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Abstract: The bonding of metallic alloys and composite materials in the form of a hybrid structure is
a line of great interest for the current industry. The different machinability of both materials requires
a specific machining process. Abrasive water-jet machining (AWJM) is an excellent technology for
the simultaneous machining of both materials. However, defects at the micro and macro-geometric
level have been detected in several scientific articles. In this review, a detailed study of the two main
defects in metals, composite materials and hybrid structures has been developed. The conclusions
of several scientific articles have been exposed for a better understanding of the topic in articles
between 1984 and 2020. The influence of the cutting parameters on the reduction in kinetic energy of
the water jet and the order of stacking of the materials in the hybrid structure is the main objective in
order to minimize these defects. Cutting parameter optimization studies, predictive model proposals,
process-associated defects and evaluation methodologies have been discussed. The aim of this article
is to set a solid background on AWJM machining in hybrid structures and on the influence of cutting
parameters on generated defects and machining strategies to obtain the best results at a macro and
micro-geometric level.

Keywords: hybrid structure; metal/CF; abrasive water-jet machining (AWJM); taper; surface qual-
ity; review

1. Introduction

The search for materials that improve the existing performance is constantly evolv-
ing in various sectors. In this sense, current industry seeks to take advantage from the
properties offered by both metal alloys and thermoset or thermoplastic composites, such
as in the automotive sector in electric vehicles, the aeronautical sector in the reduction in
aircraft weight or the naval sector [1–3]. The need to satisfy the increasingly comprehensive
requirements of the market has led to the search for ways to improve their properties
through various means [1].

One way to take advantage of materials with different nature is the formation of a
hybrid structures (Figure 1). These structures are obtained by joining metal and composite
sheets. In this way, the resistance of the fibers and the conformability of the metals are
combined [4–7].
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Figure 1. Graphical representation of a hybrid structure composed of dissimilar materials [8]. 

These structures stand out for having mechanical, physical, durability and cost ad-
vantages [4]. However, these hybrid structures also have some disadvantages. Among 
them, the need to be manufactured by means of adhesives or thermal joints that ensure 
good insulation between the components stands out; this is mainly because the materials 
that make up the system may show a different electrochemical potential, which would 
lead to corrosion under specific environments. 

Nevertheless, the joining of both materials into one is a great challenge due to the 
difficulties they present. Below are some techniques used in different studies focused on 
obtaining hybrid structures. 

Bernd-Arno et al. [9] explain a method for joining steel sheets and CFRPs (carbon 
fiber-reinforced polymers), and they indicate the need to avoid contact between both ma-
terials to prevent corrosion defects and to use tools with the ability to vary their tempera-
ture to perform the manufacturing process of the material as previously exposed. 

At the same time, the performance of a surface texture can be fundamental for the 
correct joining of the materials. Klotzbach et al. [10] propose the use of laser technology 
for the joining process between the metallic alloy and the composite material. Thus, laser 
can be used as a preliminary preparation in order to eliminate residues and improve the 
bonding area. In addition, it can generate a high intensity of radiation in local areas, which 
heats the metal by conduction, causing the melting of the thermoplastic matrix in contact 
with the material in order to make the joint. 

On the other hand, Artaza et al. [11] propose the use of abrasive water-jet machining 
(AWJM) to perform textures on steel surface sheets to improve the quality of the union 
between the metal and a composite layer. To do this, they join steel plates textured by this 
technology to three types of composite materials obtained by different manufacturing 
processes (infusion, prepreg and union by means of a structural adhesive). That research 
concluded by highlighting the importance of the realization of a proper textured surface 
to obtain high-quality bonding properties. 

Nowadays, joining dissimilar materials is a challenge. Performing a correct surface 
preparation and selecting the appropriate technology for their union are two of the main 
research lines on this topic. 

Since they are materials of a different nature, they present, at the same time, different 
defects when they have to be machined in order to give their final shape. This is a great 
challenge for the current industrial sector. As an example of previously described is the 
performance of drilling operations of hybrid structures in the aeronautical sector. The 
most commonly used configurations are “CFRP-Aluminum” [1,12] and “CFRP-Titanium” 
[13–15]. The aeronautical sector, therefore, seeks to reduce time and costs by machining 
in a single step structural elements to be assembled by means of mechanical joining oper-
ations through rivets [1,16]. Thus, a need constantly arises to reduce the final weight of 
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These structures stand out for having mechanical, physical, durability and cost advan-
tages [4]. However, these hybrid structures also have some disadvantages. Among them,
the need to be manufactured by means of adhesives or thermal joints that ensure good
insulation between the components stands out; this is mainly because the materials that
make up the system may show a different electrochemical potential, which would lead to
corrosion under specific environments.

Nevertheless, the joining of both materials into one is a great challenge due to the
difficulties they present. Below are some techniques used in different studies focused on
obtaining hybrid structures.

Bernd-Arno et al. [9] explain a method for joining steel sheets and CFRPs (carbon fiber-
reinforced polymers), and they indicate the need to avoid contact between both materials
to prevent corrosion defects and to use tools with the ability to vary their temperature to
perform the manufacturing process of the material as previously exposed.

At the same time, the performance of a surface texture can be fundamental for the
correct joining of the materials. Klotzbach et al. [10] propose the use of laser technology
for the joining process between the metallic alloy and the composite material. Thus, laser
can be used as a preliminary preparation in order to eliminate residues and improve the
bonding area. In addition, it can generate a high intensity of radiation in local areas, which
heats the metal by conduction, causing the melting of the thermoplastic matrix in contact
with the material in order to make the joint.

On the other hand, Artaza et al. [11] propose the use of abrasive water-jet machining
(AWJM) to perform textures on steel surface sheets to improve the quality of the union
between the metal and a composite layer. To do this, they join steel plates textured by
this technology to three types of composite materials obtained by different manufacturing
processes (infusion, prepreg and union by means of a structural adhesive). That research
concluded by highlighting the importance of the realization of a proper textured surface to
obtain high-quality bonding properties.

Nowadays, joining dissimilar materials is a challenge. Performing a correct surface
preparation and selecting the appropriate technology for their union are two of the main
research lines on this topic.

Since they are materials of a different nature, they present, at the same time, dif-
ferent defects when they have to be machined in order to give their final shape. This
is a great challenge for the current industrial sector. As an example of previously de-
scribed is the performance of drilling operations of hybrid structures in the aeronautical
sector. The most commonly used configurations are “CFRP-Aluminum” [1,12] and “CFRP-
Titanium” [13–15]. The aeronautical sector, therefore, seeks to reduce time and costs by
machining in a single step structural elements to be assembled by means of mechanical
joining operations through rivets [1,16]. Thus, a need constantly arises to reduce the final
weight of the structure which has increased the interest in adhesive joints compared to
mechanical ones.
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The strategic interest in this kind of material configuration is therefore denoted. How-
ever, these material configurations can receive different nomenclatures [4].

FML (Fiber Metal Laminate): Overlay of low thickness sheets of metal alloys and unidi-
rectional composite material stacked alternately. The union of both can be by mechanical
or adhesive bonding. However, these materials can be made up of thin metal sheets and
unidirectional fiber, the binder being a thermostable or thermoplastic polymer matrix [17].

Stack: It refers to the arrangement of the materials when forming the joint. There are
usually two plates that make up the structure; they are of equal or different thicknesses or
even the same type of material [18]. This nomenclature, as has been observed, is the most
common nomenclature in current research.

Hybrid Structure: This is the nomenclature that has begun to be used in the last few
years and that will be adopted throughout this research work. It refers to the union of a
metallic alloy to a polymeric matrix composite material, which can be joined by means of
an adhesive or thermal bond [19].

2. Abrasive Water-Jet Machining

Non-conventional processes are currently attracting a lot of interest because they can
provide a very high performance. The correct machining of different metal alloys and
polymeric matrix composite materials has been one of the great challenges in recent years
due to the characteristics mentioned above. These hybrid materials have been machined
with different technologies, from conventional techniques in drilling and milling operations,
to water- jet cutting processes and laser technologies.

