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Abstract: In the present study, the viscosity of the CaO–SiO2–FeO–Al2O3–MgO slag system was
measured for the recovery of FeO in the electric arc furnace (EAF) process using Al dross. Considering
the MgO-saturated operational condition of the EAF, the viscosity was measured in the MgO-
saturated composition at 1823 K with varying FeO and Al2O3 concentrations. An increase in the
slag viscosity with decreasing temperature was observed. The activation energy was evaluated,
and the change in the thermodynamically equilibrated phase was considered. The changes in
the aluminate structure with varying FeO and Al2O3 concentrations were investigated by Fourier-
transform infrared spectroscopy, which revealed an increase in the [AlO4] tetrahedral structure with
increasing Al2O3 concentration. Depolymerization of the aluminate structure was observed at higher
FeO concentrations. The Raman spectra showed the polymerization of the silicate network structure
at higher Al2O3 concentrations. By associations between the silicate and aluminate structures,
a more highly polymerized slag structure was achieved in the present system by increasing the
Al2O3 concentration.

Keywords: CaO–SiO2–FeO–Al2O3–MgO slag system; viscosity; slag structure; silicate structure;
aluminate structure; FeO recovery

1. Introduction

In Korea, steel production in 2020 was 67.1 million tons. Approximately 31% (20.8 million
tons) of this was produced by the electrical arc furnace (EAF) process. As approximately
169 kg of EAF slag is produced for each ton of crude steel, the estimated amount of EAF slag
generated in 2020 in Korea was 3.5 million tons. With slags from blast furnaces and basic
oxygen furnaces, most of the slag can be utilized as raw materials for road construction,
backfill, or fertilizers [1]. However, owing to its high concentration of Fe (20–30 wt%),
EAF slag is limited in applicability to value-added construction materials [2,3]. EAF slag
is typically used as a roadbed or backfill material following an appropriate magnetic
separation process [2]. Although several studies have demonstrated the applicability of
EAF slag in concrete, road construction materials, and cement without preprocessing to
reduce the FeO concentration [4–9], the total amount of EAF slag in these mixtures was
limited to obtain the appropriate physical properties.

In order to utilize EAF slag in value-added construction materials and to recover valu-
able Fe from such slag, the reduction technique called the eco-slag process was proposed
for EAF steelmaking [1–3]. Kim et al. [2] suggested a two-stage reduction process of Al
reduction by Al dross and direct carbon reduction. In the first stage, Al dross consisting of
30 wt% Al and 70 wt% Al2O3 was added approximately 5 min before tapping the steel in
the EAF steelmaking process. The addition of 100 kg of Al dross to 90 tons of steel reduced
the total Fe content in the EAF slag from 21% to 15%. In the second stage, the tapped EAF
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slag was transferred to an induction furnace. The EAF slag was agitated using a graphite
rod, and further reduction in FeO in the slag was simultaneously performed at 1773 K. After
60 min of operation, the final slag composition was achieved with approximately 5 wt% of
FeO. By controlling the cooling rate of the slag, a magnetic and Fe-rich spinel phase forms
alongside the amorphous material that was clearly separated [10]. Finally, a suitable slag
composition was achieved through crushing and magnetic separation processes for use in
ordinary Portland cement [2,3].

During the eco-slag process, the slag composition is significantly changed by adding
Al dross and by reducing FeO. The change in slag composition affects the erosion of the
EAF refractory. During the EAF process, MgO from the refractory is soluble in the molten
slag. As refractory erosion can shorten the service life of the EAF system, MgO saturation
in the EAF slag is maintained by the external addition of calcined dolomite or calcined mag-
nesite. Previous studies have investigated the solubility of MgO in CaO–SiO2–FeO–Al2O3
systems [11–13]; these studies have shown that MgO solubility in the molten slag system is
mainly affected by the equilibrated phase of the slag, such as magnesiowüstite ((Mg, Fe)O)
or spinel (MgAl2O4). In addition, the change in the thermodynamically equilibrated phase
affects the ionic state and slag structure of the network-forming oxide [11–13].

