of isolated nanoscale volumes such as
nanoparticles or single grains in ultrathin films. Transmission Kikuchi diffraction (TKD), also known as
transmission EBSD (t-EBSD), can significantly improve the spatial resolution limited of the conventional
EBSD [83]. The critical difference between TKD and EBSD is that the sample is electron-transparent
and mounted horizontally or back tilted away from the EBSD detector. This geometry results in the
diffraction pattern originating from the sample bottom surface and a smaller diffraction source volume.

This review’s main objective is to describe the potential of the EBSD technique in the advanced
microstructural characterization of metallic materials. The basic concepts of the technique will be
included, as well as the type of analysis possible. A more detailed presentation will be made in the
recent application of the EBSD in several research areas of characterization of metals.
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2. EBSD Analysis

EBSD or orientation imaging microscopy (OIM) provides information on the image quality,
grain orientation, microstructure, and texture of polycrystalline materials. These datasets allow the
researchers to construct some important maps such as the inverse pole figure (IPF), the grain orientation
spread (GOS), kernel average misorientation (KAM), grain reference orientation deviation (GROD),
and the grain average image quality (IQ). These maps allow the determination of the grain orientation
for the different phases, grain misorientation, dislocation density, and strain or deformation in the
crystal lattice structure. In addition to maps, it is possible to obtain EBSD information on pole figures,
histograms, and Kikuchi patterns.

It is known that the mechanical properties are strongly related to the size, shape, and distribution
of the grains. Grain size maps are an excellent EBSD tool for the characterization of metallic materials.
These maps are made up of different colors that are related to the grain size. Grain and sub-grain
size distributions (equivalent circle diameter) can be easily obtained using these maps. As grains are
identified by defining a critical angle of misorientation and grain boundaries, these are also crucial to
characterization. IPF maps provide information on grain orientation, where each color is related to
the crystallographic orientation. For each map, a reference sample direction is selected, and the color
assignment is made based on the determination of the crystal orientation and the selected viewing
direction [1,5,84].

Phase identification is also another possibility of EBSD analysis. This can be performed using the
indexation of the Kikuchi pattern point to point in small areas, or it is also possible to achieve the phase
map distribution. The first has the advantage of being able to analyze areas that by energy-dispersive
X-ray spectroscopy (EDS) is not possible due to the interaction volume being higher than the dimension
of the evaluated area. In this case, a local analysis can be made in order to identify the phase. However,
it is also possible to obtain maps with the phase distribution, but this is a more global analysis.
It is also possible to use the combination of EBSD and EDS to distinguish the phases during the
acquisition [1,5,84].

Grain boundary engineering (GBE) can be performed in order to improve the properties of
the materials. The grain boundaries strongly influence the properties of the materials, such as the
corrosion resistance, creep, or even deformation behavior. Many reports of GBE materials cite an
enhanced proportion of low-Σ coincidence site lattice (CSL) boundaries, where Σ is the reciprocal
density of coinciding sites, as the factor responsible for property improvements. The EBSD allows the
observation and identification of the different types of grain boundaries. Several possibilities can be
performed in order to study the grain boundaries of the material. Maps with the identification of the
grain boundaries (low and high-angle grain boundaries and CSL boundaries), the distribution of the
character of the grain boundaries, or even the grain boundary plane distribution, can be done. The grain
boundary distribution can be expressed in terms of five parameters, including three parameters of
lattice misorientation and two parameters of the grain-boundary plane normal. This is crucial for
further understanding of the mechanisms of GBE that require a more in-depth knowledge of grain
boundary structure [1,84].

The pole figures (PF) are used to present 3D orientation information in two dimensions to show
the orientations of specific crystallographic planes and directions within a sample. The projected
position of a specific set of crystallographic planes, in which the normal or poles were projected
in a sphere and then in a circle, is shown in a pole figure. The two techniques for doing this are
equal-area projection and stereographic projection. The existence of texture means that the material has
a preferential crystallographic orientation. If a polycrystalline material (that is, a material composed of
many different crystals or grains, similar to most metals, ceramics, or minerals) has texture, it means
that the crystals axes are not randomly distributed. To obtain a PF, it is necessary to choose a specific
crystal direction (for example, the normal plane for the plane (100)), which is called the pole, for each
crystal concerning a set of directions in the material. The complete determination of the texture requires
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the plotting of two PF corresponding to planes that are not parallel and do not have the same diffraction
angle (different interplanar distances) [1,84].

For the recrystallization and deformation behavior, the evaluation of the degree of plastic strain
and the associated stored energy is crucial for the establishment and understanding of the mechanisms
that play a vital role in these processes. The EBSD data can be an essential tool for studying the strain
and deformation of metallic materials. For instance, changes in the IQ value and local orientation
have been used to study the strain and stored energy. The quality and the change in the diffraction
bandwidths of the Kikuchi patterns can be used to evaluate the distortion degree of crystal lattices
induce by elastic strain and, at the same time, the plastic strain that promotes the degradation of the
quality of the diffraction patterns. Besides, the maps that show the misorientation can also be used
since dislocations form in the material; the residual strain is manifest as local variations in lattice
orientation. KAM, grain average misorientation (GAM), and local average misorientation (LAM)
maps can be used to study the local grain misorientation and thus of the strain present in the material.
The GOS and GROD maps can also be used to investigate the strain of the materials but are an essential
tool to study the recovery and recrystallization processes of the materials [1,5,84,85].

3. Sample Preparation

The preparation of samples for EBSD, although some methods are indicated by EBSD
manufacturers such as EDAX-TSL (AMETEK® Materials Analysis Division, Mahwah, NJ, EUA)
and EBSD Oxford instruments (Oxford Intruments Plc, Abingdon, UK), are not yet fully established
in detail. This preparation strongly depends on the type of material to be characterized. In general,
almost all samples for EBSD observation need to be mechanically polished carefully to avoid surface
damage. For the softer material, less grinding/polishing force needs to be applied. There are three main
methods (silica polishing, electropolishing, and ion milling) for the final polishing of EBSD samples to
obtain good quality Kikuchi patterns.

Colloidal silica preparation may be the most straightforward, most economical, and universal
process for preparing samples for EBSD. Colloidal silica is a commercially available solution that
consists of negatively charged particles of silicon dioxide (SiO2). The sample surface is slightly
etched, and therefore, deformation layer during mechanical polishing is removed using this solution.
This method may require several hours of preparation [4,5]. However, the polishing time depends
on the material. For instance, Gee et al. [64] finished the WC/Co hard metal sample preparation for
EBSD with a colloidal silica polish for 30 min. At the same time, Shamanian et al. [6] prepared L-605
Co-based superalloy joints for EBSD analysis by the colloidal silica during 6 h, and Singh et al. [71]
performed the final polishing of TiAl using a dilute solution of water and non-crystalline colloidal
silica (0.05 mm) for 12 to 18 h.