Abrasive water-jet machining (AWJM) can be a very interesting choice in this context.
Dr. Mohamed Hashish is considered as the father of this machining technology, who
proposed a series of models and background on water-jet machining of metals [20–22]. It
is a flexible process, capable of achieving high productivity in the form of high material
removal rates. In addition, it generates low machining forces and, especially, generates a
very small temperature range compared to conventional processes. This is of great interest
because it minimizes the probability of deterioration or degradation of the polymeric matrix
of the composite material [23]. From an environmental point of view, this process has high
efficiency by using water at high pressure, that can be reused later, reducing its negative
impact on the environment. Compared to conventional technologies, there is no physical
tool, and there is much less wear on auxiliary elements, reducing process costs as it can be
used over a wide range of materials with different machinability at the same time [19]. In
addition, metalworking fluids (MWF) are not required [24].

Nevertheless, this technology has different defects associated with the process. The
AWJM process generates regions with different surface quality depending on the thickness
of the material. It also generates variations of kerf widths at the entrance and exit of the
material in the form of conicity or taper angle, mainly caused by the dispersion of the
kinetic energy of the water jet. These defects concern the micro and macro-geometric
deviations of the final product. These variations are key parameters for the evaluation of
the geometry within the design and assembly specifications.

Water-jet machining uses a mixture of fluid and solid particles that is accelerated and
causes the deformation or removal of the target material on which it is impacted. The jet
can be composed of any liquid, but for economic and environmental reasons, the liquid
used is usually a mixture of water and air. The water, by presenting a higher density,
applies a higher impact pressure during machining [25,26].

In this process, a third element consisting of small abrasive particles is added to
the air and water flow. These can be of any material, shape or size, and must be harder
than the material to be machined in order to remove it and cause as little damage as
possible [25,27,28]. These particles usually show irregular geometries and sharp edges.
However, more rounded particles can be used which generate deformations and residual
compressive stresses [11].
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Abrasive particles are absorbed by the vacuum created in the mixing chamber, due
to the pressure drop at the jet periphery caused by the acceleration of the water jet. In
this chamber, the particles are mixed with the water jet at high speed and both are passed
through a focusing nozzle, also called a mixing chamber, which is slightly larger in diameter
than the hole through which the water passes before. This tube has homogenizing the fluid
jet with the particles set as the main function (Figure 2).
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Figure 2. Representative diagram of an abrasive water-jet machining process adapted from [29].

If the particles to be used have a reduced size and an irregular geometry with sharp
edges, the impact speed they reach is very high, close to 1000 m/s [30,31], which allows
these particles to penetrate into the material to be machined, generating a permanent
crater [25,27]. It should be noted that abrasive particles may collide inside and reduce final
size when mixed with water flow.

Finally, when they are ejected by the nozzle, the jet expands freely in a divergent way,
reducing its power density and thus the machining capability if the distance between the
nozzle and the material is very high [32–34].

The removal of material during abrasive water-jet cutting is based on the contin-
uous impact of solid particles on the material. This process can be divided into four
sub-mechanisms in which abrasive particles erode the material surface: cutting, fatigue,
melting, and brittle fracture [35,36]. These mechanisms do not act separately, but in combi-
nation. In this way, the final cuting effect is generated by the geometric superposition of
craters formed by the particles that have impacted the material [37,38]. It is necessary to
differentiate between the behavior of ductile materials and fragile materials, since due to
their different properties they show different behaviors [28,39]. Ductile materials suffer
plastic deformation during cutting, while brittle materials are subjected to cutting through
fracture.

However, it is a process that can present a series of limitations. Due to the loss of
kinetic energy during machining and the different machinability of the materials, various
defects can occur. Regions of different surface quality have been detected in several
investigations generating striations in the final region known as lag defect. At the same
time, the resistance of the materials to be machined reduces the kinetic energy of the water
jet. This produces a difference between the upper width of the cut and the lower width
generating a defect known as taper angle. This defect is enhanced by the erosion effect
of the abrasive particles in the initial moments. These produce a rounding on the edges,
generating an area affected by erosion.

These defects will be discussed in the following sections, focusing on the material to
be machined and the correct selection of cutting parameters.



Metals 2021, 11, 164 5 of 29

3. Associated Defectology in AWJM: Cutting Geometry

As previously mentioned, abrasive water-jet machining is a highly flexible process
that can achieve high performance in the form of high material removal rates compared to
other conventional or traditional processes, such as milling [40]. However, it has associated
defects and issues that must be considered to generate an adequate cut to accommodate
the final specifications.

These defects are associated with the final geometry after the machining process. In
comparison with conventional processes, the water jet is not a solid element. When it
comes out of the nozzle it diverges until it comes into contact with the material. This
divergence minimizes its kinetic energy, as detailed in Figure 3.
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This effect causes a decrease in the kinetic energy from the initial impacts against the
target material. From this moment the flow of water and abrasive particles begins to erode
the material until it is able to pass through it completely. Nevertheless, as it penetrates the
material, the water jet itself continuously loses kinetic energy, causing the diameter of the
water jet and the width of the machined material to be reduced in conical form.

This effect produces the characteristic cutting geometry associated with the abrasive
water-jet cutting process, referred to as taper cutting (Figure 4). This geometry is usually
characterized by three geometric factors: top width (Wt), bottom width (Wb) and the taper
angle (Φ).
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cutting.

All these geometrical factors define the geometry generated by this technology, which
are directly associated with the previous selection of cutting parameters or input parame-
ters: hydraulic pressure (P), traverse speed (TS), abrasive mass flow (f) and the distance
between the nozzle and the upper surface of the material to be machined (d). Depending
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on the increase or decrease in these cutting parameters, the obtained cutting geometry will
show a more pronounced conicity, or an almost perpendicular walls will be achieved with
a minimum conicity.

In this way, the cutting geometry can be calculated in different ways. The first way
consists of a ratio between the upper width and lower width (1). The closer this ratio is to
1, the smaller the taper and the better the cutting geometry.

Taper =
Wt
Wb

(1)

It is a simple and generic equation that directly relates the variation between both
widths obtained. Although most of the current research focused on AWJM use this relation
to calculate the generated taper, more aspects that determine this geometry are starting to
be taken into consideration [14,32]. In particular, the initial damage region (IDR) defect may
alter or vary the actual top width generated during this process, as shown in Figure 5. For
the calculation of Wt, the distance between the upper points where the cut is considered to
begin is determined. However, if the IDR defect did not exist, those points would be closer
(Wt2), generating an upper width different if the points to be chosen are those generated
by the IDR defect (Wt1) [41].
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Another way to calculate the obtained geometry and its taper is through the taper
angle. This is calculated through Equation (2), where E represents the value of the thickness:

Φ = tan−1
(

Wt − Wb
2 × E

)
(2)

In general, the variation of this defect according to the established cutting parameters
can be seen in Figure 6 [30,31].
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As shown, the taper decreases significantly with an increase in pump pressure, as this
increases the cutting energy. On the other hand, the influence of the traverse speed follows
the same trend as the previous case: the taper increases with the increase in the traverse
speed. Finally, an increase in the abrasive diameter reduces the formation of the taper due
to the increase in the cutting capacity given to the water jet, minimizing the loss of kinetic
energy [31]. A comparison of articles focusing on the taper defect as a function of the type
of material is shown in Table 1.

3.1. Cutting Geometry in Metal Alloys

Kumar et al. [42] carried out a parametric study of AWJM on a carbon steel EN8, in
which pressures varied between 3200 and 3600 bar, abrasive mass flows between 250 and
450 g/min, and a traverse speed between 154 and 220 mm/min. The average width of the
cut made for each combination was evaluated, as well as the angle of taper originated. In
this study, it was determined that the combination of a pressure of 3600 bar, the highest,
with, likewise, the highest values of abrasive mass flow and traverse speed, generates
the lowest taper angle. This combination is associated with a maximum kinetic energy
of the water jet with a maximum cutting capacity, having a high number of abrasive
particles impacting against the surface. In addition, by increasing the speed of the jet, the
collisions between abrasive particles may be reduced, producing a more homogeneous
cutting process.