The MgO solubility and the viscosity of the EAF slag are mainly affected by changes
in the equilibrium phase and its related slag structure. Recently, Lee and Min [14], who
studied the activation energy of viscous flow in CaO–SiO2–FeO–Al2O3–MgO systems,
reported an abnormal viscosity tendency as the equilibrium phase changed from melilite
to di-calcium silicate. Viscosity is a dominant property related to operational conditions,
including the slag foaming ability and tapping condition [15,16]. Therefore, understanding
the rheological properties with variations in the FeO and Al2O3 compositions in the MgO-
saturated condition is crucial for practical application of the eco-slag process. Although
several studies have investigated the viscosity of molten EAF slag systems [17–21], slags
with >10 wt% Al2O3 and MgO-saturated compositions have not been studied. In the
present study, the viscosity in the high-MgO-concentration region was measured with
variations in the FeO and Al2O3 contents of the slag, assuming a reduction in FeO by Al
dross. In addition, the change in the slag structure was investigated to evaluate the effects
of changes in the network structure of oxide melts on the rheological properties of the
CaO–SiO2–FeO–Al2O3–MgO system using Raman spectroscopy and Fourier-transform
infrared (FT-IR) spectroscopy.

2. Materials and Methods

Prior to the viscosity measurement, MgO solubility in the CaO–SiO2–FeO–Al2O3
system at 1823 K was determined by using a thermochemical equilibrium technique [11].
The slag sample was prepared using reagent-grade CaO, SiO2, Al2O3, FeO, and MgO.
CaO was obtained by the calcination of CaCO3 at 1273 K for 6 h. The powder was mixed
in an agate mortar to obtain a homogeneous mixture. Afterward, approximately 5 g of
the powder mixture was placed in a MgO crucible (99% purity) and heated in an electric
resistance furnace equipped with MoSi2 heating elements under an Ar atmosphere. The
equilibration time was determined as 8 h in a previous study [11]. After 8 h, the samples
were removed from the furnace and quenched by blowing Ar gas. The slag was separated
from the MgO crucible and ground using a pulverizing ball mill to less than 100 µm for
chemical analysis. The slag composition was analyzed using X-ray fluorescence (XRF, S4
Explorer; Bruker AXS, Madison, WI, USA). Table 1 shows the pre- and post-experiment
slag compositions. Although the pre-experiment compositions of FeO and Al2O3 were
10, 20, 30, and 40 wt%, the post-experiment contents varied because of the different MgO
solubilities. For convenience, the pre-experiment concentrations of FeO and Al2O3 were
used to identify the samples in the present study.
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Table 1. Experimental results of MgO solubility for CaO–SiO2–FeO–Al2O3 slags at 1823 K.

Pre-Experiment Post-Experiment
(wt%) CaO SiO2 FeO Al2O3 MgO CaO SiO2 FeO Al2O3 MgO

50 50 0 0 - 41.54 38.97 0.00 0.00 19.49
45 45 0 10 - 36.97 34.86 0.00 7.63 20.55
40 40 0 20 - 33.28 30.97 0.00 15.33 20.41

Initial CaO/SiO2 = 1.0
Initial FeO = 0 wt%

40 40 0 30 - 33.24 29.94 0.00 23.58 13.23
45 45 10 0 - 38.77 36.25 7.91 0.00 17.07
40 40 10 10 - 34.60 31.77 8.08 7.85 17.70
35 35 10 20 - 29.96 27.07 9.20 15.72 18.05

Initial CaO/SiO2 = 1.0
Initial FeO = 10 wt%

35 35 10 30 - 28.25 25.47 10.13 22.27 13.88
40 40 20 0 - 34.60 32.76 18.19 0.00 14.46
35 35 20 10 - 29.82 28.18 18.81 7.95 15.24
30 30 20 20 - 26.03 23.28 19.03 15.22 16.44

Initial CaO/SiO2 = 1.0
Initial FeO = 20 wt%

25 25 20 30 - 21.31 19.42 18.34 23.42 17.52
35 35 30 0 - 31.96 28.77 26.46 0.00 12.82
30 30 30 10 - 27.09 24.43 26.43 8.13 13.92
25 25 30 20 - 22.11 20.21 26.87 15.56 15.26

Initial CaO/SiO2 = 1.0
Initial FeO = 30 wt%

20 20 30 30 - 16.96 15.26 26.08 25.64 16.06

Referring to the MgO-saturated compositions in the CaO–SiO2–FeO–Al2O3 slag sys-
tem at 1823 K, as shown in Table 1, the slag mixture was prepared using reagent-grade
CaO, SiO2, FeO, Al2O3, and MgO. Approximately 120 g of the homogeneous powder
mixture ground in an agate mortar was placed in a Pt–10% Rh crucible (outer diameter:
41 mm, inner diameter: 40 mm, and height: 65 mm). The crucible was placed in an electric
resistance furnace at 1873 K under an Ar atmosphere. After maintaining the conditions for
1 h to achieve thermal equilibrium, the viscosity was measured by using a rotating cylinder
method. The viscosity and torque data were recorded each second using a digital viscome-
ter (DV2TLV; Ametek Brookfield, Middleboro, MA, USA) calibrated with silicone oil at
room temperature. Figure 1 shows the schematic of the viscosity measurement apparatus.
To evaluate the temperature dependency, the viscosity was measured by decreasing the
temperature by 25 K at 5 K/min and by maintaining each temperature for 30 min during
viscosity measurement.

