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Abstract: The edge of a hot rolling strip corresponds to the area where surface defects often occur.
The morphologies of several common edge defects are similar to one another, thereby leading to
easy error detection. To improve the detection accuracy of edge defects, the authors of this paper
first classified the common edge defects and then made a dataset of edge defect images on this basis.
Subsequently, edge defect recognition models were established on the basis of LeNet-5, AlexNet, and
VggNet-16 by using a convolutional neural network as the core. Through multiple groups of training
and recognition experiments, the model’s accuracy and recognition time of a single defect image were
analyzed and compared with recognition models with different learning rates and sample batches.
The experimental results showed that the recognition model based on the AlexNet had a maximum
accuracy of 93.5%, and the average recognition time of a single defect image was 0.0035 s, which
could meet the industry requirement. The research results in this paper provide a new method and
thought for the fine detection of edge defects in hot rolling strips and have practical significance for
improving the surface quality of hot rolling strips.

Keywords: hot rolling strip; edge defects; intelligent recognition; convolutional neural networks

1. Introduction

Surface quality is an important indicator of hot rolling strip products. Surface defects
not only have an influence on product appearance and rolling yield, but also have a
harmful effect on the production of downstream processes [1,2]. Surface defects can be
detected quickly and accurately through a surface quality detection system, which has
practical significance for improving the surface quality of a strip. A new direction for
strip surface quality detection has been provided with the rapid development of artificial
intelligence, machine vision theory, and technology [3–6]. Many scholars have conducted
related research.

Xu et al. [7] used eight 1024-pixel linear CCD (Charge Coupled Device) cameras
as an image acquisition device and proposed the procedure of defect detection, and a
recognition algorithm based on the surface features of a hot rolling strip, which was
applied to a 1700 mm hot rolling strip production line. Later, a new method based on
Tetrolet transform and kernel locality preserving projection for dimension reduction was
proposed to detect the surface defects of hot rolling strips [8], and the recognition accuracy
on the defect sample database was 97.3846%. He et al. [9] developed a long-distance and
super-bright LED light and solved the problem of inhomogeneous illumination from a
long distance at a high temperature. It simultaneously met the illumination request of line
scan camera and plane scan camera imaging, and the real-time recognition of the strip
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surface defects was carried out using the decision tree classification model. Gan et al. [10]
used a decision tree and expert experience classification model to recognize silicon steel
surface defects. Zhao [11] used the VggNet16 model to recognize silicon steel surface
defects, and the accuracies of the model on training and test sets were 97.5% and 92.27%,
respectively. Han et al. [12] proposed a surface defect recognition method based on a BP
(Back Propagation) neural network, and its accuracy reached more than 84%. Chu [13]
used a least square twin support vector machine to recognize strip surface defects with an
accuracy of 95.4% while greatly improving the recognition efficiency. Xing [14] improved
the AlexNet model constructure, which was used to classify the surface defects of hot rolling
strips by adjusting the size and number of convolution kernels with a recognition accuracy
of 93.4%. Subsequently, a defect classification and index system based on MATLAB was
developed.