Dhumbare et al. [43] carried out a parametric study using a 6 mm thick mild steel as
target material. They performed an ANOVA statistical analysis in order to determine the
statistical influence of three input variables on the geometry of the taper angle cut. The
input variables were the traverse speed (85–567 mm/min), the standoff distance (3–7 mm)
and the abrasive mass flow (390–450 g/min). This study concludes that, for a constant
hydraulic pressure, the most influential parameter in the generated conicity is the traverse
speed, followed by the standoff distance. In addition, the authors established a series of
predictive models through a response surface methodology using second-order quadratic
models in which they related these input variables with the results obtained for the taper
angle.
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Table 1. Summary of parameters affecting kerf taper. T (thickness), P (Pressure), TS (Traverse Speed), Sd (Standoff Distance);
AMF (Abrasive Mass Flow).

Ref Material T (mm) P (MPa) TS
(mm/min) Sd (mm) AMF

(g/min) Other Main Contribution

[31] Graphite/
epoxy 16 1103-138-

172-241 96-174-234 1-2.5-4 300-600 -

Grit size and Sd are the
most influential

parameters on taper
defect.

[44] CFRP 26 100-130-
160-19-220

50-75-100-
125-150 1-2-3-4-5 0-100-200-

300-400 -
Increase in P and

reduction in TS and Sd
reduce Taper.

[45] CFRP 8–11 250-275-
350

300-600-
900-1140 - 318-360-

408 -

Kerf width showed an
exponentially growing
relation with specific jet

energy.

[24] CFRP 10.4 100-350 50-150 2-4 180 Lay-up

An increase in P and Sd
enhances the upper

width.
Lay-up type has no

effect on the cut width
and the kerf taper.

An increase in P and a
decrease in Sd minimize

taper.

[46] CFRP 4 450 300-900-
1500-2100 1.5-3-4.5 300-600 -

Higher pressures allow
machining materials of a

higher thickness.

[34]
CFRP/
UNS

A92024
5/5 120-250 15-30-45 3 170-340 -

New Taper Evaluation
Methodology.

An increase in TS and
AMF minimizes taper

on both materials.

[47] CFRP 6 355 100 0.5-1-2-3-
4-5 440 -

Sd is the main parameter
in the taper, especially in

the upper width.
Reduced Sd values

improve taper defect.

[48]

Hybrid
Carbon/

Glass
FRP

3.5 120-360-
600

1000-1750-
2500 2-6-8 120-360-

600 -

Sd is the dominating
factor for minimization

of the kerf ratio
followed by TS.

[43] Mild
Steel 6 - 85-241-567 3-5-7 390-420-

450 -

Ts is the foremost
significant factor

followed by Sd and
AMF. This is in line with

Surface Quality.

[49] TRIP 700
TRIP 800 0.9–1.25 400 200-300-

600 20-64-96 - Nozzle
diameter

Top width is directly
dependent on the nozzle

diameter.

[50] CFRP/
Ti6Al4V 11/10 250-360 5-20-35-50-

65-80-95 2 350/−450

Stack
configura-

tion; nozzle
diameter

The combination of P
with the stacking order
affects the taper directly.
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Table 1. Cont.

Ref Material T (mm) P (MPa) TS
(mm/min) Sd (mm) AMF

(g/min) Other Main Contribution

[32] CFRP/
Ti6Al4V 12.7/2.8 200-275-

350 252-7620 2.8 363 Stack con-
figuration

Jet power-to-speed ratio
is an effective lumped

control parameter which
physically represented

the energy deposited per
unit linear distance
moved by the jet.

[17]
Graphite
Titanium

FML

10.75
7.56 380-600 50.8-152.4 0.75 - -

A combination of high P
(600 MPa) and low TS

(50.8 mm/min)
minimizes taper defect.

[14] CFRP/
Ti6Al4V 12.7/2.8 200-275-

350

60-120-180-
240-300-
450-600

2.8 363

Stack
configura-

tion;
GAP

The combination
Ti/CFRP enhances the

diffusion of the water jet
in the interlayer due to

the turbulence by
increasing the taper.

[51] CFRP/
Ti6Al4V 2/1.6 240-360 200-400 1-3 210

Stack
configura-

tion

High p values in
combination with low
TS values minimize

taper in both stacking
configurations.

Negative taper angle
was recorded on CFRP
laminate when cutting

stacks with
Ti6Al4V/CFRP
configuration.

[41] CFRTP 2.08 120-250-
340

100-300-
500 2.5 170-225-

340 -

New Taper Evaluation
Methodology.

Increase in P minimizes
taper. Increase in TS and

AMF increases taper
defect

An increase in the standoff distance has a direct effect on the final quality of the cut.
At large distances, the water jet dispersion is increased. This dispersion generates a region
of greater area affected by the abrasive particles and increases the taper defect. At the
same time, this dispersion reduces the kinetic energy of the water jet, reducing its cutting
capacity.

On the other hand, Kumar et al. [42] indicate that an increase in the traverse speed
produces a great conicity. This produces a loss of kinetic energy in combination with the
displacement of the jet itself. This loss in kinetic energy reduces the cutting capacity at the
exit of the material, producing a very small bottom width compared to the top.

At the same time, the interaction between input variables also directly influences
the taper obtained. A standoff distance with a reduced abrasive mass flow considerably
increases the taper, even if the complete cut is not made in the thickness of the steel. This is
due to the loss of kinetic energy and the fact that there comes a time when there are not
enough abrasive particles to erode and machine the material. Similarly, it is advisable a
combination of a small standoff distance with a reduced traverse speed.

The low separation distance allows abrasive particles to pierce the workpiece with
a high density of kinetic energy. On the other hand, a low traverse speed increases the
number of abrasive particles impacting the workpiece [43].
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As previously mentioned, the ability to perform the machining correctly and allow
the water jet to pass completely through the material is related to its cutting ability. In
this sense, Pon et al. [52] carried out a parametric study in water-jet machining on a
mild steel with a high thickness of 70 mm. The established variables were the hydraulic
pressure (2700–4000 bar), the traverse speed (25–150 mm/min), the abrasive mass flow
(480–900 g/min) and the standoff distance (1.8–5 mm). The authors determined that the
capacity to completely penetrate the material is directly related to the hydraulic pressure
(Figure 7). This is due to the fact that high pressure increases the kinetic energy of the jet,
maximizing its cutting capacity and, therefore, being able to penetrate large thicknesses.
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This ability to penetrate also depends directly on the abrasive mass flow granted to
the water jet. A greater quantity of abrasive particles increases the cutting capacity of the
jet, generating a greater quantity of impacts that erode and eliminate small quantities of the
material. Hence, for large thicknesses, it is advisable to combine high hydraulic pressure
and abrasive mass flow.

The use of a high traverse speed and the establishment of a large standoff distance
reduces the penetration capacity of the water jet. This combination produces a greater
conicity and prevents the jet itself from completely crossing the thickness (Figure 8). This is
due to the deficit of abrasive particles impacting against the surface, in combination with a
very high jet translation, which causes the cutting capacity of the jet in a local area to be
insufficient, producing an incomplete and irregular cut [53].

Metals 2021, 11, x FOR PEER REVIEW 10 of 27 
 

 

 
Figure 8. Penetration capacity of the water jet as a function of the jet-piece distance and the adapted traverse speed, from 
[52]. 

In addition to the previously commented cutting parameters, and inherent to the wa-
ter-jet cutting process itself, there are other input parameters specific to the material under 
study or elements of the equipment used. 

