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Abstract: This study aims at investigating the effect of post-deposition solution treatment and ageing
(STA) on improving the interfacial adhesion strength in cold spray (CS) Ti6Al4V coatings deposited on
Ti6Al4V substrates, measured by the adhesive-free collar-pin pull-off (CPP) test. Solution treatment
was performed at 940 ◦C for 1 h and ageing was carried out at 480 ◦C for 8 h. Investigations were
carried out for specimens with three different pre-treatments of the substrate surface, namely grit-
blasted, as-machined (faced on lathe machine), and ground. Additionally, the effect of post-deposition
STA was studied in terms of phase analysis, microstructure, and porosity level. It was observed that
STA led to complete interfacial mixing resulting in significantly improved adhesion strength (by
more than 520%) with the maximum measured value of greater than 766 MPa for ground substrates,
reaching 81% of the ultimate tensile strength of mill annealed Ti6Al4V.

Keywords: additive manufacturing; adhesion strength; coatings; cold spray; heat treatment; repairs;
titanium alloy; Ti6Al4V

1. Introduction

Titanium alloy Ti6Al4V is widely used in various industrial sectors with growing
demand due to its well-known chemical, physical, and mechanical properties. Particu-
larly in the aerospace sector, Ti6Al4V has diverse applications such as for engine parts,
hydraulic tubbing, landing gear, load-bearing airframe structures, etc. [1,2]. However,
these components are susceptible to various in-service damages including fatigue cracks,
fretting/galling wear, etc. Generally, repair or remanufacturing is a more sustainable
alternative to replacement, which has become more promising with the advancement of
Cold Spray (CS) technology. In CS, a supersonic jet of preheated compressed gas (typically,
N2 and/or He) is used to propel the powder particles to reach a critical velocity. The
high-velocity collision of the sprayed particles and accompanied plastic deformation result
in deposited layers. The lower deposition temperature of the CS process is advantageous to
minimize (or even eliminate) the detrimental effects associated with high-temperature pro-
cesses such as oxidation, phase transformations, high tensile residual stresses, heat-affected
zones, etc. [3].

The interfacial adhesion strength is the maximal normal stress needed to separate or
detach a coating from its substrate, which is an imperative parameter for the structural
integrity of CS deposits for load-bearing repair applications. For CS deposits, interfacial
adhesion strength is a function of various process parameters, substrate surface prepa-
ration/roughness, coating thickness, etc. In the recent past, many researchers [1,4–15]
have investigated the adhesion strength of CS Ti6Al4V deposited on Ti6Al4V substrates,
focusing on different areas as listed in Table 1. Investigations were carried out using various
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test standards/methods, such as the adhesive-based tensile adhesion test (TAT) as per
ASTM C633 [4–9,11,12,14,15], and the portable adhesion test (PAT) as per ASTM D4541 [10].
However, conventional adhesive-based test methods are not suitable for measuring the
adhesion strength of coatings when it exceeds the maximum limit (70–90 MPa) of typical
adhesives used to bond the specimen parts. Therefore, a few studies have recently used
adhesive-free methods such as the laser shock adhesion test (LASAT) [5], modified ASTM
E8 [13,15], modified ASTM C633 [16,17], and collar-pin pull-off (CPP) test [1].

Table 1. Earlier studies reported the interfacial adhesion strength of CS Ti6Al4V deposited on Ti6Al4V substrates.

Area of Study Variables Investigated Gas, Pressure & Temperature
(MPa, ◦C) Test Methods Authors (et al.)

Effect of CS process
parameters

Working gas (N2, He, N2 + He
mixtures), and particle velocity

(700–855 m/s for N2, 1200–1300 m/s
for He)

N2, He (5, 950) ASTM C633 Khun [4]

N2 (4.5, 800–1000) N2 + He
(4.5, 1000) ASTM C633 Tan [8]

Process gas temperature
(400 to 1000 ◦C)

N2 (4.14, 400–500) ASTM D4541 Bhattiprolu [10]

N2 (3, 550–750) ASTM C633 Zhou [9]

N2 (4.5, 800–1000) ASTM C633 Tan [8]

Different feedstock powders, and
nozzle length (120, 200 mm) N2 (4.14, 400–500) ASTM D4541 Bhattiprolu [10]

Gun traverse scanning speed (100 to
500 mm/s)

N2 (4.5, 1000) ASTM C633 Tan [11]

N2 (5, 1100) Collar-Pin Pull-off Boruah [1]

Track spacing (1, 2 mm), and toolpath
patterns (crosshatch, horizontal raster) N2 (5, 1100) Collar-Pin Pull-off Boruah [1]

Effect of substrate
condition

Different substrate surface
preparations or pre-treatments, and
surface roughness (0.05 to 5.65 µm)

N2 (4.5, 950) ASTM C633 Tan [12]

N2 (4, 800) ASTM C633 Costil [6]

N2 (4, 800) ASTM C633, and
LASAT Perton [5]

N2 (5, 1100) Collar-Pin Pull-off Boruah [1]

Effect of coating thickness Coating thickness (0.1 to 6 mm)
N2 (4.8, 1100) ASTM C633 Tan [15]

N2 (5, 1100) Collar-Pin Pull-off Boruah [1]

Effect of post-processing

Annealing at 600, 800, 1000 ◦C for 2 h N2 (2.5, 680) ASTM C633 Zhou [14]