Song et al. [15] established an NEU (Northeastern University) surface defect database,
including the six kinds of typical surface defects of hot rolling strips: rolled-in scale
(RS), patches (Pa), crazing (Cr), pitted surface (PS), inclusion (In), and scratches (Sc).
Subsequently, a robust feature descriptor against noise named the adjacent evaluation
completed local binary patterns (AECLBP) was proposed for defect recognition, and its
recognition accuracy reached 97.89%. The NEU surface defect database was a significant
contribution to the research of strip defect recognition. For instance, Hu [16] compared the
recognition performance between AdaBoost and AdaBoost.BK on the NEU surface defect
database, and their results showed that AdaBoost.BK had the highest classification accuracy
when the backward step was F = 2. Though a long training time was needed, the recognition
time of a single defect image was only 0.002132 s. Xie [17] used a deep residual network and
transfer learning method, and its recognition accuracy on the NEU surface defect database
reached 98.54%, which was better than that of VggNet16. Gao et al. [18,19] adopted a deep
residual network and semi-supervised learning method to research the NEU surface defect
database. The recognition accuracy of the deep residual network reached 99.889%, and the
recognition accuracy of semi-supervised learning reached 86.72%. However, the data label
can be omitted in the semi-supervised learning method, which improves the efficiency. This
method is more suitable for the defect recognition mission that has a limitation on labeling.
Saiz et al. [20] combined traditional machine learning techniques with convolutional neural
networks and proposed an automatic classification method of strip surface defects based
on a deep learning method. The best classifier parameters were obtained through plenty of
experiments, and the robustness of the classifier was verified. The classification time of
a single image was only 0.019 s on the NEU surface defect database, thereby achieving a
classification accuracy of 99.95%. Lee et al. [21] proposed a relative approach for diagnosing
steel defects using a deep structured neural network with class activation maps, and it
achieved detection performance values of 99.44% and 0.99 in terms of accuracy and the F-1
score metric, respectively. He et al. [22,23] proposed a generative adversarial network and
fused multiple hierarchical feature network defect classification method, respectively, and
the recognition accuracy on the NEU surface defect database reached values of 99.56% and
99.67%. Dong et al. [24] proposed a pyramid feature fusion and global context attention
network for the pixel-wise detection of surface defect named PGA-Net. The average
pixel accuracy of the proposed method on the four defect datasets was 92.15% for NEU-
Seg, 74.78% for DAGM 2007, 71.31% for MT_defect, and 79.54% for Road_defect, all of
which were better than existing methods. Guan et al. [25] evaluated the image quality of
the potential feature information of a strip defect through visualization and proposed a
strip surface defect classification algorithm. Compared with VggNet19 and ResNet, the
proposed method had a better performance in terms of prediction accuracy and speed on
the NEU surface defect database. Fu et al. [26] proposed a lightweight convolutional neural
network (CNN) defect recognition model that emphasized the training of low-level features
and incorporated multiple receptive fields to achieve fast and accurate classification on the
NEU surface defect database. The model could realize real-time detection, and its running
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speed could reach 100 fps in computer equipped with single NVIDIA TITAN X and 12G
RAM (Random Access Memory).

In summary, the existing detection equipment, theories, and techniques of hot rolling
strip surface defects have basically achieved a satisfactory performance for typical defects
with obvious features (e.g., crazing, inclusion, patches, scratches, rolled-in scale, and pitted
surface). However, the strip edges (approximately 50 mm on both sides) are frequent areas
of surface defects in production practice. Common defects include upwarps, black lines,
cracks, slag inclusions, and gas holes. The generation mechanisms and corresponding
solutions of these defects vary, but the macroscopic features are relatively similar, and the
online surface quality detection system often recognizes them as the same type of defect. To
eliminate concrete defects, the production line generally needs to further subdivide defects
through manual detection, which seriously reduces production efficiency and increases
labor intensity. To this end, the authors of this article subdivided the edge defects of a
hot rolling strip into five types and the intelligent recognition model of edge defects was
investigated.

2. Convolutional Neural Network Recognition Model for Edge Defects
2.1. Characteristics of Edge Defects

As shown in Figure 1, during the actual production process of hot rolling strips,
surface defects often appear. There are many types of defects, and these defects often occur
in the head, tail, and both sides of the strip. Frequently, the feature difference between
a perfect image and a defect image is obvious. Traditional machine vision theory can be
used to solve this binary classification problem, and it is not difficult for a surface quality
detection system to complete this task. However, there are some problems when classifying
defect images. Because the feature difference among the various defects is not obvious,
traditional machine vision theory cannot perform well to complete this multi classification
problem. For this reason, many scholars have tried to solve this problem by using deep
learning neural networks [15,22–24]. The edge defects are more special in a defect image
set. The various edge defects generally have similar linear features, and a surface quality
detection system often classifies these different types of defects into one classification,
which is not conducive to the further analysis of the defect generation mechanism and the
proposition of corresponding solutions. The authors of this paper took the edge defect set
as the research object and studied the recognition model of edge defect image based on a
convolutional neural network. The purpose was to improve the recognition accuracy of
edge defects.
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Figure 1. Relationship between the edge defect image set and the perfect image set.