Kechagias et al. [49] carried out a study on the cutting of mild steel by means of this 
technology. In addition to the input variables studied by another author such as the feed 
rate or the jet-piece distance, the authors modified two external variables such as the thick-
ness of the material under study and the diameter of the nozzle used.  

This study agrees with other authors’ research, concluding that the combination of a 
low traverse speed and standoff distance induces a smaller taper angle. In addition, it 
established that the most influential parameter in the conicity of the cut is the diameter of 
the nozzle to be used. The authors emphasized that a nozzle diameter as small as possible 
should be used in order to obtain the minimum conicity.  

This is due, as well as the jet-piece distance, in that a larger opening implies greater 
hydraulic pressure to maintain the kinetic energy of the water jet. On the other hand, an 
increase in the thickness has a significant effect on the conicity. Reduced thickness mini-
mizes resistance to machining and reduces loss of kinetic energy. This is in agreement 
with Pon’s research [52], which indicates that it is necessary to apply greater hydraulic 
pressure to increase the kinetic energy and, thus, completely cross the thickness of the 
material under study. 

3.2. Cutting Geometry in Polymeric Matrix Composites 
Machining of composite materials, both thermoset and thermoplastic, remains a chal-

lenge today. The anisotropy of the material, the many configurations and the variety of 
thicknesses that can be obtained make AWJM machining a complex process. 

From the point of view of cutting geometry, low thickness machining is shown as the 
most critical configuration, due to possible delamination formations. In addition, while in 
metal alloys erosion is more visible, this defect can become more complex to analyze in 
composite materials owing to the conicity generated (Figure 9). 

Figure 8. Penetration capacity of the water jet as a function of the jet-piece distance and the adapted traverse speed,
from [52].

In addition to the previously commented cutting parameters, and inherent to the
water-jet cutting process itself, there are other input parameters specific to the material
under study or elements of the equipment used.

Kechagias et al. [49] carried out a study on the cutting of mild steel by means of
this technology. In addition to the input variables studied by another author such as the
feed rate or the jet-piece distance, the authors modified two external variables such as the
thickness of the material under study and the diameter of the nozzle used.
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This study agrees with other authors’ research, concluding that the combination of
a low traverse speed and standoff distance induces a smaller taper angle. In addition, it
established that the most influential parameter in the conicity of the cut is the diameter of
the nozzle to be used. The authors emphasized that a nozzle diameter as small as possible
should be used in order to obtain the minimum conicity.

This is due, as well as the jet-piece distance, in that a larger opening implies greater
hydraulic pressure to maintain the kinetic energy of the water jet. On the other hand,
an increase in the thickness has a significant effect on the conicity. Reduced thickness
minimizes resistance to machining and reduces loss of kinetic energy. This is in agreement
with Pon’s research [52], which indicates that it is necessary to apply greater hydraulic
pressure to increase the kinetic energy and, thus, completely cross the thickness of the
material under study.

3.2. Cutting Geometry in Polymeric Matrix Composites

Machining of composite materials, both thermoset and thermoplastic, remains a
challenge today. The anisotropy of the material, the many configurations and the variety of
thicknesses that can be obtained make AWJM machining a complex process.

From the point of view of cutting geometry, low thickness machining is shown as the
most critical configuration, due to possible delamination formations. In addition, while in
metal alloys erosion is more visible, this defect can become more complex to analyze in
composite materials owing to the conicity generated (Figure 9).
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Dhanawade et al. [44] conducted a study on abrasive water-jet cutting in a thermoset
polymer matrix composite material. The CFRP used was 26 mm thickness. In this study,
authors carried out a response surface methodology combined with an ANOVA statistical
analysis to determine the influence of the cutting parameters. The authors indicate that the
most influential parameter in the taper angle is the hydraulic pressure, because an increase
in this parameter generates a greater kinetic energy in the jet, increasing its cutting capacity
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and reducing its conicity. On the one hand, the taper is directly influenced by the amount
of impact of the abrasive particles and the kinetic energy given to the water jet.

Additionally, an increase in the nozzle traverse speed reduces the overlapping of
abrasive particle impacts, reducing its cutting capacity and, therefore, increasing the taper
angle [54]. The kinetic energy is also reduced with an increase in the distance of the jet
from the workpiece because it generates a greater dispersion of the jet at the exit.

Finally, Dhanawade determined the influence of abrasive mass flow on taper. A small
increase in it decreases the conicity obtained due to the greater cutting capacity of the jet.
However, an excessive increase in the quantity of abrasive particles produces a collision
between them, rounding their edges and reducing their cutting capacity, which generates a
greater angle of conicity. This is consistent with the results obtained by Pahuja et al. [45].
They machined samples with 10 mm in thickness and obtained a very small cutting width
and high taper employing low hydraulic pressure, a high traverse speed and a small
number of abrasive particles. This combination of parameters has the same influence
on the study by El-Hofy et al. [24], where 10.4 mm is the thickness of the thermosetting
composite material. El-Hofy et al. indicate that the minimum taper can be obtained by
applying high hydraulic pressure in combination with a small distance between the nozzle
and the surface of the material. However, the taper obtained is reduced by increasing the
feed rate, contrary to Dhanawade. This is because, with high pressure, an increase in the
feed rate generates a smaller top width, producing a more constant cut.

As mentioned above, the distance between the nozzle and the surface is a very
important parameter for the taper to be obtained. This is mainly due to the loss of energy
in the form of jet dispersion when coming out of the nozzle. Most studies indicate that the
recommended distance is located in the range of 2 and 3 mm [34,46,55].

Popan et al. [47] studied the influence of the variation of the jet-piece distance for a
thickness of 6 mm. The authors highlighted that with a considerable reduction of up to
0.5 mm of distance, the upper cutting width (Wt) is considerably reduced, decreasing the
conicity (Figure 10). This is in line with the results presented by Youssef et al. [56]. It is
worthy of note—how a reduction in the standoff distance produces a decrease in the radius
of the area affected by erosion (IDR) due to the initial impacts of the abrasive particles.

Metals 2021, 11, x FOR PEER REVIEW 12 of 27 
 

 

the form of jet dispersion when coming out of the nozzle. Most studies indicate that the 
recommended distance is located in the range of 2 and 3 mm [34,46,55].  

Popan et al. [47] studied the influence of the variation of the jet-piece distance for a 
thickness of 6 mm. The authors highlighted that with a considerable reduction of up to 0.5 
mm of distance, the upper cutting width (Wt) is considerably reduced, decreasing the 
conicity (Figure 10). This is in line with the results presented by Youssef et al. [56]. It is 
worthy of note—how a reduction in the standoff distance produces a decrease in the ra-
dius of the area affected by erosion (IDR) due to the initial impacts of the abrasive parti-
cles.  

 
Figure 10. Influence of the jet-piece distance on the upper and lower cutting width and the ratio between them adapted 
from [47]. 

Finally, a reduction in material thickness enhances the influence of parameters con-
sidered less influential in large thicknesses. In this line, Wong et al. [48] studied water-jet 
cutting in a thermoset composite material with a thickness of 3 mm, concluding that the 
most relevant parameter in the conicity are the combination between the standoff distance 
and the traverse speed. 

From this section, the direct influence that presents the hydraulic pressure and the 
distance jet-piece in the conicity generated in the composite material is concluded. These 
parameters act directly on the kinetic energy given to the water jet, as well as the disper-
sion of the jet itself when coming out of the nozzle. Therefore, minimum values of taper 
have been generated when a reduced jet-piece distance, close to 1 mm, is combined with 
high values of hydraulic pressure, close to 300 MPa. Finally, a reduction in the thickness 
of the composite material enhances the direct influence of the rest of the cutting parame-
ters. 

3.3. Cutting Geometry in Hybrid Structures 
In the previous sections, the main results corresponding to the cutting geometry gen-

erated in abrasive water-jet cutting, both in polymeric matrix composites and in different 
steel alloys, have been presented. However, as explained in previous sections, these ma-
terials are being combined in the form of hybrid structures in order to combine the prop-
erties they offer separately, so they are joined together and then machined at the same 
time to give them the geometry required to fulfil their function [34]. Due to the complexity 
caused by very different properties and nature, its machining as a whole is considered a 
critical process, of great interest at present. 