Electropolishing is a popular polishing method for the final step of EBSD preparation. This method
can be used when it is important to remove some plastic deformation due to the production process
or for materials that easy to oxidize. EBSD observation should be done immediately, followed by
electropolishing due to the easy oxidation on the free surface. The polished surface’s quality is
controlled by some parameters, such as voltage, temperature, flow rate, and polishing time. However,
for some materials such as Mg alloys, this method is not the most appropriate. The other limitation
of this process involves selecting the electrolyte as there is no universal electrolyte working for all
materials, and the non-conductive materials cannot be prepared by electropolishing [4,5]. Hurley
and Humphreys [27] have shown that cold-rolled single-phase aluminum alloy can be mechanically
ground and polished and then electropolished in a solution containing 30% nitric acid in methanol,
at −30 ◦C and a voltage of 12 V for EBSD analyses.

Ion milling and focused ion beam (FIB) can also be used to prepare EBSD samples. This process
consists of using an ion beam (Ga+ or Ar+) to remove material. The process is a universal polishing
method for the EBSD preparation of almost all materials [4,5].
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The combination of EBSD with a dual-beam FIB presents an enormous advantage, since it is
possible to perform the 3D mapping. However, the EBSD preparation parameters using ion milling are
not universal and need to be established for each material [86,87].

4. Application of EBSD on the Microstructural Characterization of Metals

In recent studies in the most diverse research areas, the EBSD technique has been widely used in
the microstructural characterization of metallic materials. This technique provided the characterization
of numerous microstructural features that allowed the development, optimization, and implementation
of new manufacturing processes, approaches to conventional methods, or even in the development of
new advanced materials. In addition, with in-situ and ex-situ tests, it is also possible to distinguish
and study the effect of mechanical tests or heat treatments on the materials’ microstructure. EBSD has
also proved to be a technique with clear advantages in GBE materials and also, despite its limitation in
terms of resolution, for ultrafine or nanostructured materials. The following sections aim to describe
and highlight the different research areas involving metallic materials, where the EBSD technique is
used to performed and improve the advanced characterization of metals or metal matrix composites.

4.1. Joining Processes

In the evaluation of a new process or a new approach in the joining of metallic materials, the EBSD
technique is a powerful technique to determine the effectiveness of the process and the processing conditions
and also to evaluate the microstructure of the interface or the changes promoted to the base material during
the process [6–25]. For instance, Shamanian et al. [6] used the EBSD for the characterization of the L-605
Co-based alloy welds processed by pulsed Nd:YAG (neodymium-doped yttrium aluminum garnet; Nd:
Y3Al5O12) laser welding. The authors started with the microstructural characterization of the base material
that was performed through grain size maps, IPF maps, phase distribution maps, and grain boundary
character investigations. The texture was considered by PF and IPF. Based on these results, they observed the
presence of some second phase in the austenite grains that was identified as (W,Cr)7C3 phase. The evaluation
of the grain boundary character revealed that most of the grain boundaries observed at the base metal are
high-angle grain boundaries (HAGBs), and the CSL boundaries had Σ3 character due to the formation
of twin boundaries. The base material did not exhibit texture based on the observation of the PF images.
This initial characterization aimed to evaluate the effect of the bonding process on the base material’s
microstructure. Figure 2 shows the IPF and phase maps, pole figures, and distribution of grain boundaries
of the interface between the base material and the welded zone. The authors found that the grain size of the
metal base was not affected by the fusion welding process, since the average grain size is similar to the one
measure for the initial base metal. According to the phase maps, Figure 2d, the heat-affected zones had
some (W, Cr)7C3 phase in the austenite matrix similar to the base metal. Based on the boundaries’ analysis,
most of the boundaries formed in the heat-affected zones had a HAGB character. Besides, the quantitative
analysis of the CSL boundaries formed in the heat-affected zones revealed that similar to the base metal,
a significant number of CSL boundaries had the Σ3 character, corresponding to the twin boundaries. The PF
and IPF of the heat-affected zone showed the presence of a strong transversal direction (TD) || 〈1 0 0〉
relationship and a weak welding direction (WD) || 〈1 0 0〉 relationship in the weld metal. When the welding
conditions are changed in order to decrease the heat input, similar microstructures are obtained. However,
this change has an influence on the texture austenite grains, showing a strong TD || 〈1 0 0〉 and a weak WD ||

〈1 0 0〉 relationship.
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Figure 2. EBSD results for the single welded sample: (a) Image quality (IQ) map, (b) high-angle 
boundaries (HAGBs) and low-angle boundaries (LAGBs) distribution map, (c) coincidence site lattice 
(CSL) boundaries map, (d) phase map, (e) welding direction (WD) inverse pole figure color map, (f) 
inverse pole figures of the weld zone, (g) inverse pole figures of the heat-affected zone, (h) pole figures 
of the weld zone, and (i) pole figures of the heat-affected zone. Reproduced from [6] with permission 
from Elsevier, 2020. 

Norouzi et al. [7] studied the diffusion brazing of Ti6Al4V to AISI 304 stainless steel by EBSD. 
The combination of EBSD with EDS results and Ti–Cu and Fe–Ti phase diagrams allowed the 
identification of the phases that composed the interface. The IPF map revealed that the interface is 
composed of larger equiaxed grains. Fe–Ti and Ti–Cu intermetallic compounds are present in the 
reaction layers. The same microstructural characterization was conducted for the joint produced for 

Figure 2. EBSD results for the single welded sample: (a) Image quality (IQ) map, (b) high-angle
boundaries (HAGBs) and low-angle boundaries (LAGBs) distribution map, (c) coincidence site lattice
(CSL) boundaries map, (d) phase map, (e) welding direction (WD) inverse pole figure color map,
(f) inverse pole figures of the weld zone, (g) inverse pole figures of the heat-affected zone, (h) pole
figures of the weld zone, and (i) pole figures of the heat-affected zone. Reproduced from [6] with
permission from Elsevier, 2020.

Norouzi et al. [7] studied the diffusion brazing of Ti6Al4V to AISI 304 stainless steel by EBSD.
The combination of EBSD with EDS results and Ti–Cu and Fe–Ti phase diagrams allowed the
identification of the phases that composed the interface. The IPF map revealed that the interface is
composed of larger equiaxed grains. Fe–Ti and Ti–Cu intermetallic compounds are present in the
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reaction layers. The same microstructural characterization was conducted for the joint produced for
80 min. The EBSD results revealed that the amount of Ti–Cu intermetallics decrease with the increasing
of the brazing time.