Annealing at 600, 950 ◦C for 1 h N2 (4.5, 1000) Modified ASTM
E8 Bhowmik [13]

Mechanical peening: deep cold rolling,
controlled hammer peening N2 (5, 1000) ASTM C633 Maharjan [7]

Khun et al. [4] studied the effect of process gases on the adhesion strength as per
ASTM C633 [18]. They found that the CS Ti6Al4V coatings deposited with He possessed
~81% higher adhesion strength (75.1 MPa) than the coatings deposited with N2 (41.4 MPa).
Tan et al. [8] studied the influence of particle velocities on adhesion strength using ASTM
C633. However, all specimens failed at the adhesive bond-line or with adhesive failure
mode around 62–70 MPa. Zhou et al. [9] investigated the effect of in-situ shot peening
assisted CS Ti6Al4V deposited at different temperatures (N2, 550–750 ◦C) using ASTM C633
and found that bonding strength increased as the temperature increased, with the highest
measured strength 36.5 MPa for specimens deposited at 750 ◦C. Bhattiprolu et al. [10]
studied the influence of feedstock powder and process parameters using ASTM D4551 [19],
and reported that hydride de-hydride powders showed comparable adhesion with plasma-
atomized and gas-atomized powders. Moreover, increasing the nozzle length from 120
to 200 mm led to increased particle velocities for each powder type, resulted in higher
adhesion strength (66–69 MPa) with adhesive failure. Tan et al. [11] investigated the
effect of traverse scanning speeds (100–500 mm/s) using ASTM C633. They reported very
low adhesion strength (~2.5 MPa with coating-substrate interface failure) for specimens
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deposited at 100 mm/s scanning speed, and the specimens deposited at 300 and 500 mm/s
had much higher adhesion strength of around 60–63 MPa with adhesive failure.

Tan et al. [12] studied the influence of substrate surface roughness (Ra, 0.05–5.4 µm)
with four different substrate preparations using ASTM C633. A fall in adhesion strength
was observed with the increase in substrate surface roughness. The highest reported
strength was 69 MPa (adhesive failure) for polished substrate with Ra 0.05 µm. Cos-
til et al. [6] reported similar results (around 80 MPa) with adhesive failure in most cases
while attempting to study the influence of different surface pre-treatments on adhesion
strength using ASTM C633. Perton et al. [5] further investigated the effect of various
substrate pre-treatments/surface roughness finding that adhesion strength was higher
when roughness values were either very high (5.53 µm) or very low (0.5, 0.12 µm), with the
highest adhesion strength for mirror finished surface (i.e., the lowest roughness Ra 0.05 µm,
>80 MPa from ASTM C633 with adhesive failure, and 900 MPa from LASAT).

The influence of coating thicknesses on the interfacial adhesion strength was in-
vestigated by Tan et al. [15], tests were performed as per ASTM C633. They reported
that samples were failed with adhesive failure at around 65–70 MPa instead of the in-
tended interface failure. Adhesive failure in the aforementioned investigations by various
researchers [5,6,8,10–12,15] reveals that the coating adhesion strength of CS Ti6Al4V de-
posited on Ti6A4V substrate is greater than the typical tensile strength of adhesives used to
bond the specimens according to conventional adhesive-based test methods. Consequently,
Tan et al. [15] have developed an adhesive-free method (modified ASTM E8) for measuring
true adhesion strength, which was reported as ~90 MPa with interface failure. Recently,
Boruah et al. [1] performed a parametric study using the adhesive-free collar-pin pull-off
(CPP) test to investigate the influence of various CS process variables (track spacing, scan-
ning speed, and deposition toolpath pattern) and geometrical variables (coating thickness,
and substrate surface preparations) on the interfacial adhesion strength. Two key findings
are that the adhesion strength was 42% higher when deposited using cross-hatch toolpath
pattern (91 MPa) when compared to horizontal raster (64 MPa), and the maximum strength
was 122 MPa for ground substrates with Ra 0.58 µm (with adhesive failure for all CPP
specimens) [1].

Regarding the effect of thermal treatments, Zhou et al. [14] studied the effect of
annealing heat treatments (600–1000 ◦C for 2 h) on the in-situ shot peening assisted CS
Ti6Al4V deposits using ASTM C633. They reported significant improvement in adhesion
strength from 30 MPa (interface failure) in as-deposited condition to 54–58 MPa (adhesive
failure) after annealing at 800–1000 ◦C for 2 h. Bhowmik et al. [13] also studied the
effect of annealing treatments using the modified ASTM E8, and reported significant
improvement in adhesion strength from 89 MPa (interface failure) in as-deposited condition
to 747 MPa after annealing at 950 ◦C for 1 h (cohesion failure (i.e., failure within the CS
deposited material)). Most recently, Maharajan et al. [7] investigated the effect of two
mechanical peening methods (deep cold rolling, controlled hammer peening) using ASTM
C633. They found that both peening methods improved adhesion strength, however, all
peened specimens failed with adhesive failure and the true adhesion strength could not be
determined.