The edge defects of a hot rolling strip occur on the operation and drive sides of
the strip. The defects are detected by cameras on both edge sides of the surface quality
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detection system (SQDS). The detection position is located between the exit of the finishing
mill’s seventh stand and laminar cooling areas (Figure 2). These edge defects are evolved
by heating, rough rolling, finishing rolling, and other processes. The evolution process is
shown in Figure 3. In practical production, each defect must be accurately detected, and
effective control method must be carried out.
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Take the upwarp as an example. This defect often appears in IF (Interstitial-Free)
steel. The generation mechanism of the defect is the temperatures in the edge and corner
of the intermediate slab drop too fast during the hot rolling process, so the γ→α phase
transformation is likely to occur in advance, thus resulting in an uneven distribution of
flow stress and transverse flow in the thickness direction of the intermediate slab. The side
of intermediate slab forms a large fold. As the rolling process continues, this large fold
flips to the surface of the strip and forms edge upwarp [27,28]. In actual production, once
the edge upwarp occurs, the temperature of the heating furnace should be appropriately
increased, and an edge heater should be turned on at the same time so that the large folds
in edge and corner of intermediate slab of subsequent products can be eliminated to avoid
the occurrence of edge upwarp.

In this paper, after long-term tracking, sampling analysis, and technique exchanges
for a 2250 mm hot rolling production line, the edge defects were divided into five types,
namely upwarp, black line, crack, slag inclusion, and gas hole. The length, width, and
specific features of these five types of defects are shown in Table 1. Table 1 shows that,
except for the crack, the features of the four other types of defects presented a certain
linear feature, but the line’s width, length, color, and specific texture features were not
completely consistent. Among them, the upwarp and black line were found to have the
same generation mechanism, and their features reflected a certain similarity. Thus, they
both belong to the edge seam defects [27,28]. However, because of the different severities
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of the two types of defects, they were divided into two types during the recognition
process. Meanwhile, the images of slag inclusion and gas hole easily caused confusion, and
detection errors of these two types of defects often occurred. Compared with other typical
surface defects of hot rolling strips (e.g., crazing, inclusion, patches, scratches, rolled-in
scale, and pitted surface) (Figure 4 [15]), the detection of edge defects is relatively difficult.
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2.2. Convolutional Neural Network Model of Edge Defects

Traditional machine vision or deep learning intelligent methods can be used to achieve
the automatic and high-precision detection of the edge defects of hot rolling strips. They are
prone to confusion because of the similarity of edge defect features. If traditional machine
vision methods are used to extract, segment, or classify defects’ features, obtaining a high
recognition accuracy or a strong generalization and perception ability is difficult for the
model. As artificial intelligence and deep learning theories are developing, the technology
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of image detection with a strong similarity is resulting in better performance, such as for
face recognition and medical diagnosis [29,30]. However, a CNN, which is a mature deep
learning algorithm, has shown excellent performance in many application fields [31–33].
The CNN introduces the convolution linear operation, thereby making it more suitable
for processing data similar to a network structure, such as time series and image data.
Therefore, according to the defect images taken by an surface quality detection system, this
article investigated the intelligent recognition of the edge defects of hot rolling strips based
on a CNN.

The structure of the CNN recognition model for hot rolling strip edge defect is shown
in Figure 5, which includes a data input layer, multiple sets of convolutional and pooling
layers, a fully connected feedforward neural network layer, and an output recognition
layer. After the original edge defect image data were subjected to multiple convolutional
layers, pooling layers, and a nonlinear activation function mapping operation, the feature
information was extracted layer by layer. Finally, the probability of image classification
was calculated by the fully connected output layers, and the specific classification of defect
images was obtained.
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Figure 5. Structure of the CNN recognition model for hot rolling strip edge defect.

(1) Input layer

The input layer uses the edge defect images taken by the surface quality detection
system of a hot rolling production line. According to the image size, the model numerically
characterizes the internal information of defect images, which is used for the subsequent
process and training network.

(2) Convolutional layer

The convolutional layer is the core part of the CNN structure. The image features can
be extracted through the convolution operation between a group of convolution kernel and
input data. Figure 6 shows that during the whole operation process, the convolution kernel
slides from left to right for a specified step and implements the convolution operation
with the image data of the input layer. When it reaches far right, it returns to the far-left,
slides down for a specified step, and continuously slides from left to right until the whole
operation is completed. The size of the feature maps obtained by the convolution operation
is related to the parameters, such as the original input image size, convolution kernel size,
slide step, and padding size. Assuming that the size of the convolution kernel is m×m, the
original input image size is h×w, the slide step is ∆, the padding pixel is p, and the output
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size of the feature maps through the convolution operation is h′ × w′. The calculation
formula is presented in Equation (1).

h′ =
⌊

h−m+2p
∆ + 1

⌋
w′ =

⌊
w−m+2p

∆ + 1
⌋ (1)

where b c represents the rounding down operation.
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Figure 6. Convolution operation process.