In addition, when a hybrid structure is obtained, a new input variable arises that 
belongs to the configuration of the materials and that can greatly affect the final result of 
the machining. This is the order in which the materials are stacked when composing the 
stack, since the same results will not be obtained in configurations where the metal is lo-
cated at the top of the stack, or if a composite is located in this position. 

Figure 10. Influence of the jet-piece distance on the upper and lower cutting width and the ratio between them adapted
from [47].

Finally, a reduction in material thickness enhances the influence of parameters con-
sidered less influential in large thicknesses. In this line, Wong et al. [48] studied water-jet
cutting in a thermoset composite material with a thickness of 3 mm, concluding that the
most relevant parameter in the conicity are the combination between the standoff distance
and the traverse speed.

From this section, the direct influence that presents the hydraulic pressure and the
distance jet-piece in the conicity generated in the composite material is concluded. These
parameters act directly on the kinetic energy given to the water jet, as well as the dispersion
of the jet itself when coming out of the nozzle. Therefore, minimum values of taper have
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been generated when a reduced jet-piece distance, close to 1 mm, is combined with high
values of hydraulic pressure, close to 300 MPa. Finally, a reduction in the thickness of the
composite material enhances the direct influence of the rest of the cutting parameters.

3.3. Cutting Geometry in Hybrid Structures

In the previous sections, the main results corresponding to the cutting geometry gener-
ated in abrasive water-jet cutting, both in polymeric matrix composites and in different steel
alloys, have been presented. However, as explained in previous sections, these materials
are being combined in the form of hybrid structures in order to combine the properties
they offer separately, so they are joined together and then machined at the same time to
give them the geometry required to fulfil their function [34]. Due to the complexity caused
by very different properties and nature, its machining as a whole is considered a critical
process, of great interest at present.

In addition, when a hybrid structure is obtained, a new input variable arises that
belongs to the configuration of the materials and that can greatly affect the final result
of the machining. This is the order in which the materials are stacked when composing
the stack, since the same results will not be obtained in configurations where the metal is
located at the top of the stack, or if a composite is located in this position.

It is also noteworthy in terms of published literature that most of it focuses on studies
of thermoset composite and light alloy stacks of titanium or aluminum [32,34], for their
high interest in the aeronautical sector.

Ruíz-García [34] developed a parametric study to evaluate the influence of cutting
parameters and stacking order in abrasive water-jet drilling in a hybrid CFRP/UNS A92024
(Al-Cu) structure. The analyzed variables were the hydraulic pressure (1200–2500 bar), the
traverse speed (15–45 mm/min) and the abrasive mass flow (170–340 g/min). When the
order of stacking is CFRP/UNS A92024, it was observed that shear forces of the abrasive
particles pull out parts of the composite materials which may remain adhered in the final
region of the metal alloy. This process is caused by the formation of grooves or lag due
to the loss of kinetic energy in the water jet output. The formation of an unusual cutting
geometry in comparison with those obtained when both materials are machined separately
is particularly noteworthy, and it can be seen how the conicity obtained in the first material
presents a totally opposite opening in the second material (Figure 11).
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This defect, also studied by Pahuja et al. [32], is associated with a convergence and
subsequent divergence of the water jet due to the turbulence that occurs in the interspace
between the two materials. This defect, called “hydrodistortion” by some authors [17],
occurs when the water jet loses cutting energy, resulting in a rough area. In turn, due to
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the different machinability of the materials, the metal alloy absorbs more cutting energy,
causing the jet to transversely mechanize the composite material and weakening the joints
between both materials (Figure 12).
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In Ruiz-García’s research [34], it is also indicated that the most appropriate order of
stacking should be first the composite material followed by the metal alloy, an orientation
that achieves that most combinations of cutting parameters offer little variation in the
conicity obtained in both materials due to the fact that the water jet suffers a lower loss
of kinetic energy when passing through them. This is also in accordance with what
Pahuja [14] has explained, as shown in Figure 13, which graphically represents the energy
dispersion suffered by the water jet as it passes through the materials that make up the
hybrid structure.
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In this way, a great dissipation of kinetic energy is produced in the machining of
the metal alloy due to its mechanical properties, as it offers a greater resistance than the
composite material to be machined. This means that, in the last section corresponding
to the composite material, the jet has a minimum cutting capacity, being able to produce
a separation between the layers that compose it, in the form of delamination. Therefore,
the most influential parameter in the cutting geometry of a hybrid structure CFRP/UNS
A92024 bonded mechanically is the abrasive mass flow, followed by the transverse speed.

In order to eliminate this double cone angle due to the hydrodistortion generated,
Pahuja et al. [14] studied the machining of a hybrid CFRP/Ti6Al4V structure in a special
configuration—both materials being separated by small gauges that allowed the water jet
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to exit freely from the first material and prevent damage to the interlayer of both materials
(Figure 14).
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adapted separator of [14]. All measurements are in mm.

A defect was also identified in the metal alloy normally associated with other con-
ventional processes, such as drilling or milling, which consists of the formation of small
irregularities or burrs in the water-jet exit zone. Titanium is machined by means of small im-
pacts of abrasive particles that make a superposition of shear forces. Due to the dissipation
of commented kinetic energy, a plastic deformation is generated in the final moments of
the titanium alloy, in the form of a burr. On the other hand, Li et al. [51] established results
close to those previously commented. In their study, the authors mechanized, by abrasive
water jet, a hybrid CFRP/Ti6Al4V structure in its two possible stacking configurations.
In this study, as mentioned at the beginning of the section on water-jet cutting, it was
identified that the erosion zone at the entrance of the material can distort the taper angle
measured with traditional methodologies, establishing an error bar in their results in order
to identify how far this linear regression is away from the actual curvature generated by
the water-jet entrance (Figure 15).
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As well as Ruiz-Garcia and Pahuja, Li identified that, in the machining of its hybrid
structure, the effect of hydrodistortion was also generated, generating a double cone angle
in both materials, but pointing out that this defect only arises when the first material of the
hybrid structure consists of the metallic alloy, while in the opposite order, the cone presents
the same tendency in both materials.
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As can be seen from the above, this defect is strongly related to the hydraulic pressure
applied prior to cutting. A higher hydraulic pressure generates more energy to the water
jet capable of machining both materials at the same time. However, there is a coincidence
of results when the composite material is the first material in which the water jet impacts,
in which the loss of kinetic energy is lower, generating a reduced conicity in both materials.

4. Associated Defectology in AWJM: Surface Quality

Abrasive water-jet cutting produces a very specific surface quality due to the abrasive
nature of the process. The kinetic energy given to the water jet and its dissipation during
the cut itself is a fundamental aspect for the geometry of the cut, and the same applies to
the surface quality obtained.

In the initial moments, as the water jet presents its maximum cutting capacity, the
abrasive particles begin the superposition of impacts against the surface of the material
to start the cut. This generates a small area more affected by erosion, which is called IDR
(initial damage region) [34].

Initial damage region or IDR is present in all cuts made by AWJM, being the separation
distance between the nozzle and part of the predominant parameter in terms of influence
on the appearance of this defect [2] (Figure 16). Furthermore, an increase in the standoff
distance generates a more conical geometry, producing a deeper erosion-affected region.
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from [55].

After this small located region, there is the area corresponding to the best surface
quality generated by the water jet, called the SCR (smooth cutting region), which corre-
sponds to the surface that presents less irregularities, with a formation of smooth peaks
and valleys. The correct selection of cutting parameters greatly affects the formation of this
zone and the final quality of the roughness obtained (Figure 17).
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An increase in hydraulic pressure and grain size of the abrasive used, along with a
reduced traverse speed, can provide a maximum area that can be considered smooth and
without apparent damage. This combination gives the maximum cutting capacity to the
water jet, being essentially the correct selection of the advance speed, because a very high
speed generates a great dispersion of the kinetic energy in the initial moments, producing
a greater variation in the obtained surface quality.