Based on the literature on the adhesion strength on Ti6Al4V coatings deposited on
Ti6Al4V substrates, it was observed that there has been much exploration in terms of the
influence of process and geometrical variables. However, there is limited research on the
effect of post-deposition thermal treatments on adhesion strength. Despite that, it is crucial
to perform thermal treatments to improve adhesion strength along with other benefits
such as microstructure homogenization, porosity reduction, residual stress relieving, and
enhancing other mechanical properties. One of the main reasons behind the limited
study on the effect of thermal treatments on adhesion strength could be the limitation
of conventionally used adhesive-based methods. Adhesion strength is expected to be
much higher after thermal treatments, which is beyond the upper limit of adhesive-based
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methods (i.e., 70–90 MPa). According to the authors’ best knowledge, no study has reported
the influence of solution treatment and ageing (STA) treatment on the CS adhesion strength.

In this study, the adhesive-free collar-pin pull-off (CPP) test [1] was used to investigate
the effect of STA treatment on the adhesion strength of CS Ti6Al4V coatings deposited
on Ti6Al4V substrates with three substrate surface preparation conditions, namely (i)
grit-blasted, (ii) as-machined, and (iii) ground. Additionally, cross-sections of the spec-
imens were analyzed by means of phase identification, interface microstructure, and
cross-sectional area fraction of porosity.

2. Experimental Methodology
2.1. Substrate Material and Feedstock Powder

The substrate material used was a mill annealed Ti6Al4V (grade 5) received from
Dynamic Metals Ltd., Bedfordshire, UK. A commercially available gas-atomized Ti6Al4V
powder (grade 5; size: d10 17 µm, d50 23 µm, d90 32 µm) was used for cold spraying,
supplied by LPW Technology Ltd., Cheshire, UK, as presented in Figure 1. Chemical
compositions of the feedstock powder and substrate material can be found in [1,20].

Figure 1. Characteristics of the gas-atomized Ti6Al4V powder: (a) size distribution, (b) morphology, and (c) microstruc-
ture [1,20].

2.2. Cold Spray Process Conditions and Specimen Preparation

All specimens were produced using a high-pressure CS system (Impact Innovation
5/11) installed at TWI Ltd., Cambridge, UK. The CS process variables used for deposit-
ing Ti6Al4V on Ti6Al4V substrates are shown in Table 2. Collar pin pull-off (CPP) test
specimens were produced for three substrate surface pre-treatments viz. grit-blasted, as-
machined, and ground, as listed in Table 3. Figure 2 shows 3D surface profilometry of
test specimens with three different substrate surface preparations along with respective
surface roughness (measured using Alicona InfiniteFocusSL as per ISO 4288 [21]). Solution
treatment and ageing (STA) was performed under vacuum at 940 ◦C for 1 h followed by
argon fast cooling and subsequent ageing at 480 ◦C for 8 h followed by furnace cooling to
room temperature.

Table 2. Key process parameters used to deposit Ti6Al4V cold spray (CS) coatings on Ti6Al4V
substrates.

Process gas N2
Process gas pressure (MPa) 5

Process gas temperature (◦C) 1100
Powder feeding rate (g/min) 24.67

Traverse scanning speed (mm/s) 500
Track spacing or step size (mm) 2

Spraying angle (◦) 90
Standoff distance (mm) 30

Deposition toolpath pattern Horizontal raster
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Table 3. Specimen details used for evaluating interfacial adhesion strength.

Specimen Type Substrate
Preparation

No. of CS
Layers

Coating
Thickness

(mm)

Toolpath
Pattern

Average Layer
Thickness

(µm)

No. of
Specimens

CPP1 Grit-blasted a

24 2.6 Horizontal
raster

~107 3CPP2 As-machined b

CPP3 Ground c

a Grit-blasted using Tungsten Carbide (nominal size 44 µm) sprayed at an angle of 60◦ (Figure 2a); b As-machined i.e., faced on lathe
machine (Figure 2b); c Ground with 320 alumina grit paper (Figure 2c).

Figure 2. 3D surface profile measured by focus variation technique for different surface preparation conditions:
(a) grit-blasted, (b) as-machined, and (c) ground (adopted from [1]).

2.3. Collar-Pin Pull-Off (CPP) Test Method

To measure interfacial adhesion strength, the collar-pin pull-off (CPP) test [1] was used.
The CPP test is an adhesive-free method comprising a ‘pin’ and a ‘collar’ assembled with
two grub screws. The original idea of the CPP test was taken from the designs published
in [22,23], which was further modified/improved for easy integration with ASTM C633 [18]
test fixtures. The specimen preparation process and the schematic of the CPP test set-up
are shown in Figure 3, further details of the test method can be found in [1]. All tests were
conducted under displacement control mode using Instron 8801 (50 kN).

2.4. Cross-Sectional Analysis: Phase Identification and Microstructure

The phase information was examined using X-ray diffractometer or XRD (Bruker’ s D8
Advance, Billerica, MA, USA). Measurements were performed from 20◦ to 90◦ of 2θ using
a Cu Kα radiation source with wavelength, λ = 1.5406 Å. The purpose was to compare the
XRD patterns of Ti6Al4V material in different conditions: gas atomized feedstock power,
mill annealed substrate, CS as-deposited, and CS deposits after STA.