The convolution kernel performs the convolution operation with the previous layer
through weight sharing to obtain different feature maps. The more convolution kernels, the
stronger the ability to extract the features of the input image. The convolution operation
formula is described as Equation (2).

Fl
j = f [ ∑

i∈Uj

(Fl−1
j ∗ωl

ij + bl
j)] (2)

where Fl
j is the jth output feature map of the lth layer, Fl−1

j is the input feature map of the

l − 1th layer, Uj is the feature map set of the l − 1th layer, ωl
ij is the weight from the ith fea-

ture map to the jth feature map of the lth layer, bl
j is the bias of the jth feature map of the lth

layer, and f is the activation function. To achieve a nonlinear description of the model after
the convolution operation, an activation function f is required to implement the nonlinear
operation on the linear result, which can enhance the expressive ability of the network
model. At present, the commonly used activation functions include: sigmoid, tanh, relu,
and prelu. The expression of these activation functions are described in Equations (3)–(6),
and their function images are shown in Figure 7.

sigmoid(x) =
1

1 + ex (3)

tanh(x) =
ex + e−x

ex + e−x (4)

relu(x) =
{

0, x < 0
x, x ≥ 0

(5)

prelu(x) =
{

ax, x < 0
x, x ≥ 0

(6)
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(3) Pooling layer

The pooling layer is a down-sampling operation that is usually located after the
convolutional layer, and the typical feature information is obtained by down-sampling the
original size feature map. Figure 8 shows two commonly used pooling methods, namely
max-pooling and average-pooling. The average-pooling takes the average value of the
data in the pooling window as the pooling result, and the max-pooling takes the maximum
value of the data in pooling window as the pooling result. The max-pooling method is
used in most cases. Assuming that the input size of the feature map is h′ × w′, the window
size of pooling zone is n× n, the slide step is ∆′, and the output size of feature map is
h′′ × w′′ . The calculation formula of h′′ and w′′ is described as Equation (7).

h′′ =
⌊

h′−n
∆′ + 1

⌋
w′′ =

⌊
w′−n

∆′ + 1
⌋ (7)

where b c represents the rounding down operation, and the general value n is 2.
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(4) Fully connected layer

The fully connected layer integrates all the feature informations extracted from previ-
ous convolutional and pooling layers. Each neuron in the fully connected layer connects
all neurons in the previous layer, and the calculation formula is described as Equation (8).

yw,b(x) = f (ωTx) = f (
n

∑
i=1

ωixi + b) (8)

where yw,b(x) is the output of the fully connected layer, which is a one-dimension vector;
xi is the input of the fully connected layer, which is the feature map values after the
convolution and pooling operation; ωi is the weight of the network model; b is the bias of
the network model; and f is the activation function.

(5) Output layer

The last layer of the model is the output recognition layer. The output of multi-
ple neurons is mapped to (0,1) through the Softmax function; its value represents the
probability that the input image belongs to this classification. If the input of Softmax
is yi(i = 1, 2, . . . , k), then the output probability of the defect classification by Softmax
function can be described as Equation (9).

So f tmax(y1, y2, · · · , yk) =



ey1 /
k
∑

i=1
eyi = p1

ey2 /
k
∑

i=1
eyi = p2

...

eyk /
k
∑

i=1
eyi = pk

(9)

Figure 9 shows the basic process of the CNN. We assumed that the input image data
was a 10 × 10 matrix, the size of convolution kernel was 3 × 3, the slide step was 1,
and the padding pixel was 0. Through Equation (1), the size of the feature map (hidden
layer) obtained from the convolution operation was found to be 8 × 8. The size of the
pooling zone was set as 2 × 2, and the slide step was 1. Subsequently, through the further
operation of Equation (7), the size of the feature map was found to be 4 × 4. After the
flatten operation, the size of the fully connected layer became 16 × 1, and the recognition
result was outputted through classification. The CNN had various structures through the
combination of different convolutional layers, pooling layers, and different numbers of
fully connected layers. Different structures of CNNs have different levels of learning ability
for different features. For this, the corresponding experiments had to be implemented for
different, specific, and practical problems to ensure a better performance for learning and
prediction capability.
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3. Experiment and Analysis
3.1. Edge Defect Dataset