The last region that can result during the cutting process is the denominated RCR
(rough cutting region), which is associated with the final loss or dissipation of kinetic
energy of the jet itself. This causes the succession of impacts of the jet particles to be carried
out in an irregular manner and, sometimes, without correctly detaching and shearing the
material in its final moments. The three regions mentioned are represented in Figure 18.
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Figure 18. Graphic representation of the three possible regions of different surface quality obtained
in abrasive water-jet cutting [34].

The combination of these three regions results in the presence of different peaks and
valleys, with large and irregular distances, generating an area with a higher roughness and
poorer surface quality. This region coincides with the appearance of a wave pattern known
as “lag” or jet delay (Figure 19).



Metals 2021, 11, 164 18 of 29

Metals 2021, 11, x FOR PEER REVIEW 17 of 27 
 

 

out in an irregular manner and, sometimes, without correctly detaching and shearing the 
material in its final moments. The three regions mentioned are represented in Figure 18. 

 
Figure 18. Graphic representation of the three possible regions of different surface quality ob-
tained in abrasive water-jet cutting [34]. 

The combination of these three regions results in the presence of different peaks and 
valleys, with large and irregular distances, generating an area with a higher roughness 
and poorer surface quality. This region coincides with the appearance of a wave pattern 
known as “lag” or jet delay (Figure 19). 

 
Figure 19. Different roughness profiles obtained in the three surface quality regions [14]. 

As with the taper generated, the surface quality in water-jet machining is directly 
related to the kinetic energy of the water-jet and varies throughout the material thickness. 
Thus, three different quality zones arise depending on the stability of the water jet, the 
first being eroded by abrasive particles, the second being smooth due to the stabilization 
of the water jet and the third being very rough due to turbulence at the outlet. In turn, if 
the output of the water jet is very unstable can generate a defect known as lag due to the 
delay between the initial and final cut in the displacement of the water jet. A comparison 

Figure 19. Different roughness profiles obtained in the three surface quality regions [14].

As with the taper generated, the surface quality in water-jet machining is directly
related to the kinetic energy of the water-jet and varies throughout the material thickness.
Thus, three different quality zones arise depending on the stability of the water jet, the
first being eroded by abrasive particles, the second being smooth due to the stabilization
of the water jet and the third being very rough due to turbulence at the outlet. In turn, if
the output of the water jet is very unstable can generate a defect known as lag due to the
delay between the initial and final cut in the displacement of the water jet. A comparison
of articles focusing on the taper defect as a function of the type of material is shown in
Table 2.

Table 2. Summary of parameters affecting surface quality. T (thickness), P (Pressure), TS (Traverse Speed), Sd (Standoff
Distance); AMF (Abrasive Mass Flow).

Ref Material T (mm) P
(MPa)

TS
(mm/min) Sd (mm) AMF

(g/min) Other Main Contribution

[31] Graphite/
epoxy 16 1103-138-

172-241 96-174-234 1-2.5-4 300-600 -

Three regions of
different quality have
been detected. Better

quality has been
obtained for high

pressure and reduced
speed of travel.

[24] CFRP 10.4 100-350 50-150 2-4 180 Lay-Up

Better surface quality
with high levels of P in
combination with low
levels of TS and Sd. A
process cost model is

proposed.

[34]
CFRP/
UNS

A2024
5/5 120-250 15-30-45 3 170-340 -

IDR region in second
material is minimized
by the first material in
the stack. No RCR has

been detected.

[43] Mild
Steel 6 - 85-241-567 3-5-7 390-420-

450 -

Through response
surface models it has

been established that the
surface quality is worse
as TS and Sd increase.
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Table 2. Cont.

Ref Material T (mm) P
(MPa)

TS
(mm/min) Sd (mm) AMF

(g/min) Other Main Contribution

[52] Mild
Steel 70 270-335-

400
25.2-87.6-

150 1.8-3.4-5 480-690-
900 -

There is a direct
relationship between

surface quality and an
increase in P and AMF

and an inverse
relationship with TS and

Sd.

[53] Mild
Steel - 241.3-310.2-

379.2 80-200-320 1-2.5-4 - -
The dominant

parameter in surface
quality is TS.

[50] TRIP 700
TRIP 800 0.9-1.25 400 200-300-

600 20-64-96 - Nozzle
diameter

The most important
factors are the nozzle

diameter and Sd.
Surface roughness
decreases when Sd
decreases, nozzle

diameter decreases,
thickness increases and

TS decreases.

[50] CFRP/
Ti6Al4V 11/10 250-360 5-20-35-50-

65-80-95 2 350/-450

Stack
configura-

tion;
nozzle

diameter

The roughness increases
exponentially as TS

increases because the
exposure time of the jet

is lower.

[14] CFRP/
Ti6Al4V 12.7/2.8 200-275-

350 60–600 2.8 363

Stack
configura-

tion;
GAP

Greater variations in
roughness in terms of Ra

were obtained in
Ti/CFRP. On the

contrary, the best quality
was obtained for the

CFRP/Ti.

[55]

Hybrid
Car-

bon/Glass
FRP

3.5 120-360-
600

1000-1750-
2500 2-6-8 120-360-

600 -

Abrasive flow rate has a
more significant

influence on the surface
quality due to the

inter-collision between
the abrasive particles.

[57] CFRP 3-5-7 350 250-300 0.5-1 50 -

A combination of high
TS and Sd values

enhances the divergence
of the water jet,

worsening the surface
quality.

[58]
UD CFRP

Woven
CFRP

6 22-24-26 20-30-40 0.1-0.2-
0.3 120-180 -

Surface quality is
directly related to P.

High p values in
combination with low

TS and Sd optimize the
final quality.

[59] UNS
A7075 7 100-30 30-150 1-3 420 -

Surface quality is
improved by reducing

TS and using a post
finishing pass.
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Table 2. Cont.

Ref Material T (mm) P
(MPa)

TS
(mm/min) Sd (mm) AMF

(g/min) Other Main Contribution

[60] CFRP 5 150-225-
300

125-175-
225

1.5-2.5-
3.5 300 -

A robust model through
a response surface

methodology has been
obtained.

[61] Stainless
Steel 60 270-335-

400 25.2-87-150 1.8-3.4-5 480-660-
900 -

An increase in water
pressure is associated

with an increase in
depth of cut and a
decrease in surface

roughness.

[62] Stainless
Steel 40 100-200-

300 30-50-70 - - Mesh size

Ra decreases by
increasing P and
reducing TS as it

minimizes the loss of
kinetic energy.

[63] CFRTP 1.53 120-250-
340

100-300-
500 2.5 170-225-

340 -

The existence of two
regions of different

surface quality has been
detected. Higher Ra

values are found in the
inlet region of the water
jet due to the abrasive
effect of the particles.

[19] CFRTP/
Steel 2.1 250-340-

420 50-100-300 3 225-340-
385 -

TS is the most dominant
parameter in surface

quality. A Steel/CFRTP
stacking order makes

the surface quality much
worse.

[64] CFRTP 1.53 120-250-
340

100-300-
500 2.5 170-225-

340 -

The detachment of the
thermoplastic matrix

increases the roughness.
IDR region has been
detected in all tests.

4.1. Surface Quality in the AWJM of Metal Alloys

Abrasive water-jet machining of metal alloys requires higher hydraulic pressure
levels than those established for machining of composite materials. Thus, set hydraulic
pressures that generate good surface quality in composite materials can produce a very
rough surface in metal alloys. Due to this, different investigations about abrasive water-jet
cutting in different metal alloys can be found, which address how the cutting parameters
affect the surface quality obtained and determine which combination provides the best
quality [28,65].