For the microstructural study, samples were cross-sectioned (parallel to the build
direction). Afterwards, they were prepared using standard metallographic procedures,
which includes cold mounting, manual grinding with SiC abrasive paper discs (up to
grit size 2500), followed by automatic polishing with OP-U colloidal silica. Specimens
were etched using Kroll’ s reagent for 10–15 s. To examine microstructures of the etched
and polished samples, optical microscope (Olympus BX41M-LED, Tokyo, Japan) and
scanning electron microscope or SEM (ZEISS EVO LS 15, Jena, Germany) were used.
SEM images were taken using the backscatter electron detector (BSE) mode. For porosity
measurement, a minimum of 20 continuous cross-sectional micrographs was taken at 10×
magnification. Porosity measurements were performed as per ASTM E2109 [24], and the
ImageJ software was used to locate pores and to calculate the two-dimensional area fraction
of porosity (%). All images were converted to 8-bit and a suitable threshold was created for
porosity analysis.
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Figure 3. The adhesive-free collar-pin pull-off (CPP) test method: (a) specimen preparation process, (b) experimental
set-up [1].

3. Results
3.1. Interfacial Adhesion Strength

Interfacial adhesion strength results for all investigated conditions are shown in
Figure 4a,b, representing a significant improvement in adhesion strength in CS Ti6Al4V
coatings deposited on Ti6Al4V substrates as a result of the post-deposition STA process.
Figure 4a shows stress vs. displacement curves (one example for each condition) derived
from load vs. displacement data from CPP tests, and Figure 4b presents average adhesion
strength (calculated from the maximum load at failure) for six different investigated
conditions. For grit-blasted substrate with relatively high surface roughness (Ra 5.65 µm),
adhesion strength improved by around 222% (i.e., from 82 MPa in the AD condition to
264 MPa after STA). Strikingly, for substrates with low surface roughness (as-machined: Ra
0.77 µm, ground: Ra 0.58 µm), a significant improvement in adhesion strength by more than
520% was achieved after STA (i.e., from 112 MPa to above 726 MPa for the as-machined
substrate, and from 122 MPa to above 766 MPa for the ground substrate). The failure
mode of all specimens in AD condition was interface failure. After STA, specimens with
grit-blasted substrate failed with interface failure mode, but specimens with as-machined
and ground having very high adhesion strength failed with cohesion failure mode.

Images of STA treated CPP test specimens with three different substrate pre-treatments
and their respective failure modes are presented in Figure 5a, displaying interface failure
mode for the samples with grit-blasted substrate surfaces, and cohesion failure mode
for the as-machined and the ground substrate surfaces. A close-up of the ‘pin’ with CS
deposits adhered to it can be seen in Figure 5b after the cohesion failure. Initially, it was
speculated that there might be metallurgical bonding at the sidewall between the ‘pin’ and
the ‘collar’ after the STA process, and that might have influenced the adhesion strength
results. Therefore, surfaces of the ‘pin’ sidewalls of the tested CPP samples were examined
under SEM, but, no indication of metallurgical bonding was evident between the collar
and pin’s sidewall surface. SEM micrographs of the pin’s sidewall surface (after STA) in
two different magnifications are presented in Figure 5b.
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Figure 4. Effect of STA on the interfacial adhesion strength for different substrate surface preparations: (a) stress vs.
displacement curve, showing one example for each condition; (b) interfacial adhesion strength (average of three tests).
(Note: AD-As-deposited, STA-Solution Treated and Aged, IF-Interface Failure, CF-Cohesion Failure).

Figure 5. Tested collar-pin pull-off (CPP) specimens: (a) failure mechanisms showing interface failure and cohesion failure,
(b) an enlarged view of the ‘pin’ with cohesion failure, and further magnified images of its sidewall surface showing no
evidence of metallurgical bonding between the ‘collar’ and ‘pin’ sidewall surface after STA treatment.

3.2. Phase Analysis and Microstructure of the Cross-Section

XRD patterns shown in Figure 6 reveal dominant α-Ti peaks with no evident traces
of β-Ti for CS as-deposited samples, which is comparable to the feedstock powder. XRD
patterns showed no impurities, no additional phases or apparent phase transformation
and that no oxidation happened during cold spraying as well as in the STA process.
However, for as-deposited CS Ti6Al4V, obvious peak shifts/broadening can be observed
when compared to feedstock powder. Particularly, the peak intensity of {0002} plane was
higher, which could be due to the severe deformation of the Ti6Al4V particles indicating
the formation of refined crystals and microstructure [25,26].
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Figure 6. XRD patterns of Ti6Al4V in the sample cross-section covering various materials: mill
annealed substrate, feedstock powder, cold spray deposits (as-deposited, solution treated, and aged).

The etched cross-sectional microstructures of the coating-substrate interfaces with
three different substrate surface preparation conditions are presented in Figure 7, both
before and after STA for comparison. In the AD condition, the microstructure of CS
deposits is generally comprised of partially deformed ‘textured’ regions and severely de-
formed ‘smooth’ regions inherited from the feedstock powder, whereas, the mesostructure
is comprised of flattened powder particles that undergone severe plastic deformation
with 2.25 ± 0.16% area fraction of porosity. STA led to complete disappearance of the
microstructural features of the AD condition through nucleation and growth of recrys-
tallized grains, which resulted in coarsened microstructure with equiaxed α grains (dark
colored regions) with intergranular vanadium rich β precipitates (light colored regions)
as shown in SEM images Figure 7c,f,i. Moreover, STA led to a reduction in porosity to
1.74 ± 0.10% as a result of solid-state densification through atomic thermal diffusion and
grain boundary migration at the inter-particle contact interfaces. The same phenomenon
also brings significant growth in metallurgical bonding via enhanced long-range diffusion
at a higher temperature [13]. Nevertheless, remnants from grit-blasted particles can be seen
in the interface for grit basted surfaces as can be observed in Figure 7a–c. In Figure 7h,i, the
grain size of the ground substrate material appears to be smaller, although CS deposition
process parameters and STA parameters were the same for all specimens. Therefore, it
might be the case that substrate material (i.e., the ‘Collar’ part of CPP specimen) used for
ground specimens came from a different batch of Ti6Al4V round bar or from different
ends/regions of the same bar where the microstructure was slightly different.
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Figure 7. Cross-section microstructure images of the CS Ti6Al4V deposit/substrate interface, in as-deposited (AD) and
solution treatment and aged (STA) conditions, with three different surface preparation conditions: (a–c) grit-blasted,
(d–f) as-machined, (g–i) ground (of which (a,b,d,e,g,h) are optical micrographs), and (c,f,i) are SEM images. (a,d,g) are
adopted from [1].