Taking the five aforementioned types of edge defects as the research object, the edge
defect dataset was collected and produced at the hot rolling production line (Figure 10).
The total of 2000 edge defect images were found in the dataset, and 400 images were found
in each type of defect. After pre-processing, the size of each image in the dataset was
unified to 100 × 100. According to the specified proportion, the dataset was divided into
three parts, namely training, validation, and test sets. The image distribution of each part
is shown in Table 2. The training and validation sets were used for training the model,
whereas the test set was used to verify the learning and generalization abilities of the
model, and was not used in model training.
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Table 2. Image distribution of each part in the training set, the validation set, and the test set.

Dataset Upwarp Black Line Crack Slag Inclusion Gas Hole Aggregate

Training set 240 240 240 240 240 1200
Validation set 80 80 80 80 80 400

Test set 80 80 80 80 80 400
Aggregate 400 400 400 400 400 2000

3.2. Experimental Process

At present, when dealing with different practical problems, there is no uniform princi-
ple for how to select and determine the structure of a CNN. Therefore, in this paper, three
representative CNN structures, namely LeNet-5, AlexNet, and VggNet-16 [34–36], were
used to establish the edge defect recognition model for the hot rolling strip. Corresponding
training experiments were conducted to analyze the influence of the network structure
parameters on the recognition accuracy and operating speed of the edge defects. The
LeNet-5 network consisted of an input layer, three convolutional layers, two pooling layers,
and two fully connected layers. The AlexNet network consisted of an input layer, five
convolutional layers, three pooling layers, and three fully connected layers. The VggNet-16
network consisted of an input layer, thirteen convolutional layers, five pooling layers, and
three fully connected layers. The structure and operation process of the three network
models are shown in Figure 11. Figure 11 shows that theoretically, as a model’s structure
increases, the number of parameters will increase correspondingly and the perception of



Metals 2021, 11, 223 11 of 17

dealing with problems would gradually improve. However, in practical applications, it is
not true that the more complex a model structure is, the better the recognition performance.
Thus, it was indispensable to conduct a model training experiment. In this paper, the
main software and equipment used included the Linux operating system (Ubuntu), Intel
E5-2680 V3 CPU (128GB memory), TiTan RTX GPU (24GB video memory), the PyCharm
programming environment, and the PyTorch platform. One can also use platforms such as
NVIDIA Triton or the Microsoft ONNX server for the model.
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Figure 11. Three CNN recognition models for edge defects: (a) LeNet-5, (b) AlexNet, and (c) VggNet-16. 
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3.3. Experimental Results and Discussion

On the basis of three recognition models, experiment results with different learning
rates (lr) and sample batches (batch) were recorded. Figure 12 shows the final experiment
result of the LeNet-5 model. Figure 12a–c shows the training time and recognition accuracy
of the model on the test set under three learning rates (lr = 0.0001, lr = 0.001, and lr = 0.01)
and four sample batches (batch = 32, batch = 64, batch = 128, and batch = 256), respectively.
The experiment results indicated that the model had the shortest training time of 404 s
with lr = 0.001 and batch = 256, but the recognition accuracy of the model on the test
set was too low at only 48.5%. When the recognition accuracy of the model reached the
highest at 68.5% with lr = 0.01 and batch = 64, its training time was 445 s. In the process
of off-line training, if the training time was not much different, so only the recognition
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accuracy of the test set was regarded as the evaluation standard. The training process of
the model with the highest recognition accuracy of 68.5% is shown in Figure 12d,e. The
error loss of the training set was slightly lower than the error loss of the validation set
during the entire training process, converging to 0.48 and 0.55, respectively. The overall
accuracy of the training set was slightly higher than that of the validation set, finally
the accuracy reaching 0.75 and 0.68, respectively, thus indicating that the training and
learning process of the model was correct and that the model had a certain generalization
ability. However, the recognition accuracy of the model could not meet the requirements
of practical applications. Further experiments with adjustments of the parameters, such
as lr and batch, were carried out, but the final recognition accuracy could not exceed 70%,
which indicated that the edge defect recognition model based on LeNet-5 was not effective.
To further improve the recognition accuracy, the model structure must be redesigned and
adjusted, and a corresponding experiment must be verified. However, ensuring a high
recognition accuracy is difficult because of the rather complicated process.
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Figure 12. Edge defect LeNet-5 CNN model experiment results: (a) test set accuracy and training time with lr = 0.0001, (b) 