After the viscosity measurement, the temperature was increased to 1873 K and the
crucible was removed from the furnace. The molten slag was quenched on a water-cooled
Cu plate. No characteristic X-ray diffraction (XRD) peaks were observed from the quenched
sample, indicating that it was in an amorphous state. The obtained sample was crushed and
ground to a particle size of less than 100 µm for structural analysis. The intermediate-range
order of the slag structure was analyzed using FT-IR spectroscopy (Spectra 100; Perkin-
Elmer, Shelton, CT, USA) and Raman spectroscopy (LabRaman HR, Horiba Jobin-Yvon,
France). More details of the structural analysis procedure utilizing FT-IR spectroscopy and
Raman spectroscopy have been explained elsewhere [22–24].
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Figure 1. Schematic of the viscosity measurement apparatus.

3. Results and Discussion
3.1. Effect of Temperature on the Viscosity of CaO–SiO2–FeO–Al2O3–MgO Slag

Figure 2 shows the temperature dependence of viscosity in the CaO–SiO2–FeO–Al2O3–
MgO system. Typically, slag viscosity decreases with increasing temperature. However,
the effect of temperature on the viscosity change varies with slag composition. When both
FeO and Al2O3 were 0 wt%, the viscosity increased steeply with decreasing temperature.
However, when Al2O3 was added to the CaO–SiO2–MgO system, the temperature depen-
dence of viscosity decreased. The addition of Al2O3 led to an increase in the temperature
dependence of viscosity in the CaO–SiO2–FeO–MgO system. The relationship between
temperature and viscosity can be quantitatively expressed by an Arrhenius-type equation,
assuming that viscous shear is a thermally activated process [25]:

η = η∞ exp
(

E
RT

)
, (1)

where η is the viscosity, η∞ is the pre-exponential constant, R is the ideal gas constant, T is
the absolute temperature, and E is the activation energy. From Equation (1), the activation
energies of the present slag system were calculated, as shown in Figure 3. The highest
activation energy was found in the CaO–SiO2–MgO ternary slag system. When Al2O3
was added to this ternary system, the activation energy initially decreased. However,
above 20 wt% Al2O3, higher Al2O3 concentrations increased the activation energy. In
the CaO–SiO2–FeO–MgO systems, the activation energy increased with increasing Al2O3
concentration. As Equation (1) is based on vibrational frequency, the activation energy
indicates the energy barrier to be overcome [25]. Turkdogan and Bills described the
activation energy for viscous flow as the energy required to move the “flow-unit” from one
equilibrium position to another [26]. According to Lee and Min [14], the activation energy
was related to the distribution of the network structure and cation–anion interactions. Thus,
the activation energy is also affected by the change in the equilibrium phase because the
structure of the molten slag is similar to that of the thermodynamic equilibrium phase [14].
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Figure 3. Activation energies of CaO–SiO2–FeO–Al2O3–MgO slag system with varying FeO and
Al2O3 concentrations.

Using the thermodynamic calculation software FactSage 8.1 (Thermfact and GTT-
Technologies, Montreal, QC, Canada), the thermodynamic equilibrium phases of the molten
slags were evaluated. In the CaO–SiO2–MgO ternary system, the determined liquidus
temperature was 1823.39 K and the equilibrium phase was merwinite (Ca3MgSi2O8). It can
be inferred that this system showed the highest activation energy because merwinite has a
rigid structure between cations and silicate anions. The equilibrium phase changed to MgO
as Al2O3 was added to the ternary system. As the equilibrium structure was simplified,
the activation energy decreased. However, above 20 wt% Al2O3, the equilibrium phase
changed to spinel. Due to the high affinity between the Mg cations and aluminate anions,
the activation energy was increased.
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On the contrary, an increase in the activation energy was observed in the CaO–SiO2–
FeO–MgO system as the Al2O3 concentration increased. In order to evaluate the effect of
the slag structure on the viscosity, the structural change of the CaO–SiO2–FeO–Al2O3–MgO
system was investigated and discussed in the following section.