Sun et al. [8] investigated the diffusion bonded interface between Ti6Al4V (TC4) to Ti–5Al–2Sn
2Zr–4Mo–4Cr (TC17) by EBSD. In addition to allowing the characterization of the interface
microstructure, EBSD also allowed the study of recrystallization during the bonding process.
The microstructural characterization by EBSD and confirmed by transmission electron microscopy
(TEM) indicated that the bonding interface is composed of a α(TC4)/β(TC17) phase boundary (PB).
The LAGBs and HAGBs are observed in the equiaxed β sub-grains and β grains that formed near
the α(TC4)/β(TC17) PB. HAGBs are not observed in the β phase of the as-received base materials.
In addition, the β grains found at the interface exhibit larger misorientation than the β phase of TC17.
This is an indication that the dynamic recrystallization that occurs near α(TC4)/β(TC17) PB.

Jing et al. [9] studied the Zr amount effects in Ti–Zr–Cu–Ni brazing filler for brazing Ti–6Al–4V
alloy by EBSD. The microstructure of the joint interfaces was evaluated by grain orientation, grain,
and phase morphology distribution. Figure 3 shows the results obtained for joints produced with three
brazing alloys with different amount of Zr. All interfaces are defect-free. Strong preferential oriented
grains are observed for joint produced with 18% Zr. Regarding the grain size, as the Zr content level
increases, more coarse grains are formed in the brazing joints. This grain analyses can explain the
brittle fracture that the joint produced with 37.5% Zr that occurred during the tensile test. A larger
grain size could lower the ductility of the material.
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Figure 3. Inverse pole figures (IPF) and SEM images of the interface of a brazed Ti6Al4V using
Ti–Zr–Cu–Ni with: (a,b) 10% of Zr, (c,d) 18% of Zr, and (e,f) 37.5% of Zr. Reproduced from [9] with
permission from Elsevier, 2018.

Phase identification at the joint interface is essential to understand the mechanism associated
with the bonding process and to be able to correlate with the mechanical properties. Due to the
small interaction volume of the EBSD analysis, this technique is crucial for the crystallographic
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characterization of the phases of thin reaction layers (with a smaller dimension than the interaction
volume of the EDS). Simões et al. [12] show the importance of the Kikuchi pattern indexing in the
characterization of diffusion bonded of TiAl to steel through Ni/Ti reactive nanolayers. In contrast,
Wang et al. [13] show the application of the grain maps in the characterization of multilayered interfaces
obtained by diffusion bonding, as shown in Figure 4.
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4.2. Deformation Processes

For components produced by deformation processes such as extrusion, forging, and rolling,
it is crucial to understand the behaviour of the components after the processing and predict the
work hardening and the annealing behavior during the application [26–41]. Using the EBSD, it is
possible to characterize a deformed sample to clarify these models. The grain size orientation and
the mechanism of subdivision of the grains during the deformation are essential. Some works [26,29]
demonstrated the models for the development of substructure with strain by TEM studies. TEM
is a technique that also allows investigating and understanding the rearrangement of fine-scale
dislocation structures introduced by plastic deformation. However, this technique’s limitation arises
on a small scale used in this type of characterization. EBSD overcomes this limitation by allowing
characterizing and quantifying these structural units and the relationships between them on a larger
scale to provide a better foundation for understanding mechanical behavior, work hardening, texture
evolution, and annealing behavior.

Hurley and Humphreys [27] studied by EBSD the substructural development in the cold-rolled
single-phase aluminium alloy. The authors had already carried out several studies through TEM, but the
EBSD allowed them to acquire new knowledge about the formation of substructures during deformation.
The EBSD comprised the TEM results but with the advantages of data that are statistically very sound.
Figure 5 shows the Euler orientation map and a PF image. The microstructure is characterized by
the presence of small cells or subgrains. Parallel bands of elongated dislocation cells of alternating
misorientation, aligned at approximately 35–40◦ to the rolling direction (RD) were observed at a rolling
reduction of 20% and above. After 50% rolling, microshear bands consisting of fine-scale cells linked
up to form thin two-dimensional planar structures within grains are formed. These are persistent
features of the microstructure that rotate toward the rolling plane during further straining and develop
large misorientations.
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More recently, Zribi et al. [32] have been used the EBSD for the study of the deformation behavior
of an Al-7wt%Si alloy processed by equal channel angular extrusion (ECAE). The microstructure of the
as-cast alloy is characterized by the presence of Al dendrites and eutectic zones. Figure 6 shows the
EBSD results for the samples processed by ECAE at 20 and 160 ◦C. Rectangles show eutectic colonies,
while ellipses and star-shaped symbols present aluminum grains. Aluminum grains elongated are
observed for the sample deformed at 20 ◦C (Figure 6a). When ECAE is realized at 160 ◦C, the aluminum
grains remain almost equiaxial (Figure 6d). The dislocation density ρ calculated from KAM, XRD, and
strain rate sensitivity (SRS) experiments revealed a partial recovery at 160 ◦C. EBSD imaging shows
that the dislocations concentrate counter to the silicon crystals. The magnifications in Figure 6c,f show
that a high GND density is stored when ECAE is performed at 20 ◦C.

Kumar et al. [34] investigated the microstructure of AA3003 aluminum alloy subjected to hot and
cold rolling and compared with the as-casting and annealed microstructures by EBSD. The as-cast
sample exhibits a very different microstructure composed of large grains and Al–Fe–Si particles
along the grain boundaries. The rolling processes induce the fragmentation of these particles and an
enrichment of Fe, Mn, and Si is observed. The microstructure of the samples was characterized by a
banded structure composed of elongated grains in the rolling direction. The annealing will promote
the formation of a microstructure with uniform grain size. Regarding texture, the rolling samples
exhibit a strong texture that is not observed for as-casting and annealing samples.
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Figure 6. Microstructures of the as-cast Al-7wt%Si alloy after equal channel angular extrusion (ECAE)
for N = 3 at 20 ◦C (a–c) and 160 ◦C (d–f). (a,d) IPF maps; (b,e) geometrically necessary dislocation (GND)
density mapping as calculated from kernel average misorientation (KAM); (c,f): Magnifications of (b,e)
respectively (ellipses and asterisks denote aluminum; rectangles denote eutectic zones). Reproduced
from [32] with permission from Elsevier, 2019.