Gaidhani et al. [66] investigated the machining of stainless steel plates, performing a
parametric test to determine the percentage of influence of various input parameters on
the quality obtained, and concluded that the main parameter is the jet-piece distance with
a 19% influence, followed by the traverse speed with 17%. However, the article recognizes
that the hydraulic pressure is not analyzed and highlights that it should be studied later.

Chithirai et al. [61] focus on the analysis of the effect of process parameters on sur-
face quality and depth of cut, in order to establish the cutting performance by AWJM in
304 stainless steel with a thickness of 60 mm. It indicates that the water-jet pressure has
the greatest effect on the surface quality. An increase in hydraulic pressure produces an
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increase in the penetration capacity of the jet itself into the material. In turn, it produces a
decrease in the average roughness (Ra) values obtained.

The authors recommend high hydraulic pressures, low traverse speed and low jet-
piece distance. On one hand, an increase in hydraulic pressure generates a higher kinetic
energy to the abrasive water jet, maximizing its penetration capacity and reducing the
resistance of the material to be machined. Consequently, the lag defect in the RCR decreases
and the surface quality improves. On the other hand, low traverse speed and jet-piece
distance provide a smooth surface in the initial moments.

As with the results obtained for machining composite materials, an increase in the noz-
zle traverse speed produces an increase in the roughness generated due to the dissipation
of kinetic energy from the jet, resulting in the third highest roughness region (RCR).

Murugabaaji et al. [62] carried out an experimental investigation on abrasive water-jet
machining on a 40 mm thick stainless steel through a response surface methodology, study-
ing the influence of hydraulic pressure, traverse speed and abrasive grain size on surface
quality through ANOVA statistical analysis. This analysis showed that a combination
of the highest level of hydraulic pressure (3000 bar) with a small abrasive size and the
lowest level of traverse speed (30 mm/min) produces the best surface quality by obtaining
minimum Ra values close to 2 µm.

A more complete study was carried out by Badgujar et al. [67], in which several levels
were modified for a wide range of input parameters such as hydraulic pressure, type of
abrasive, blast distance, abrasive mass flow and traverse speed. The aim of this research
is to study their influence on the surface quality obtained in a SS304 stainless steel. In
general, the surface quality improved by increasing the levels of the established cutting
parameters, with the exception of the size of the abrasive particles. The authors stated that
it occurs in the same way with the increase in the hydraulic pressure, in opposition to the
results exposed by previous authors. This is associated with the fact that an increase in
the pressure increases the kinetic energy of the abrasive particles, improving their cutting
capacity. However, this can lead to random collisions between the same particles generating
a rougher surface. This increase in energy can result in a fragmentation of the particles
inside the nozzle thus reducing its size and cutting capacity.

Dumbhare et al. [43] performed a study similar to the investigations described above,
changing the type of steel as study material. In this case, he focused on the abrasive
water-jet machining of a 6 mm thick mild steel, evaluating the surface quality in terms of
Ra, obtaining values between 2 µm and 6 µm.

In terms of surface quality, the traverse speed is the parameter that has the greatest
weight in the results obtained, followed by the standoff distance. On the contrary, an
increase in the mass flow hardly varies the results obtained, which may be due to the
thickness of the material, much lower than those used in the previously mentioned investi-
gations. This study develops a predictive mathematical model of second order that relates
the surface quality with the traverse speed and the jet-piece distance, with an adjustment
of 99.93%, marking as ideal parameters in terms of Ra a traverse speed close to 85 mm/min
with a jet-piece distance of 3 mm, which are also in accordance with those previously
obtained by Pon et al. for the water-jet machining of a carbon steel.

The previous results also agree with those obtained by Rao et al. [53] in the machining
of a carbon steel. This study concludes that the surface quality is directly related to the
traverse speed used. However, similar to the study by Badgujar et al. [67], an increase in
hydraulic pressure can be counterproductive. Although an initial increase in hydraulic
pressure decreases the Ra values obtained, as the hydraulic pressure continues to increase,
Rao detects a worsening of the surface quality.

Additionally, Kechagias et al. [49] present an interesting comparison of the influence
of various cutting parameters when modifying the diameter of the nozzle used. On the
one hand, the surface quality is significantly affected by the diameter when the thickness
is very small, with less variation when the thickness increases. On the other hand, an
increase in the diameter of the nozzle in combination with an increase in the jet-piece
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distance generates the worst surface quality by producing a great dispersion of the jet
itself upon leaving the nozzle, generating a large eroded zone and an early appearance
of the rough zone (RCR). Finally, it is indicated that the traverse speed is one of the most
influential parameters in the surface quality, in total agreement with the rest of authors.
However, for a low rate of advance, an increase in the diameter of the nozzle can worsen
the surface quality. On the other hand, an increase in the traverse speed does not show a
direct relationship with the diameter, with lower Ra values than for a low traverse speed,
which can match them in large diameters.

Thus, due to the homogeneity of the metallic alloys, the formation of the three regions
of different surface quality is more visible, but with a smoother transition between them.
Due to its mechanical properties, generally superior to those presented by composite
materials and its high machinability, its machining by abrasive water jet requires more
energy for the jet to pass completely through the material [52].

4.2. Surface Quality in the AWJM of Polymeric Matrix Composites

The anisotropy and great amount of existing combinations of stacking within the
composite materials, as well as the possibility of combining different reinforcements or
matrices, make the surface quality obtained in these materials a very important aspect that
must be controlled.

In terms of cutting thickness, Jagadeesh et al. [57] showed that increasing thickness
in CFRP machining has strong wear effects on the surface quality, while increasing the
traverse speed significantly deteriorates the surface quality.

Ming et al. [55] have studied the influence of cutting parameters on surface quality
through the response surface methodology, obtaining a mathematical model that allows
predicting optimal ranges for the cutting parameters. The study material consisted of a
hybrid composite of carbon fiber and glass fiber reinforcements and epoxy type matrix
with a final thickness of 3.5 mm. When machining such a low thickness, they include the
idea that there are only two regions corresponding to the initial erosion and the soft zone,
instead of the three previously exposed. This is due to the fact that by presenting such a
low thickness and the mechanical properties of the composite material, the water jet does
not suffer a considerable dissipation of kinetic energy that could generate a zone of great
roughness at the exit of the material.

At the same time, an ANOVA statistical analysis indicates that the abrasive flow
mass is the main factor affecting surface quality, followed by the separation distance and
hydraulic pressure. Similar results have been obtained by Kumaran et al. [58] who conclude
that high hydraulic pressures with low rates of transverse speed improve surface quality,
using an ANFIS model in the range of 220 and 260 bar for hydraulic pressures, 20 and
40 mm/min for transverse speed and 1–3 mm for separation distance.

In this same line, authors such as Ahmed et al. [59] and Bhowmik et al. [60] obtain
similar results, showing the same influence of the cutting parameters through predictive
models based on a response surface methodology (RSM).

El-Hofy et al. [24] studied the influence of cutting parameters in two different config-
urations of CFRP composed of an autoclave-cured epoxy resin with T800 module fibers
and a final thickness of 10.4 mm. The cutting parameters were the hydraulic pressure
(1000–3500 bar), traverse speed (50–150 mm/min) and standoff distance (2–4 mm). This
study concludes that hydraulic pressure is the most important variable affecting in surface
quality, which does not agree with the results obtained by Ming et al. [55], which indicate
that the most relevant parameter is abrasive mass flow.

This difference in results may be due to the thickness of the machined material. In
reduced thicknesses, close to 2 mm/min, a good surface quality can be achieved depending
on the flow of abrasive particles. On the contrary, when the thickness of the material
increases, close to 10 mm, the machining capacity generated by the hydraulic pressure
seems to be more decisive. El-Hofy indicated that, as the hydraulic pressure increases,
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the kinetic energy of the water jet increases, reducing the delay generated by the high
cross-feed and thus improving the quality of the final surface.