3.2. Effect of Slag Structure on the Viscosity of the CaO–SiO2–FeO–Al2O3–MgO Slag

Figure 4 shows the effect of Al2O3 on the viscosity of the CaO–SiO2–FeO–Al2O3–MgO
system at 1873 K. In the CaO–SiO2–MgO system, the viscosity was slightly decreased
with the addition of 10 wt% Al2O3. However, the viscosity was simply increased as a the
concentration of Al2O3 increased. In the CaO–SiO2–FeO–MgO systems, it is commonly
observed that an increase in Al2O3 causes an increase in viscosity. Compared with previous
studies that measured viscosity in the CaO–SiO2–Al2O3–MgO system [27,28] or CaO–
SiO2–FeO–Al2O3–MgO system [29], the present system showed lower viscosity. The
present experiments were carried out in the composition where MgO was saturated at
1823 K. Compared with other studies, the higher MgO concentration resulted in lower
viscosity [28]. According to Mysen et al. [30–32], the anionic structure in the aluminosilicate
system does not change upon quenching from the molten state. For this reason, the molten
slag structure was investigated by analyzing the quenched glass sample. Using FT-IR and
Raman spectroscopy, the changes in the network structure with varying Al2O3 and FeO
concentrations were evaluated.
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Figure 5 shows the FT-IR transmittance spectra of the slag samples. According to
previous FT-IR investigations of slag structures [19,20,33–36], bands indicating the distinct
structural units related to the silicate and aluminate structures can be found in three regions:
1200–800 cm−1, 750–630 cm−1, and 630–450 cm−1, corresponding to [SiO4] tetrahedral
symmetric stretching vibrations, [AlO4] tetrahedral asymmetric stretching vibrations, and
Si–O–Al bending vibrations, respectively. In the silicate network structure, tetrahedral
[SiO4] units can be classified depending on the number of bridging oxygens (BOs). As
different units have different symmetric stretching vibrations, the absorption band present
in the FT-IR spectrum corresponds to the characteristic bonding states of the different
units. The number of BOs in the [SiO4] unit is expressed by n in Qn

Si, where 4, 3, 2, and
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1 indicate sheets, chains, dimers, and monomers, respectively. Likewise, the number of
BOs in the [AlO4] tetrahedral unit is expressed by n in Qn

Al . It is commonly observed that
the addition of Al2O3 to the CaO–SiO2–MgO or CaO–SiO2–FeO–MgO system introduces
an absorption peak at 750–630 cm−1, indicating the formation of [AlO4] tetrahedral units.
When the [AlO4] tetrahedral units form a polymerized network structure or become
incorporated into the [SiO4] tetrahedral units, a cation is required for charge balancing [35].
The high affinity between Mg2+ and the [AlO4] tetrahedral unit was reported in our
previous study [11]. As the viscosity of the CaO–SiO2–FeO–Al2O3–MgO system was
measured in the MgO-saturated composition at 1823 K, sufficient Mg2+ existed in the
molten slag for the charge balance of the aluminate and aluminosilicate network structures.
For this reason, the addition of Al2O3 causes the formation of a network structure, and
the viscosity monotonically increases with increasing Al2O3 concentration at a fixed initial
concentration of FeO, as shown in Figure 4.
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A decrease in viscosity can be observed in Figure 4 as the FeO concentration increases
for a fixed initial Al2O3 concentration. Depending on the number of BOs in the [AlO4]
tetrahedral units, two distinct absorption bands can appear in the FT-IR spectra [19]. When
the BO number is 3 (Q3

Al), an absorption band is observed in the range 690–750 cm−1.
Otherwise, the absorption band observed between 640 and 680 cm−1 is attributed to the
Q2

Al unit, where the BO number is 2. As shown in Figure 5, a decrease in transmittance
at 640–680 cm−1 is observed when the initial concentration of FeO is increased at a fixed
initial concentration of Al2O3. The increase in Q2

Al units with increasing FeO concentration
indicates the depolymerization of the [AlO4] tetrahedral network structure. In the molten
oxide system, FeO acts as a network modifier. As Fe2+ ions require charge compensa-
tion, non-bridging oxygen is formed, which results in depolymerization by reducing the
network connectivity.