The EBSD can also be used to evaluate the microstructural evolution of heat-treated samples
produced by deformation processes. Kamali et al. [31] observed the microstructure evolution of a
cold-rolled ordered Fe–50Co–10V alloy using EBSD. The EBSD maps as KAM and GOS with grain
boundary misorientation and grain size distributions allow understanding the ferrite recrystallization
during heat treatments. The KAM maps, as shown in Figure 7, revealed that the fraction of high-strain
areas significantly decreases with the temperature of heat treatment. However, even for the sample
heat-treated at 750 ◦C for 2 h, the fraction of the high-strain areas is 18%, which means that the
recrystallization is not completed. Similar results can be observed by the observation of GOS maps.
Based on these results, the authors estimated a 97% recrystallization for heat treatment at 750 ◦C during
5 h and 99% for 10 h. Grain boundary analysis shows that the samples are characterized by LAGBs,
and the fraction of these boundaries of ferrite recrystallized grains increases.
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4.3. Metal Matrix Composites and Nanocomposites

The use of EBSD in the characterization of metal matrix composites is also proving to be an
essential technique with significant advantages that no other technique can offer in an automatic and
simplified way. Through the use of this technique, it is possible to assess whether the manufacturing
process suitably produces the composites and also allows not only to perform the microstructural
characterization but also to identify some reinforcement mechanisms as well as the effect of the
reinforcement on the matrix microstructure. Although nanocomposites may have ultrafine structures
and even nanometer reinforcements, the EBSD allows the evaluation of the effect of reinforcement in
the composite matrix, which is crucial for identifying strengthening mechanisms and for understanding
the mechanical behavior of these materials [43–46,88,89].

Falodun et al. [44] characterized by EBSD a titanium alloy reinforced by TiN nanoparticles
produced by spark plasma sintering. The authors performed the EBSD analysis of the nanocomposite
and also of the titanium alloy without the reinforcement processed under the same conditions for
comparing purposes. Figure 8 shows the EBSD results for the nanocomposite. Based on these
observations, it is clear that the addition of the reinforcement induces a decrease in the α-Ti and β-Ti
grains that can be explained due to the grain growth restriction during sintering by the reinforced
structure. The microstructure of the matrix is strongly affected by the TiN particles since a change from
a lamellar into a bimodal structure is observed for the nanocomposites.

Cavaliere et al. [43] investigated the microstructure of the Al matrix nanocomposites produced by
spark plasma sintering by EBSD. The nanocomposites did not exhibit preferential grain orientation;
however, some texture components are observed for different amounts of the reinforcement.
These changes are associated with different rates of recovery, recrystallization, and grain growth
progresses that occurs during sintering.
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Figure 8. Microstructure of sintered Ti6Al4V alloy with the addition of 4 vol.% TiN: (a) SEM image,
(b) phase map, (c) IPF, and (d) index maps. Reproduced from [44] with permission from Elsevier, 2019.

Chen et al. [51] also investigated the grain orientation by EBSD of in-situ TiC/Inconel
625 nanocomposites produced by selective laser melting. The increasing of the TiC amount induced a
significant grain refinement of the nanocomposites. The grain refinement promotes the formation of a
large number of sub-grain boundaries, which hinder the dislocation movement.

Carneiro et al. [45,46] characterized the carbon nanotubes reinforcement nickel matrix produced
by powder metallurgy through EBSD. In these studies, the EBSD results permit consolidating
knowledge about how reinforcement influences the matrix microstructure and which strengthening
mechanisms promote the best properties. The authors used IPF, KAM, GOS maps, and grain boundary
character distribution to evaluate the effect of processing conditions on the final microstructure of the
nanocomposite. They observed that the dispersion/mixture promotes an increase in the density of
dislocation on the powders, which is more significant when using ball milling in this step instead of
ultrasonication. The dislocation structures produced in those initial steps are partially eliminated in
the sintering process due to the activation of recovery and recrystallization mechanisms. However,
the presence of carbon nanotubes (CNTs) in the matrix has a significant effect on the dislocation
annihilation, thus reducing the recovery of the dislocation structures.

Wei et al. [89] performed the microstructural evaluation by EBSD of Ti–Al3Ti laminated composites.
The EBSD results revealed that at the interface of Ti/Al3Ti, grain refinement occurs, and the number
of the LAGBs decrease, while for the Al/Al3Ti interface, the grain coarsens, and the LAGBs increase.
The grain orientation is different for Al3Ti and the interface of these phases with Ti and Al. This occurs
due to the dynamic recrystallization that is different for the different zones of the composites.

4.4. Metal Additive Manufacturing

Additive manufacturing (AM) has been a considerable focus of interest in the scientific community
due to the advantages presented in the production of materials with ultrafine grains, complex shapes,
and chemical compositions. However, the development and implementation of these processes require
extensive microstructural characterization to be able to be related to the properties of the materials and
to be able to establish the best manufacturing parameters. The EBSD technique, as in other fields, then
allows the realization of a complete microstructural characterization that will enable the development
of these AM processes [52–59].

Selective laser melting (SLM) is one of the metal additive manufacturing techniques that consists
in the use of a laser to produced layer by layer the metallic part. Niu et al. [52] characterized by EBSD
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a CoCrFeMnNi high-entropy alloy produced by SLM. The microstructural characterization allows
establishing a relationship between the influence of the SLM volumetric energy density (VED) on
the formation of cracks and the mechanical properties with the crystalline orientation, grain size,
misorientation, and texture. Figure 9 shows the IPF, grain boundary, and grain size distribution for
samples produced with different VED.
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Figure 9. The selective laser melting (SLM) samples of CoCrFeMnNi produced with different volumetric
energy density (VED): (a) IPF images; (b) and (d) grain boundary angle distribution; (c) grain size
distribution. Reproduced from [52] with permission from Elsevier, 2020.

The grains are columnar, and the grain growth occurred along the building direction. The increase
of the VED induced the presence of columnar grains extends over more building layers due to the
higher temperature in the center of the melt pool for higher VED. The average grain size gradually
increases with the VED, since the higher VED results in the higher energy into the metal powder.
All SLM samples are composed of HAGBs, whether the VED is high or low owing to the specifics of the
SLM process. LAGBs are also found in EBSD figures. Under the rapid movement of the laser beam, the
re-melting time of the previously solidified layer is short; thus, the recrystallization is not completed
with the formation of residual LAGBs. Based on these results, the GOS and GROD values gradually
increase with the VED, owing to the high-temperature gradient and more considerable residual stress
due to the higher cooling rate and the more significant thermal stress. The misorientation peak is
shifted to a higher angle with the increase of VED because this peak is related to the recrystallized
grains during the SLM processing. The crystal orientation is also highly affected with the VED, and the
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preferred orientation of the sample follows the transition 〈2 3 3〉 → 〈0 0 1〉 → 〈2 0 3〉 → 〈1 0 1〉 with the
increase of VED.