test set accuracy and training time with lr = 0.001, (c) test set accuracy and training time with lr = 0.01, (d) error loss of 

training process with lr = 0.01 and batch = 64, and (e) accuracy of training process with lr = 0.01 and batch = 64. 
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Figure 12. Edge defect LeNet-5 CNN model experiment results: (a) test set accuracy and training time with lr = 0.0001,
(b) test set accuracy and training time with lr = 0.001, (c) test set accuracy and training time with lr = 0.01, (d) error loss of
training process with lr = 0.01 and batch = 64, and (e) accuracy of training process with lr = 0.01 and batch = 64.

The authors of this paper used the AlexNet convolutional neural network to estab-
lish an edge defect recognition model. The experiment results are shown in Figure 13.
In Figure 13a–c, two groups with the model’s defect recognition accuracy exceeding 90%
on the test set can be observed. When lr = 0.001 and batch = 32 and when lr = 0.001 and
batch = 64, the accuracy deviation between the two groups was 1% and the training time
deviation was 67 s. Similarly, not considering the training time, the training process of the
model with the recognition accuracy of 93.5% is shown in Figure 13d,e. The entire training
process was relatively stable, and the error loss of the training set and the validation set
converged to 0.11 and 0.19, respectively, which were lower than the error loss of the LeNet-5
recognition model. The accuracy of the training set and the validation set reached 0.96
and 0.93, respectively, which were significantly higher than the accuracy of the LeNet-5
recognition model.
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Figure 13. Edge defect AlexNet CNN model experiment results: (a) test set accuracy and training time with lr = 0.0001,
(b) test set accuracy and training time with lr = 0.001, (c) test set accuracy and training time with lr = 0.01, (d) error loss of
training process with lr = 0.001 and batch = 32, and (e) accuracy of training process with lr = 0.001 and batch = 32.

This paper further used the VggNet-16 convolutional neural network to establish an
edge defect recognition model. The experiment results are shown in Figure 14. Figure 14a–c
shows that when lr = 0.001 and batch = 128, the defect recognition accuracy of the model on
the test set was up to 74% and the training time was 3205 s. Figure 14d,e shows that local
oscillations existed during the model training process. Meanwhile, when the number of
iterations exceeded 400, the error loss of the validation set had an upward trend, indicating
that the model had a certain degree of overfitting.
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Figure 14. Edge defect VggNet-16 CNN model experiment results: (a) test set accuracy and training time with lr = 0.0001,
(b) test set accuracy set and training time with lr = 0.001, (c) test set accuracy and training time with lr = 0.01, (d) error loss
of training process with lr = 0.001 and batch = 128, and (e) accuracy of training process with lr = 0.001 and batch = 128.
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By comparing Figures 12–14, it can be seen that the training time of the model slightly
decreased with the increase in learning rate and greatly decreased with the increase in
sample batch, though too large a batch greatly reduced the recognition accuracy of the
model. The defect image recognition time is more important to satisfy online applications.
In this paper, the recognition experiment of a single edge defect image was conducted
for each model with different parameters. The experiment results are shown in Table 3.
The results showed that the average single defect recognition times of three types of CNN
models were 2.7, 3.5, and 5.4 ms, respectively. The learning rate and sample batch had
no obvious influence on the recognition time of a single defect image. In this paper, the
AlexNet (lr = 0.001 and batch = 32) model was selected as the hot rolling strip edge defect
recognition model because its accuracy and speed of recognition meet the engineering
requirements. Figure 15 shows the visualization recognition results of the model on the
test set. The recognition results of the defect image were expressed by the probability
value. In Figure 15a–e, the recognition result of each image defect classification is expressed
by a probability vector (probability 1, probability 2, probability 3, probability 4, and
probability 5). The values of probability 1, probability 2, probability 3, probability 4, and
probability 5 represented the scores of five defect classifications (upwarp, black line, crack,
slag inclusion, and gas hole, respectively), and the sum of the five probability values was
1. In the process of defect image recognition, when the probability value of a certain item
in the probability vector exceeded 0.5 (orange boundary in the figure), the classification
of the defect of the image was determined. The recognition performance of edge cracks
was the best, and no recognition error was recorded. More errors appeared between the
upwarp and black line, which also confirmed the conclusion that the two types defect have
the same generation mechanism [27,28]. The confusion matrix of the defect recognition
results on the test set is shown in Table 4. According to the diagonal value in this matrix, it
can be seen that the model had a better overall recognition and classification effect on edge
defects. Based on the value distribution on both sides of the diagonal line, it could also be
seen that the upwarp and black line easily caused recognition errors, which had a greater
impact on the accuracy of the model. Though a small number of recognition errors were
observed between slag inclusion and gas hole, the overall recognition accuracy could meet
the requirements of practical application. In the future, in order to further improve and
optimize the model, the dataset needs to be expanded and processed, especially to expand
the defect images of upwarp, black line, and gas hole as much as possible. Meanwhile, an
image-enhancing technique can be introduced to optimize the model.