4. Discussion

Measuring interfacial adhesion strength in high strength coatings is one of the com-
mon challenges in the cold spray and thermal spray community, which is becoming more
crucial due to the growing applications of CS in structural repairs that require load-bearing
capacity. Recent development in adhesive-free methods [1,13,15–17] allows measurements
of adhesion strength beyond the upper limit (i.e., around 90 MPa) of the conventionally
used adhesive-based methods. The development of adhesive-free methods also permits
investigation of unexplored topics (particularly for high strength coatings), such as para-
metric studies on the effect of process parameters, coating thicknesses, substrate-surface
preparations [1], and thermal treatments [13]. Although adhesive-free methods possess
certain advantages over conventional adhesive-based methods, there are also limitations.
For example, adhesive-free methods based on [13,15–17] require a much thicker coating
(~5 mm) and post-deposition machining to get desired dimensions. Coatings with such a
high thickness induce high residual stresses and may cause interfacial cracks or delamina-
tion [11,20,27,28]. Moreover, post-deposition machining of the test specimens itself can be a
challenge, especially for the CS deposited Ti alloys which is generally very hard and brittle.
Furthermore, adhesion test results from thick coatings (~5 mm) are not representative of a
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significantly thinner coating in application. On the other hand, the adhesive-free CPP test
method [1] has some advantages, for example, it can be used for parametric studies such as
to study the effect of coating thicknesses on adhesion strength. However, it can be argued
that the cross-sectional area being tested in the CPP method is very localized (with a 5 mm
pin diameter), making the results sensitive to any local defects or imperfections, which may
not be representative of the average strength. Nevertheless, increasing the pin diameter is
not a solution, as it significantly increases the non-uniformity in stress distribution along
the interface leading to premature failure. Therefore a 5 mm pin diameter is a balance
between these two factors [1]. Anyhow, it was found that the scatter in test results coming
from the CPP test method is reasonably low (±5 MPa, average from this study and [1]) and
comparable to scatter in ASTM C633 (±4 MPa, average from [4–6,8,9,11,12,14,15]).

In this study, the CPP test method is used for the first time to investigate the influence
of post-deposition STA on the improvement in interfacial adhesion strength. The results
reported in Section 3.1 showed that STA led to considerable improvement in interfacial
adhesion strength (by more than 547% for as-machined surface, and by more than 527%
for ground substrate) from its AD condition. The highest adhesion strength was measured
for ground substrate as 766 MPa, but with cohesion failure, which means true adhesion
strength can be higher than the measured value. This also represents that the adhesion
strength is at least 81% of the ultimate tensile strength (~950 MPa) and 87% of the yield
strength (~880 MPa) of mill annealed Ti6Al4V [29]. Recently, Bhowmik et al. [13] have also
reported similar results with significant improvement in adhesion strength by more than
739% (i.e., from 89 MPa in the AD condition to >747 MPa after annealing at 950 ◦C for 1 h),
measured using the modified ASTM E8. Table 4 compares the adhesion strength results
of this study with the existing literature. Figure 8 represents the same adhesion strength
results (before and after post-deposition thermal treatments) in terms of % of mill annealed
Ti6Al4V’ s ultimate tensile strength. In the case of ‘cohesion failure’ mode, a greater-than
(>) symbol is being used while reporting the adhesion strength values, which indicates that
the true value could be greater than the measured value.
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Figure 8. Adhesion strength in terms of % of mill annealed Ti6Al4V’ s ultimate tensile strength (UTS),
before and after thermal treatments, and comparison with the literature. (Note: IF-Interface Failure,
and CF-Cohesion Failure).
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Table 4. Effect of post-deposition thermal treatments on the adhesion strength of CS Ti6Al4V deposited on Ti6Al4V substrate: literature versus this study.

Gas (MPa, ◦C) Scanning Speed
(mm/s)

Stand-Off
Distance (mm)

Coating
Thickness (mm)

Substrate Surface
Preparation

Testing
Condition

Adhesion Strength
(MPa), Failure

Mechanism
Test Methods Authors (et al.)