Wang et al. [53] also investigated the grain structure and texture of 316 L stainless steel produced
by SLM single track throughout the EBSD technique. Figure 10 shows the SEM images and IPF maps of
the samples provided with three scanning speeds. The change in the processing parameters promotes
a significant difference in the microstructure. The increase of scanning speed leads to a change of the
columnar grains from curved to straight. The texture is also affected by the scanning speed, and all
samples exhibit different preferential crystallographic orientation from the substrate.
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Figure 10. Morphology and microstructure of transverse cross-sections of the single tracks of 316 L
stainless steel with scanning speeds of (a,d) 0.75, (b,e) 0.5, and (c,f) 0.25 ms−1. The boundary of the
melting pool is marked by the black dot line. The grain is colored according to the legend in the subplot.
Reproduced from [53] with permission from Elsevier, 2020.

Yang et al. [54] investigated EBSD’s microstructural evolution of Inconel 718 produced by SLM
with different laser power. Figure 11 shows the cross-section macrostructures of samples produced
under different laser powers (500 W to 2000 W). IPF maps revealed that directional solidification forms
in all the SLM states, as a large number of columnar grains growing along the building direction can
be seen clearly. However, there is a noticeable change in the morphology and size of the columnar
grains with the laser power increasing from 500 to 2000 W. While the columnar grains in the sample at
500 W have the largest length and width (Figure 11(a1)), the columnar grains in the sample at 800 W
are interspersed with some equiaxed grains (Figure 11(b1)). The aspect ratio of the columnar grain is
shown in Figure 11h, and the largest aspect ratio (6.3) is observed for the sample at 500 W. The sample
at 800 W has the smallest aspect ratio (2.9), where grains tend to be more equiaxial. The average area
of columnar grains under different laser powers can also be observed at this figure, from which it can
be seen that the average area of the columnar grain decreases from approximately 800 to 250 µm2 with
the laser power increasing from 500 to 1800 W. The texture is influenced by the laser powers used
in the SLM of the Inconel 718. For instance, the lower laser power promotes a strong <001> texture,
while the other samples exhibit a weaker <001> texture.
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process of AISI 420 martensitic stainless steel. The IPF maps presented in Figure 12 revealed that the 
interface region adjacent to the dilution zone exhibits columnar grains. In contrast, equiaxed and 
columnar grains are observed in the center of the bed and dilution zone. The residual strains/stress 
was evaluated by GOS and IQ maps. The authors present this EBSD characterization of the laser-
based additive manufacturing of martensitic stainless streels to be a technique that allowed obtaining 
complete information about the microstructure of the material, and that could help establish the best 
conditions of production of this type of material with this type of AM technique. 

Figure 11. Macrostructure and IPF of cross-section of the SLM-fabricated Inconel 718 samples at the
laser power of 500 W (a,a1), 800 W (b,b1), 1200 W (c,c1), 1500 W (d,d1), 1800 W (e,e1), and 2000 W
(f,f1); (g) evolution of the size of the molten pool with the increase of laser power; (h) aspect ratio of the
columnar grain at various laser powers; (i) size of columnar grain at different laser powers; (yellow
lines represent the molten pool boundary). Reproduced from [54] with permission from Elsevier, 2020.

Alam et al. [55] studied the microstructure by EBSD of the laser-based additive manufacturing
process of AISI 420 martensitic stainless steel. The IPF maps presented in Figure 12 revealed that the
interface region adjacent to the dilution zone exhibits columnar grains. In contrast, equiaxed and
columnar grains are observed in the center of the bed and dilution zone. The residual strains/stress
was evaluated by GOS and IQ maps. The authors present this EBSD characterization of the laser-based
additive manufacturing of martensitic stainless streels to be a technique that allowed obtaining
complete information about the microstructure of the material, and that could help establish the best
conditions of production of this type of material with this type of AM technique.
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Figure 12. Inverse pole figure (IPF) maps showing martensite grain orientation in the cross-section of
(a) bead zone (BZ, center), (b) dilution zone (DZ, center), (c) interface zone (IZ) between the dilution
zone (DZ, interface) and heat-affected zone (HAZ, substrate); (d) stereographic triangle of IPF color
map. Reproduced from [55] with permission from Elsevier, 2020.

4.5. Ultrafine and Nanostructured Materials

In the last few years, the processing of ultrafine and nanostructured materials has attracted
several investigations. The microstructural characterization is fundamental to validating the processes
for the fabrication of these materials and obtaining the properties’ improvement. Improvements in
nanostructured metal components’ properties and performance motivate a complete characterization of
the microstructures and crystallographic orientations of nanostructured metals with nanoscale spatial
resolution. The advantage of using EBSD mainly consists of the higher possibility of investigating
several microstructural characteristics with high resolution. For nanostructured materials, a detailed
microstructural characterization such as grain boundary character distribution, local texture, and the
grain orientation is crucial for the continuous development in this field [87,90–96]. For instance,
Bastos et al. [87] reported the use of the EBSD for the characterization of a nanostructured NiCo alloy
with 20 at.% Ni produced by electrodeposition. The microstructure evaluation was conducted by
texture, phase distribution, grain size, and grain boundary character distributions. Based on the EBSD
results, the authors observed the shape and size of the grains and determined the amount of LAGBs
and HAGBs. The thickness of the deposits had a strong influence on the amount of the twins that
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decrease with the increasing of the thickness. The samples are also characterized by the presence
of a strong (11–20)//ND texture. Despite the resolution’s limit, the use of the EBSD method enables
probing large sample areas, which is important owing to the three-dimensional heterogeneity of the
microstructure of nanostructured NiCo.

In a review of Wu et al. [90], the use of the EBSD for a 2D orientation mapping technique
for structural and orientational characterizations of nanostructured metals is described. In recent
years, the investigation of nanostructured materials produced by plastic deformation processes has
increased. The use of processes that involve plastic deformation promotes the formation of a very
complex structure. For instance, gradient nanostructures at a metal surface can be produced using
friction sliding deformation, high-pressure surface rolling, or surface mechanical grinding treatments.
Using EBSD, it is possible to investigate and characterize these complex microstructures in grain size
and texture. These EBSD results revealed that the process induces characteristic microstructural and
textural gradients. Despite significant technological development in recent years, the EBSD signal
source volume is still limited to a resolution in the order of 20–50 nm, which is insufficient to measure
orientations of nanograins in the topmost layer of gradient nanostructured metals accurately. For the
nanostructured materials, the EBSD is a powerful technique that needs to be combined with TEM or
transmission Kikuchi diffraction (TKD) characterization.