Table 3. Recognition time of a single defect image on the test set with different models (ms).

Batch
LeNet-5 AlexNet VggNet-16

Lr = 0.0001 Lr = 0.001 lr = 0.01 lr = 0.0001 lr = 0.001 lr = 0.01 lr = 0.0001 lr = 0.001 lr = 0.01

32 2.386 2.381 2.386 3.462 3.462 3.395 5.131 5.737 5.508
64 2.514 2.572 2.568 3.513 3.479 3.401 5.305 5.542 5.416
128 2.844 2.825 2.859 3.566 3.783 3.495 5.324 5.493 5.703
256 3.180 3.081 3.081 3.799 3.544 3.385 5.280 5.427 5.464
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Figure 15. Visualization results of five types of edge defect recognition on the test set: (a) upwarp, (b) black line, (c) crack, 

(d) slag inclusion, and (e) gas hole. 
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Figure 15. Visualization results of five types of edge defect recognition on the test set: (a) upwarp, (b) black line, (c) crack,
(d) slag inclusion, and (e) gas hole.

Table 4. Confusion matrix of the edge defect recognition model on the test set.

Confusion Matrix
Model Classification

Upwarp Black Line Crack Slag Inclusion Gas Hole

A
ct

ua
l

cl
as

si
fic

at
io

n

Upwarp 74 4 0 0 2

Black line 10 68 0 0 2

Crack 0 0 80 0 0

Slag inclusion 0 0 2 74 4

Gas hole 0 2 0 0 78

4. Conclusions

The edge defects of hot rolling strips have five types: upwarp, black line, crack, slag
inclusion, and gas hole. The appearance morphologies of these five types of defects show a
certain linear feature. However, the width, length, and color of the lines are not completely
consistent with the specific texture features. To improve the detection accuracy of edge
defects, edge defect recognition models were established on the basis of LeNet-5, AlexNet,
and VggNet-16 by using a convolutional neural network as the core.

The edge defect recognition model based on the LeNet-5 convolutional neural network
was found to have the highest accuracy of 68.5% on the test set, and its average recognition
time for a single defect image was 2.7 ms. Though the model was found to have a certain
generalization ability, its prediction accuracy is a bit low. The edge defect recognition
model based on the VggNet-16 convolutional neural network had the highest accuracy
of 74% on the test set, and its average recognition time for a single defect image was
5.4 ms. The model was found to have local oscillations and a certain overfitting trend
during the training process. The edge defect recognition model based on the AlexNet
convolutional neural network had the highest accuracy of 93.5% on the test set, and its
average recognition time for a single defect image was 3.5 ms.
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Among the three models, the edge defect recognition model based on the AlexNet
convolutional neural network was found to have the highest prediction accuracy, a good
generalization ability, and the best comprehensiveness. However, the accuracy of the
model needs to be further improved, especially because the two defects of upwarp and
black line are still easily confused. In future research, we plan to adapt some advanced
neural networks (such as EfficientNet, EfficientDet, and RegNet) to further improve model
performance (accuracy, training speed, recognition speed, transfer ability, etc.). At the same
time, more defect images will be collected for model training and testing.
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