N2, (2.5, 680) 100 20 0.3 Grit-blasted

As-deposited 30 ± 3, NA

ASTM C633 Zhou [14]

Annealing at
600 ◦C for 2 h 34 ± 10, NA
Annealing at
800 ◦C for 2 h 54 ± 7, AF
Annealing at

1000 ◦C for 2 h 58 ± 4, AF

N2, (4.5, 1000) 500 30 4.5 Ground

As-deposited ~89, IF

Modified ASTM
E8

Bhowmik [13]
Annealing at
600 ◦C for 1 h ~152, IF
Annealing at
950 ◦C for 1 h >747, CF

N2 (5, 1100) 500 30 2.6

Grit-blasted
As-deposited 82 ± 4, IF

Collar-Pin Pull-off
(CPP)

Boruah [1];
This study

STA 264 ± 6, IF

As-machined
As-deposited 112 ± 9, IF

STA >726 ± 7, CF

Ground
As-deposited 122 ± 3, IF

STA >766 ± 8, CF

AF, adessive failure (i.e., failure at the adhesive bond line); CF, cohesion failure (i.e., failure within the CS deposits); IF, interface failure (i.e., failure at the coating substrate interface, also known as adhesion
failure); NA, not available; STA, solution treated and aged (940 ◦C for 1 h and ageing at 480 ◦C for 8 h).
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From the micrographs shown in Figures 4 and 6, it is obvious that the improvement
in adhesion strength after STA was largely due to the enhanced metallurgical bonding at
the interface. Particularly, for as-machined and ground substrate surface conditions, STA
led to significant growth in metallurgical bonding at the interface resulting in complete
interfacial mixing (interfaces are almost non-existent) and hence remarkably high adhesion
strength. For grit-blasted substrate, a marginal increase in interfacial adhesion strength
after STA could be due to embedded grit on the substrate (or remnants from grit-blasted
particles) causing a barrier to grow interfacial metallurgical bonding between the substrate
and the deposited particles.

Through-thickness residual stress profile measured in [3] using the neutron diffraction
technique showed that STA resulted in complete relaxation of process-induced residual
stresses. The relaxation of residual stresses after STA might have some contribution to-
wards the significant improvement in adhesion strength, though it was believed to be
predominantly due to the microstructural changes. As reported in [13], there were signifi-
cant changes in microstructural features with a clear trend in the growth of metallurgical
bonding with the increase in annealing temperatures (300, 400, 600 and 950 ◦C). However,
the trend in the evolution of residual stresses with the increase in annealing temperatures
was ambiguous. Annealing at both 600 and 950 ◦C relaxed residual stresses by almost the
same amount, but the adhesion strength was improved from 89 MPa in the AD condition
to 152 MPa after annealing at 600 ◦C, and to >747 MPa after annealing at 950 ◦C [13].
Therefore, it must be the microstructural changes (growth of metallurgical bonding) that
improved interfacial adhesion strength rather than a relaxation of residual stresses after
thermal treatments. Nonetheless, further investigation is required for a better understand-
ing of the relative contribution of ‘microstructural changes’ and ‘residual stress relaxation’
to the interfacial adhesion strength after thermal treatments.

5. Conclusions

This study investigated the effect of solution treatment and ageing (STA) on the
interfacial adhesion strength of cold spray (CS) deposited Ti6Al4V on Ti6Al4V substrates.
Measurements were carried out using the adhesive-free collar-pin pull-off (CPP) test for
specimens with three different substrate surface preparation conditions (grit-blasted, as-
machined, and ground). In addition, cross-sections of deposit-substrate assemblies were
analyzed in terms of X-ray diffraction (XRD), interfacial microstructure, and porosity level
before and after STA. The following conclusions are drawn based on this research:

• The post-deposition STA has led to complete interfacial mixing, resulting in signifi-
cantly improved adhesion strength by more than 520% compared to the as-deposited
condition for both ground (Ra = 0.58 µm) and as-machined substrates (Ra = 0.77 µm).
The maximum adhesion strength measured after STA was greater than 766 MPa for
ground substrates (vs. 122 MPa in as-deposited condition), reaching 81% of the ulti-
mate tensile strength of mill annealed Ti6Al4V. After STA, the cohesion failure mode
was observed for both ground and as-machined substrates, indicating that the true
adhesion strength could be higher than the measured value.

• No appreciable improvement in adhesion strength was observed for grit-blasted
surfaces (Ra = 5.65 µm). In this case, STA improved adhesion strength by around 220%,
from 82 MPa in the as-deposited (AD) condition to 264 MPa after STA (with interface
failure mode). This might be due to the embedded impurities in the interface (remnants
from grit-blasted particles) acting as a barrier to grow interfacial metallurgical bonding
during the STA process.

• The relative study on cross-sectional area fraction of porosity showed a reduction in
porosity after STA (2.25 ± 0.16% in the AD condition to 1.74 ± 0.10% post STA). The
XRD patterns did not reveal any significant phase transformation as a result of STA.

• Using the CPP test allowed for measurement of the interfacial adhesion strength of
Ti6Al4V coatings, particularly after STA, which is considerably higher than the upper
limit (i.e., around 90 MPa) of conventional adhesive-based methods (for instance,
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ASTM C633 or ASTM D4541). Notably, the tests performed after STA using the CPP
method shows comparable results with the literature (measured by another adhesive-
free test method, namely modified ASTM E8) for annealed specimens at temperatures
close to solution treatment.