The TKD technique has been used to characterize nanostructure materials or to study characteristics at
the nanoscale of microcrystalline samples [92–96]. For instance, Naghdy et al. [92] studied the geometrically
necessary dislocation (GND) of severely deformed aluminium by TKD, and Liang et al. [93] used the TKD
to quantify also GND in duplex stainless steel at the nanoscale. These investigations demonstrate that
the GND density can be performed through the analyses of the character of the grain boundaries, phase
maps, and KAM maps. Figure 13 show the TKD results showing a higher density of GND close to a Cr2N
precipitate. Other investigations [44,94,95] have shown the crucial importance of TKD in the identification
of the nanoprecipitates. The orientation distribution of the variously identified nanoprecipitates in a 9% Cr
Eurofer-97 alloy with the composition Fe–9.14Cr–0.1C–0.54Mn–0.2V–0.04N–1.11W–0.12Ta–0.025Si (wt%) is
shown in the IPF image of Figure 14.

4.6. Surface Treatment Processes

The characterization of the materials’ surface is also essential, especially for the components
subjected to surface treatment processes. The EBSD can also be used to evaluate the surface treatment
conditions on the microstructure of the surface of the materials [60–63]. Dai et al. [60] studied the
effect of surface-treated by a pulsed laser of a hot-rolled Ti6Al4V sheet on the microstructure by EBSD.
The results showed that this surface treatment induces the formation of two zones: a melted zone
composed of fine martensitic plates with nanotwins, as can be seen in Figure 15, and a heat-affected
zone that presents mixed structures of β particles, martensitic plates, and untransformed bulk α grains.
The increase of the laser power promotes the increase of both zones and simultaneously refines
plate structures.
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Figure 13. Transmission Kikuchi diffraction (TKD) result of Cr2N precipitates at a ferrite–ferrite grain
boundary in the HAZ of a super duplex stainless steel weldment: (a) Phase map; (b) Grain boundary
(GB) map; (c–e) are KAM maps using 1st and 2nd-order scheme, respectively; (f,g) are GND maps using
1st and 2nd-order schemes, respectively. Reproduced from [93] with permission from Elsevier, 2019.Metals 2020, 10, x FOR PEER REVIEW 18 of 32 
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Figure 15. EBSD characterization of a hot-rolled Ti6Al4V sheet surface-treated by pulsed laser: (a) band
contrast (BC) and (c) IPF maps of the 100 W specimen; (b) BC and (d) IPF maps of the 200 W
specimen; (e,f) misorientation angle and rotation axis distributions corresponding to (c,d), respectively.
Reproduced from [60] with permission from Elsevier, 2020.

Lu et al. [61] studied the effects of massive laser shock peening (LSP) treatment, with different
pulse energies on the surface roughness and microstructural evolution of AISI 304 stainless steel by
EBSD. The EBSD results (Figure 16) show that the initial microstructure of the as-received sample
consists of equiaxed austenitic grains, with an average size of the coarse grain up to 30 µm. For the
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LSPed samples, IPF maps revealed that the samples exhibit a higher fraction of larger grains. For the
sample with a pulse energy of 6 J, more homogeneous and fine grains are observed than the sample with
a pulse energy of 3 J. Differences in misorientation is observed that are attributed to the recrystallization
that can occur during surface modification.
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Figure 16. EBSD inverse pole figures and histograms of misorientation angle between neighboring
grains of AISI 304SS (a,b) as-received, (c,d) laser shock peening (LSP)ed sample with 3 J and (e,f) LSPed
sample with 6 J. Reproduced from [61] with permission from Elsevier, 2017.

Mineta [62] also used the EBSD to study the surface modification of an Mg–Li-based alloys
processed by severe plastic deformation. IPF and KAM results revealed that the high strength of
this alloy is attributed to the combination of Hall–Petch relationship and Bailey–Hirsch relationship.
The EBSD analysis allowed understanding the mechanisms that are crucial for future improvements in
various properties for Mg–Li-based alloys.

4.7. Dynamic Recrystallization (DRX)

The study of the dynamic recrystallization mechanism unique for high-entropy alloys is crucial for
applying these alloys. Recovery and recrystallization processes control the restoration of the materials
with increasing temperature. This process involves the rearrangement of the dislocation structures.

Haghdadi et al. [70] investigated the effect of the addition of 0.6 and 0.9 M Al to a CoCrFeNi alloy
on the microstructure and hot deformation/dynamic restoration by EBSD. The results show that the
two samples exhibit very different microstructure: The Al0.6CoCrFeNi alloy has an face-centered cubic
lattice (FCC) matrix with dispersed BCC particles and surrounded by an interdendritic body-centered
cubic lattice (BCC) phase, while the Al0.9CoCrFeNi alloy has a BCC matrix with allotriomorphic and
intragranular dispersed FCC particles. Regarding dynamic recrystallization, the strain incompatibility
at the interphase boundary in both alloys increases the localized deformation, which results in
faster kinetics of discontinuous (Al0.6 alloy) and continuous (Al0.9 alloy) dynamic recrystallization
mechanisms, because Al0.6 alloy mainly occurs at the interphase boundary mantle regions through the
formation of Σ3 boundaries. Sub-grain coalescence occurs within the grains far from the interfaces.
In the Al0.9 alloy, the BCC matrix softens through the continuous dynamic recrystallization (CDRX)



Metals 2020, 10, 1097 21 of 32

mechanism. It is characterized by a progressive conversion of low-misoriented sub-grains into
(sub)grains delineated partly by LAGBs and partly by HAGBs.

Understanding the dynamic recrystallization mechanisms is also crucial for alloys, such as TiAl
alloys. TiAl alloys with high Nb (5 to 10 at.%) amounts exhibit high resistance to creep and oxidation,
which makes them highly interested in high-temperature applications of these alloys [97,98]. However,
the low hot workability has remained a significant setback for high Nb-based γ-TiAl alloys [99,100].
Some studies indicated that the occurrence of dynamic recrystallization could improve the workability
due to the considerable grain refinement observed. Therefore, the understanding of the microstructural
evolution during the dynamic recrystallization phenomenon and its kinetic aspects assume more
considerable significance in the microstructural control of these alloys.