From the literature reviewed, it is clear that there is no consensus on the relationship
of influence of the parameters that govern the process and surface quality in composite
materials. The anisotropy of these in combination with the thickness that they present
makes that more studies should be carried out focused on optimizing this parameter to fill
up this gap of knowledge. In turn, the literature focuses on the machining of thermoset
composites and studies focusing on thermoplastic composites are needed.

4.3. Surface Quality in the AWJM of Hybrid Structures

The different machinability of materials, in particular between polymer composites
and metal alloys, means that combinations of cutting parameters do not produce the same
result when machining them as a hybrid structure. As with the taper generated, the order
of stacking, thickness or type of bond between the two materials can be a factor that greatly
affects the surface quality obtained.

The main metallic alloys used in the form of a hybrid structure are light alloys,
aluminum [1,68] or titanium, especially the alloy Ti6Al4V [13,69], in combination with a
polymeric composite material.

Ruíz-García et al. [34] highlights the importance of the stacking order in water-jet
machining, studying a hybrid CFRP/UNS A92024 (Al-Cu) structure in both configurations.
The authors indicate that an increase in the roughness generated in both materials has been
observed by increasing the traverse speed and reducing the number of abrasive particles.
This especially affects the metallic alloy, in which a greater variation in the surface quality
is appreciated by reducing the abrasive mass flow. This effect occurs when the alloy is at
the exit of the jet, since, by reducing the number of abrasive particles, the cutting capacity
of the jet after machining the composite material is very reduced, generating a very rough
surface and may form the defect of jet delay or lag.

Additionally, the order of stacking also influences the formation of the eroded zone
at the entrance of the water jet (IDR). While the first material, where the jet starts cutting,
always generates this region of greater initial roughness, the second material can form a
much softer region or even one non-existent (Figure 20). The reason may be that that when
both materials are joined, the first material can serve as a protective layer, thus reducing
the erosive effect of particles in the initial moments [34].
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composite material for the machining of a hybrid structure CFRP/UNS A92024 [34].

If the first material is the metal alloy, it absorbs most of the kinetic energy of the water
jet, reducing its cutting capacity. Due to the anisotropy of the elements that compose the
composite material (matrix and reinforcement) the water jet produces a higher roughness.
On the one hand, the impacts of the jet particles eliminate the polymer matrix. This leaves
the reinforcement unprotected. On the other hand, the loss of energy in the water jet bends
the reinforcement without removing it completely. This produces a surface with loose
carbon filaments and cavities where the matrix should be, resulting in a worse surface
quality [51].
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Li et al. [51] indicate that, due to the different nature of the materials, the Ra values
obtained are very different between both materials. Thus, the highest values of Ra are
always reached in the composite material due to its anisotropy. Depending on the orienta-
tion of the carbon fibers, they are more likely to be completely eliminated when the jet is
perpendicular. This fact, together with a more effective removal of the matrix results in a
greater variation of the surface.

This difference in results is substantially amplified when presenting a metal/CFRP
configuration, in comparison with CFRP/metal, where the Ra values are quite close when
increasing the hydraulic pressure and reducing the advance speed, being thus in accordance
with what has been exposed by other authors (Figure 21).
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Figure 21. Difference of Ra values obtained in both materials according to their arrangement in the
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Pahuja et al. [14] also explain the importance of traverse speed in water-jet machin-
ing of a hybrid CFRP/Ti structure. Here, by increasing the speed from 1 mm/min to
10 mm/min, the Ra values increase by 14% for the titanium alloy and 260% for the compos-
ite material (Figure 22), which highlights the importance of this parameter.
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Figure 22. Surface quality difference obtained from [14] for both stacking configurations and by
increasing the travel speed.

As explained by Ruiz-Garcia et al. [34] and Li et al. [51], when the first material of the
hybrid structure is the metallic alloy, the surface quality obtained is very different between
both materials.

In this study, the roughness was increased by up to 72% with a reduction in the size of
the nozzle orifice and an increase in the thickness of the sample, which is associated with a
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small orifice diameter injecting less mass flow of water, generating a rougher surface. In
addition, a greater thickness give rise to a greater depth of penetration and a greater loss of
energy, which causes more erosive wear instead of a sharp cut on the outlet side of the jet,
generating a spiked and rougher surface.

In fact, the composite material was not properly machined for some combinations
because the jet did not have enough cutting capacity when trying to machine the last region
of this material, generating non-machined areas at the exit.

This influence was also studied by Alberdi et al. [50] in the water-jet cutting of a
hybrid CFRP/Ti6Al4V structure in both configurations. An ANOVA analysis corroborated
the above, where the most influential factor in the surface quality of both materials is
the traverse speed. However, the author highlighted that in the machining of a hybrid
structure, the order of stacking before other parameters such as hydraulic pressure or
abrasive mass flow has a greater influence on the surface quality obtained (Figure 23).
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On the other hand, Pahuja et al. [17] studied water-jet cutting in an FML made up
of titanium and graphite plates joined by a Polyether ether ketone (PEEK) thermoplastic
matrix with a final thickness of 10.75 mm and 7.56 mm, indicating that for large thicknesses
the jet loses cutting energy, resulting in a rough area. At the same time, it detects the
appearance of the hydrodistortion phenomenon. Due to the different machinability of the
materials, the metallic alloy absorbs more cutting energy, causing the jet to transversely
mechanize the composite material and weakening the joints between the two materials.

By machining such large thicknesses, Pahuja confirmed the existence of the three
regions previously indicated in the water jet cut for an FML constituted with a thermoplastic
matrix, evaluating the surface quality in terms of Ra. This is in line with the results of
Fengchao et al. [70], which show the evolution of the surface quality after the machining of
a Ti6Al4V alloy.

Thus, the machining of a hybrid structure should be selected at the most appropriate
traverse speed, usually close to values below 100 mm/min, in order to avoid a dispersion of
results in the machined thickness for both materials. At the same time, in order to improve
the performance of the process and obtain the best surface quality in both materials, the
composite material should be the first material to be machined by the water jet, with the
metal alloy being the support material. In this way, thanks to the different machinability of
both materials, the dispersion of kinetic energy is lower when coming into contact with the
composite material, thus ensuring that the water jet is capable of correctly machining the
metal alloy. In addition to this, parameters such as the jet-piece distance, are important in
order to minimize the dispersion of the water jet as it leaves the nozzle and to reduce the
loss of kinetic energy in both stacking configurations.
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5. Conclusions

Use of hybrid structures made of metal alloys and composite materials is a current
research line of interest in the field of engineering. AWJM is a technology capable of
machining dissimilar materials simultaneously. Nevertheless, the different machinability
of these materials makes its machining difficult, producing different defects associated
with the final geometry in terms of conicity and final surface quality. A comparative study
of scientific articles focusing on these defects has been developed, in which the main trends
for optimizing abrasive water-jet machining of metal alloys, composite materials and
their bonding on hybrid structures have been exposed. A direct relationship between the
hydraulic pressure and the final quality of the cut has been observed. However, variables
such as thickness or order of stacking have generated different conclusions.

The standoff distance has a fundamental role. High values of this parameter increase
the divergence of the water jet, increasing the RDI region and worsening the final surface
quality. This, in turn, can be enhanced by increasing the abrasive mass flow due to over-
exposure of abrasive particles. Especially in metallic alloys, an increase in this parameter
improves the machining capacity of the water jet, obtaining a smoother surface.

Finally, there seems to be a consensus in the literature consulted for the influence of
traverse speed. The instability of the water jet by increasing this parameter, especially
when machining simultaneous materials, enhances the loss of kinetic energy in the final
moments, giving rise to lag defect and poor surface quality.

The importance of stacking order in the machining of hybrid structures has been
shown. The literature consulted explains that materials with greater machinability should
be the first to be machined in order to minimize the reduction in kinetic energy. Fur-
thermore, similar taper geometries are obtained when the composite material is the first
material to be machined. On the contrary, inverse geometries are obtained when the first
material is the metallic alloy, worsening the final conicity and surface quality.
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