Author Contributions: Conceptualization, D.B. and X.Z.; formal analysis, D.B.; investigation, D.B.;
methodology, D.B.; data curation, D.B.; writing—original draft preparation, D.B.; writing—review
and editing, D.B. and X.Z.; visualization, D.B.; supervision, X.Z.; funding acquisition, X.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by Lloyd’s Register Foundation under the Grant number
DB012017COV; and Coventry University under the grant number 7486157.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: This research was enabled through and undertaken at the National Structural
Integrity Research Centre (NSIRC), a postgraduate engineering facility for industry-led research
into structural integrity established and managed by TWI Ltd. This work was sponsored by the
Lloyd’ s Register Foundation (LRF), a charitable organization that helps to protect life and property
by supporting engineering-related education, public engagement and the application of research.
Authors would like to thank Abdul Khadar Syed, and Gowtham Soundarapandiyan at Coventry
University, Matthew Dore, Ben Robinson, Philip McNutt, Henry Begg, and Raja Khan at TWI Ltd. for
their technical and/or managerial support in various stages of this project.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Boruah, D.; Robinson, B.; London, T.; Wu, H.; de Villiers-Lovelock, H.; McNutt, P.; Doré, M.; Zhang, X. Experimental evaluation

of interfacial adhesion strength of cold sprayed Ti-6Al-4V thick coatings using an adhesive-free test method. Surf. Coat. Technol.
2020, 381, 125130. [CrossRef]

2. Boyer, R.R. An overview on the use of titanium in the aerospace industry. Mater. Sci. Eng. A 1996, 213, 103–114. [CrossRef]
3. Boruah, D. Structural Integrity Assessment of Cold Spray Additive Manufactured Titanium Alloy Ti-6Al-4V. Ph.D. Thesis,

Coventry University, Coventry, UK, 2020.
4. Khun, N.W.; Tan, A.W.Y.; Bi, K.J.W.; Liu, E. Effects of working gas on wear and corrosion resistances of cold sprayed Ti-6Al-4V

coatings. Surf. Coat. Technol. 2016, 302, 1–12. [CrossRef]
5. Perton, M.; Costil, S.; Wong, W.; Poirier, D.; Irissou, E.; Legoux, J.G.; Blouin, A.; Yue, S. Effect of pulsed laser ablation and

continuous laser heating on the adhesion and cohesion of cold sprayed Ti-6Al-4V coatings. J. Therm. Spray Technol. 2012, 21,
1322–1333. [CrossRef]

6. Costil, S.; Danlos, Y.; Wong, W. The PROTAL ®Process Applied on Cold Spraying to Improve Interface Adherence and Coating Cohesion—
Case of Titanium and Nickel Based Alloys; Therm. Spray 2010 Glob. Solut. Future Appl.; National Research Council Publications:
Ottawa, ON, Canada, 2010; pp. 836–841.

7. Maharjan, N.; Bhowmik, A.; Kum, C.; Hu, J.; Yang, Y.; Zhou, W. Post-processing of cold sprayed Ti-6Al-4V coatings by mechanical
peening. Metals 2021, 11, 1038. [CrossRef]

8. Tan, A.; Lek, J.; Sun, W.; Bhowmik, A.; Marinescu, I.; Song, X.; Zhai, W.; Li, F.; Dong, Z.; Boothroyd, C.; et al. Influence of particle
velocity when propelled using N2 or N2-He mixed gas on the properties of cold-sprayed Ti6Al4V coatings. Coatings 2018, 8, 327.
[CrossRef]

9. Zhou, H.; Li, C.; Ji, G.; Fu, S.; Yang, H.; Luo, X.; Yang, G.; Li, C. Local microstructure inhomogeneity and gas temperature effect in
in-situ shot-peening assisted cold-sprayed Ti-6Al-4V coating. J. Alloys Compd. 2018, 766, 694–704. [CrossRef]

10. Bhattiprolu, V.S.; Johnson, K.W.; Ozdemir, O.C.; Crawford, G.A. Influence of feedstock powder and cold spray processing
parameters on microstructure and mechanical properties of Ti-6Al-4V cold spray depositions. Surf. Coat. Technol. 2018, 335, 1–12.
[CrossRef]

11. Tan, A.W.Y.; Sun, W.; Phang, Y.P.; Dai, M.; Marinescu, I.; Dong, Z.; Liu, E. Effects of traverse scanning speed of spray nozzle on
the microstructure and mechanical properties of cold-sprayed Ti6Al4V coatings. J. Therm. Spray Technol. 2017, 26, 1484–1497.
[CrossRef]

12. Tan, A.W.Y.; Sun, W.; Bhowmik, A.; Lek, J.Y.; Song, X.; Zhai, W.; Zheng, H.; Li, F.; Marinescu, I.; Dong, Z.; et al. Effect of substrate
surface roughness on microstructure and mechanical properties of cold-sprayed Ti6Al4V coatings on Ti6Al4V Substrates. J.
Therm. Spray Technol. 2019, 28, 1959–1973. [CrossRef]

http://doi.org/10.1016/j.surfcoat.2019.125130
http://doi.org/10.1016/0921-5093(96)10233-1
http://doi.org/10.1016/j.surfcoat.2016.05.052
http://doi.org/10.1007/s11666-012-9812-8
http://doi.org/10.3390/met11071038
http://doi.org/10.3390/coatings8090327
http://doi.org/10.1016/j.jallcom.2018.07.009
http://doi.org/10.1016/j.surfcoat.2017.12.014
http://doi.org/10.1007/s11666-017-0619-5
http://doi.org/10.1007/s11666-019-00926-5