Several studies were conducted in the EBSD investigation of the dynamic recrystallization of the
TiAl alloys [71–75]. Singh et al. [71] demonstrated the use of the EBSD for the study of the dynamic
recrystallization of γ-TiAl alloy. The microstructural evolution during dynamic restoration processes as
a function of temperature and strain rate is shown through the IPF maps obtained by EBSD. Figure 17
shows the results obtained.
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The DRX fraction increases with increasing temperature and decreasing strain rate. 
Development of very fine DRX grains can be further noticed along the prior lamellar colony 
boundaries resembling a “necklace”-structure at high strain rate (0.5s−1) and lower deformation 
temperatures (from 1000 to 1100 °C). On the contrary, well developed and coarse DRX grains with a 
relatively large spread of grain size distribution are observed at the deformation conditions with low 
strain rate (0.005s−1) and higher temperatures (from 1100 to 1200 °C). It is also accompanied by 

Figure 17. EBSD microstructural characterization of the sample with high Z (1000 ◦C, 0.5s−1) condition:
(a) HAGBs overlayed band contrast map, (b) phase map, and (c) KAM maps; (d) HAGBs and
LAGBs overlaid band contrast map, (e) misorientation graphs, and (f) dynamic recrystallization
(DRX)-partitioned IPF map of γ-phase. (g) HAGBs and LAGBs overlaid band contrast map,
(h) misorientation graphs and (i) DRX-partitioned IPF map of α2-phase; and (j) HAGBs and LAGBs
overlaid band contrast map, (k) misorientation graphs, and (l) DRX-partitioned IPF map of β-phase.
Adapted from [71] with permission from Elsevier, 2020.
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The DRX fraction increases with increasing temperature and decreasing strain rate. Development
of very fine DRX grains can be further noticed along the prior lamellar colony boundaries resembling a
“necklace”-structure at high strain rate (0.5 s−1) and lower deformation temperatures (from 1000 to
1100 ◦C). On the contrary, well developed and coarse DRX grains with a relatively large spread of grain
size distribution are observed at the deformation conditions with low strain rate (0.005 s−1) and higher
temperatures (from 1100 to 1200 ◦C). It is also accompanied by coarsening and fragmentation of the
remnant γ + α2 colonies. At high strain rates, the kinking/bending of lamellar structures predominates.
Such kinked lamellar structures act as nucleation sites for dynamic recrystallization, as observed in the
earlier studies of a range of γ-TiAl-based alloys. To evaluate the Zener–Hollomon parameter (Z) effect
on the dynamic restoration behavior, the orientation, grain boundary character, and misorientation
distribution by KAM and GOS maps were performed for different deformation conditions with high Z
(1000 ◦C, 0.5 s−1), medium Z (1100 ◦C, 0.05 s−1), and low Z (1200 ◦C, 0.5 s−1). It has been shown that
discontinuous dynamic recrystallization (DDRX) dominates at the high Z condition, resulting in a fine
and homogeneous recrystallized grain structure. On the other hand, at lower Z conditions, a broad
spectrum of recrystallized grain size distribution is developed due to a combination of DDRX and
CDRX processes. The latter process is prevalent toward higher strains.

For other titanium alloys such as Ti6Al4V [76], nickel-based superalloys [77–79], aluminum
alloys [80], high-strength low-alloy (HSLA) steel [81], or even magnesium alloys (ZK30) [82],
hot-working is an important step in their manufacture. Therefore, it is essential to know the effect
of this processing on the resulting microstructure. For excellent hot workability, uniform DRX of the
microstructure is required, without the onset of instability; the material is deformed in a deformation
regime characterized by high strain rate sensitivity.

4.8. Mechanical Testing Characterization

The understanding of the mechanical behavior at the microstructure scale is a critical factor for
the material’s macroscopic behavior understanding. EBSD can also be used to observe the samples’
behavior during mechanical testing. This characterization can be performed through in-situ SEM
or even in the samples before being subjected to mechanical tests. This will allow the development
and understanding of the mechanism that plays a role in the mechanical tests. The EBSD results can
provide information about the degree of plastic deformation due to the possibility of analyzing the
crystallographic orientation.

Gee et al. [64] showed the application of EBSD in the evaluation of plastic deformation in the
mechanical testing of tungsten carbide-cobalt (WC/Co) hard metal. The mechanical tests performed
were compression fatigue tests on notched bars and model scratch tests on polished samples. The EBSD
results revealed that this technique effectively evaluates the plastic deformation of the samples. The IPF
maps revealed that there is no preferred orientation in either the unworn or worn WC grains. The local
misorientation images show that local misorientation is restricted almost entirely to the scratches.
A reduction in band contrast and indexing with the number of scratch passes was verified. The results
of the examination of the fatigue sample results imply that yield through fatigue is mostly in the Co
binder and just beginning to be transmitted to the WC skeleton regions adjacent to Co, where the
constraint from the WC is least.

Kozmel et al. [65] studied the application of EBSD on the characterization of Al–Cu-based alloys
subjected to high strain rate shear–compression tests. Microstructural characterization revealed a
formation of shear bands with impaired mechanical properties after a critical strain level was reached.
Figure 18 presents the IPF and LAM maps for the different alloys and subject to different shear rates.
The strain promoted the rotation and refinement of grains as the deformation increased. Shear bands
occurred without preferential crystallographic orientation, as IPF and Schmid analysis showed. Besides,
the microstructure of the increased alloying is characterized by an increased level of local misorientation.
For higher shear areas, dynamic grain refinement was observed.
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macroscopic loading becomes very important, the heterogeneities of strains within the 
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Figure 18. IPF maps and local average misorientation (LAM) maps of (a) Al–Cu after an equivalent
plastic strain of 0.34, (b) Al–Cu after an equivalent strain of 0.42, (c) Al–Cu–Mn–Mg after an equivalent
strain of 0.30, (d) Al–Cu–Mn–Mg after an equivalent strain of 0.47, (e) after an equivalent strain of 0.11,
and (f) after an equivalent strain of 0.22. Adapted from [65] with permission from Elsevier, 2015.

Rui et al. [101] showed the application of EBSD on the study of creep damage of austenitic stainless
steel. The authors estimated the creep strain by the grain lattice distortion parameter through GROD
maps. Figure 19 shows the IPF and GROD maps for samples-tested specimens under various creep
conditions (σ0, T) and creep strain (elongations).

In-situ EBSD can also be performed to evaluate the microstructural changes during mechanical
tests. Djouda et al. [66] performed in-situ tensile tests in SEM/EBSD equipment to characterize
nanoscale strains at the 316 L austenitic stainless steel surface. Figure 20 shows the EBSD results of
samples carried out at three loading levels. The first EBSD acquisition (EBSD_0) was made until the
elastoplastic transition, the second (EBSD_1) was made at the elasto-plastic transition, and the third
one (EBSD_2) was made in the plastic domain. Based on these results, the authors presented the
microstructural evolution during the tensile tests. At the vicinities of the twins, the appearance of the
strains that are followed by the arising of slips at the surface of the grains was visible. The increase of
deformation induces the multiplication of slips. Most of the grains exhibit slips on their surface, some
of which have cross slips that indicate the activation of two distinct slip systems on the same grain.
These twinning and slipping activities result in significant work hardening. When the macroscopic
loading becomes very important, the heterogeneities of strains within the microstructure are very
significant. They occur in different strain gradients on the surface of the same grain. Continuity of the
deformations between grains is observed; it takes place through the grain boundaries and the slips.
Then, it becomes difficult to distinguish the boundaries of grains. Cracks are also seen at the surface of
the sample.
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20Ni–Nb–N and 18Cr–9Ni– 3Cu–Nb–N austenitic stainless steel specimens under various creep 
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Figure 19. IPF and grain reference orientation deviation (GROD) maps of interrupted type
25Cr–20Ni–Nb–N and 18Cr–9Ni– 3Cu–Nb–N austenitic stainless steel specimens under various
creep conditions (σ0, T) and creep strain (elongations). Reproduced from [67] with permission from
Elsevier, 2019.
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texture. It was found that except for tiny grains and twins, most of the recrystallized grains tended 
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boundaries also increases as a result of the formation of deformation-induced grain boundaries. 