Metals 2021, 11, 2038 14 of 14

13. Bhowmik, A.; Tan, A.W.; Sun, W.; Wei, Z.; Marinescu, I. On the heat-treatment induced evolution of residual stress and remarkable
enhancement of adhesion strength of cold sprayed Ti-6Al-4V coatings. Results Mater. 2020, 7, 100119. [CrossRef]

14. Zhou, H.; Li, C.; Luo, X.; Yang, G.; Hussain, T.; Li, C. Microstructure of cross-linked high densification network and strengthening
mechanism in cold-sprayed Ti-6Al-4V coating after heat treatment. J. Therm. Spray Technol. 2020, 29, 1054–1069. [CrossRef]

15. Tan, A.W.Y.; Sun, W.; Bhowmik, A.; Lek, J.Y.; Marinescu, I.; Li, F.; Khun, N.W.; Dong, Z.; Liu, E. Effect of coating thickness on
microstructure, mechanical properties and fracture behaviour of cold sprayed Ti6Al4V coatings on Ti6Al4V substrates. Surf. Coat.
Technol. 2018, 349, 303–317. [CrossRef]

16. Huang, R.; Ma, W.; Fukanuma, H. Development of ultra-strong adhesive strength coatings using cold spray. Surf. Coat. Technol.
2014, 258, 832–841. [CrossRef]

17. Huang, R.; Fukanuma, H. Study of the influence of particle velocity on adhesive strength of cold spray deposits. J. Therm. Spray
Technol. 2012, 21, 541–549. [CrossRef]

18. ASTM C633-13. Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings; ASTM Int.: West Conshohocken,
PA, USA, 2017.

19. ASTM D4541-17. Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers; ASTM Int.: West Conshohocken,
PA, USA, 2017.

20. Boruah, D.; Ahmad, B.; Lee, T.L.; Kabra, S.; Syed, A.K.; McNutt, P.; Doré, M.; Zhang, X. Evaluation of residual stresses induced by
cold spraying of Ti-6Al-4V on Ti-6Al-4V substrates. Surf. Coat. Technol. 2019, 374, 591–602. [CrossRef]

21. ISO 4288:1996—Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Rules and Procedures for the Assessment of
Surface Texture; ISO: Geneva, Switzerland, 1996.

22. Sharivker, S.Y. Strength of adhesion of plasma sprayed coatings to the base material. Sov. Powder Metall. Met. Ceram. 1967, 6,
483–485. [CrossRef]

23. Lyashenko, B.; Rishin, V.; Zil’berberg, V.; Sharivker, S. Strength of adhesion between plasma-sprayed coatings and the base metal.
Sov. Powder Metall. Met. Ceram. 1969, 8, 331–334. [CrossRef]

24. ASTM E2109—01. Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings; ASTM Int.: West
Conshohocken, PA, USA, 2014.

25. Sun, W.; Tan, A.W.Y.; Khun, N.W.; Marinescu, I.; Liu, E. Effect of substrate surface condition on fatigue behavior of cold sprayed
Ti6Al4V coatings. Surf. Coat. Technol. 2017, 320, 452–457. [CrossRef]

26. Chen, C.; Xie, Y.; Yan, X.; Yin, S.; Huang, R.; Zhao, R.; Wang, J.; Ren, Z.; Liu, M.; Liao, H. Effect of hot isostatic pressing (HIP) on
microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing. Addit. Manuf. 2019,
27, 595–605. [CrossRef]

27. Greving, D.J.; Shadley, J.R.; Rybicki, E.F.; Greving, D.J.; Shadley, J.R.; Rybicki, E.F. Effects of coating thickness and residual stresses
on the bond strength of ASTM C633-79 thermal spray coating test specimens. J. Therm. Spray Technol. 1994, 3, 371–378. [CrossRef]

28. Boruah, D.; Zhang, X.; Doré, M. Theoretical prediction of residual stresses induced by cold spray with experimental validation.
Multidiscip. Modeling Mater. Struct. 2019, 15, 599–616. [CrossRef]

29. ASM Material Data Sheet: Titanium Ti-6Al-4V (Grade 5), (n.d.). Available online: http://asm.matweb.com/search/
SpecificMaterial.asp?bassnum=mtp641 (accessed on 27 July 2021).

http://doi.org/10.1016/j.rinma.2020.100119
http://doi.org/10.1007/s11666-020-01042-5
http://doi.org/10.1016/j.surfcoat.2018.05.060
http://doi.org/10.1016/j.surfcoat.2014.07.074
http://doi.org/10.1007/s11666-011-9707-0
http://doi.org/10.1016/j.surfcoat.2019.06.028
http://doi.org/10.1007/BF00780138
http://doi.org/10.1007/BF00776085
http://doi.org/10.1016/j.surfcoat.2016.11.093
http://doi.org/10.1016/j.addma.2019.03.028
http://doi.org/10.1007/BF02658982
http://doi.org/10.1108/MMMS-08-2018-0150
http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=mtp641
http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=mtp641

	Introduction 
	Experimental Methodology 
	Substrate Material and Feedstock Powder 
	Cold Spray Process Conditions and Specimen Preparation 
	Collar-Pin Pull-Off (CPP) Test Method 
	Cross-Sectional Analysis: Phase Identification and Microstructure 

	Results 
	Interfacial Adhesion Strength 
	Phase Analysis and Microstructure of the Cross-Section 

	Discussion 
	Conclusions 
	References