Figure 20. IPF obtained from the three EBSD acquisitions, (a) EBSD_0, (b) EBSD_1, and (c) EBSD_2,
(d) the microstructure at the initial step, and (e) the strain map εxx. Reproduced from [68] with
permission from Elsevier, 2019.

Li et al. [67] evaluated the deformation behavior of dual-phase steel during uniaxial tensile tests
by EBSD. The results show that the fracture starts in ferrite grains close to the martensite grain, as in
these grains, the plastic deformation concentration is observed. As expected, the LAGBs fraction
increased with the increase of the strain. Rotation occurred in some grains, which were subdivided
into different regions due to the activation of different slip systems to ensure a compatible deformation
of the adjacent grains. Lattice rotation within one single grain differs from region to region.

Wu et al. [68] used a combination of an in-situ tensile technique and EBSD to investigate the
changes in microstructure and texture during the plastic deformation of nickel with a high cubic
texture. It was found that except for tiny grains and twins, most of the recrystallized grains tended
toward the <001> pole. The only difference was that grains with a soft orientation fluently joined in
the activation of the slip system, with the movement of dislocations playing a significant role in these
grains. Contrariwise, the hard-orientation grains maintained the coordination of plastic deformation
employing rotation. As strain increases, the fraction of LAGBs increases gradually due to the movement
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of dislocations. In contrast, the incidence of HAGBs decreases. The number of total grain boundaries
also increases as a result of the formation of deformation-induced grain boundaries.

Gussev et al. [69] conducted in-situ mechanical tensile tests coupled with EBSD analysis of 304 L
steels. IPF and KAM maps were used to evaluate the formation of the twins for the steel with a higher
amount of Ni and the martensitic transformation in steel with 8% of Ni. Deformation twins observed in
the in-situ tests were similar to the results found in the ex-situ experiments. The authors also revealed
that the potential sensitivity of the acting deformation mechanisms to the beam current value should
be considered during in-situ SEM–EBSD testing.

Table 1 shows a summary of the microstructural characteristics of metals that can be characterized
by EBSD. It can be seen that the EBSD technique is a very versatile technique that allows obtaining
information and distinguishing a very high number of microstructural characteristics of various pure
metals and their alloys. The information obtained is crucial in the development and implementation of
new advanced materials and new manufacturing technologies.

Table 1. Microstructural characteristics of metals that can be characterized by EBSD. GOS: grain
orientation spread.

EBSD Results Microstructural Features

Phase maps Phase distribution [6,15,29–31,42,56,71–75,89]

Grain size maps Average grain size, grain size distribution
[6,37,39,51,59,77,81,87]

IPF and PF figures Orientation and texture
[6,8,15,17,20,29,51,52,57,59,64,73,76,82,87]

PF figures Orientation and microshear bands [27]

IPF maps Grain structure and orientation
[6,8,14–23,30,39,40,48,52,56–60,64–67,70,71,76,78–82]

Grain boundary character distribution LAGBs, HAGBs, and CSL
[6,14,17,19,24,31,37–40,45,46,68,70,72,73,75–77,79–81,87,94]

Image quality Coherence of grains [13] and residual stress [89]

KAM maps GND dislocation density, deformation and strain gradients,
grain misorientation [14,22,31,32,45,46,60,68,71,73,78]

GOS maps Recrystallized grains [12,45,46]

GOS and GROD maps Deformed and recrystallized grains [37,52,71,74,79,89]

GROD maps Study and estimate the creep strain [74]

Internal average misorientation angle Recrystallized grains and deformed regions [51]

GND maps Deformation-induced grain boundaries and twins [68]

LAM maps Quantify the ability of the microstructures to accumulate
deformation [36,76,94]

Band contrast texture maps Texture relative to the compressive loading axis [76,77,94]

Schmid factor maps and histograms Plastic strain levels [94]

Taylor and Schmid factors Yield strength of different grains [36,67,76]

5. Conclusions

In the last five years, the microstructural characterization of metals has evolved significantly due
to the increased use of the EBSD technique. This interest is due to the fact that this technique allows
obtaining information on a high number of microstructural characteristics from obtaining diffraction
patterns and data treatment into diverse maps, figures, and histograms. The diffraction patterns
obtained are used to measure the crystal orientation, grain boundary misorientations, grain size,
phase identification, texture, and strain. EBSD is a powerful technique even for nanostructured
materials, despite the limited resolution of this technique (20–50 nm). The great challenge of this
technique consists in the preparation of the sample that has to be adjusted, depending on the material
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under study. However, after this challenge has been overcome, this technique allows characterizing
different materials, such as titanium alloys, steels, Ni-based superalloys, aluminum alloys, copper
alloys, Co-based alloy, ordered Fe–50Co–10V alloy, metal matrix composites and nanocomposites, and
CoCrFeMnNi high-entropy alloy, among others metallic materials. The EBSD technique is versatile
in the materials it can characterize, and furthermore, it enhances microstructural characterization
in the most diverse research areas. EBSD can be useful and extremely advantageous in the joining
processes of metallic materials, characterizing the example of the weld, heat-affected zone, and base
material on deformation processes where the technique can, for example, identify regions with higher
dislocations cells. This technique, besides pure metals and alloys, is equally useful for composites and
nanocomposites characterization by identifying reinforcement mechanisms or reinforcing materials on
the matrix microstructure. The metal additive manufacturing is a research field that can also benefit
from EBSD to analyze the influence of the laser used on the sample microstructure, besides helping
adjust the production parameters and relate them with the final microstructure. Despite the resolution
limit, with EBSD, it possible to study ultrafine and nanostructured materials using the detailed
characterization of critical features as grain boundary distribution. Since some maps, such as GOS,
provide valuable information about the recovery and recrystallization process of the microstructure
and dislocation cells and grain formation, this technique is frequently used to study the dynamic
recrystallization of high entropy alloys. Another advantage of EBSD is the possibility of being used
in-situ, making the microstructural characterization possible while mechanically testing the material,
which is crucial to understand the deformation process and influence the microstructure. For these
reasons, EBSD is revealing to be unique and essential for an in-depth study of metallic materials.
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