To quantitatively evaluate the silicate structure changes with varying Al2O3 concentra-
tion in the present CaO–SiO2–FeO–Al2O3–MgO system, Raman scattering measurements
were performed. Figure 6 shows the original Raman spectra and Raman deconvoluted
bands within the 400–1100 cm−1 range. Referring to the appropriate references listed in
Table 2 [19–21,30,36–42], the Raman spectra were fitted by a Gaussian function and the
corresponding structural units of the slag were identified with the aid of Peakfit 4 (Systat
Software, San Jose, CA, United States). The relative fractions of the tetrahedral silicate
structure units with varying BO numbers Qn

Si were qualitatively evaluated by integrating
the areas of the corresponding Gaussian-deconvoluted peaks. As shown in Figure 7, the
number of Q1

Si structural units gradually decreased with increasing Al2O3 concentration.
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In contrast, the numbers of Q2
Si and Q3

Si structural units increased with increasing con-
centrations of Al2O3. The increase in the number of silicate structure units with higher
BO numbers indicates the polymerization of the silicate network structure. According to
Wang et al. [29] who studied the structure of a CaO–SiO2–FeO–Al2O3–MgO slag system
using Raman spectroscopy and magic-angle-spinning nuclear magnetic resonance spec-
troscopy, a more polymerized silicate network structure was observed with higher Al2O3
concentration. The [AlO4] tetrahedral structural unit can be associated with the [SiO4]
tetrahedral structural unit, thereby increasing the degree of polymerization. Yao et al. [43]
also reported silicate network polymerization by the addition of Al2O3. When Al2O3
functions as a network former for tetrahedral structural units, it can be associated with
non-bridging oxygen in the [SiO4] tetrahedral structural units, thus strengthening the
silicate network structure. Therefore, the addition of Al2O3 to the CaO–SiO2–FeO–Al2O3–
MgO system results in the polymerization of the molten slag system by the formation of
an [AlO4] tetrahedral network structure associated with the [SiO4] tetrahedral network
structure units.
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Table 2. Reference Raman peak positions and corresponding assigned aluminate and silicate units.

Reference Position (cm−1) Assignments

500–600 [21,30,37–39] Symmetric Al–O− stretching of [AlO4]

630–750 [21,36,37,40,41] Symmetric Al–O− stretching of [AlO4]

850–880 [19–21,36,42] Symmetric Si–O− stretching of [Si2O4]4−
(
Q0

Si )

900–930 [19–21,36,42] Symmetric Si–O− stretching of [Si2O7]6−
(
Q1

Si )

950–980 [19–21,36,42] Symmetric Si–O− stretching of [SiO3]4−
(
Q2

Si )

1040–1060 [19–21,36,42] Symmetric Si–O− stretching of [Si2O5]2−
(
Q3

Si )
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4. Conclusions

Understanding the thermophysical properties of molten CaO–SiO2–FeO–Al2O3–MgO
systems is significant for FeO reduction by Al dross addition in the EAF process. In the
present study, the viscosity of a CaO–SiO2–FeO–Al2O3 system with a high concentration of
MgO, which reached saturation at 1823 K, was measured by varying the FeO and Al2O3
concentrations at a fixed CaO/SiO2 ratio. Structural changes in the molten slag system
with composition variations were investigated using FT-IR and Raman spectroscopy. The
following conclusions were drawn from the present study.

1. Decreases in viscosity at higher temperatures were commonly observed in the CaO–
SiO2–FeO–Al2O3–MgO slag system within the temperature range of 1823–1873 K.
Based on the Arrhenius equation, the activation energy of viscous shear for the present
slag system was evaluated. The highest activation energy (837.9 kJ/mol) was observed
for the CaO–SiO2–MgO ternary slag system. The change in the thermodynamically
equilibrated phase of the slag system would be dominant in determining the activation
energy.

2. The effect of FeO and Al2O3 on the slag viscosity was evaluated based on the silicate
and aluminate network structures in the molten slag. An increase in the slag viscosity
was observed with increasing Al2O3 concentration at 1873 K from 1.03 dPa·s to
1.9 dPa·s, from 0.6 dPa·s to 1.2 dPa·s, and from 0.4 dPa·s to 1.1 dPa·s when FeO was
0, 10, and 20 wt%, respectively. According to FT-IR spectroscopy, [AlO4] tetrahedral
units were formed with increasing Al2O3 concentration. In contrast, a decrease in
viscosity was observed with increasing FeO concentration at 1873 K. Higher FeO
concentrations at a fixed Al2O3 content resulted in an increase in Q2

Al and a decrease
in Q3

Al , indicating the depolymerization of the aluminate network structure.
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3. According to the intermediate-range order structural investigation by Raman spec-
troscopy, the silicate network structure was polymerized with increasing Al2O3 con-
centration. Quantitative evaluation of the Qn

Si structural units revealed an increase in
Q2

Si and Q3
Si units with a decrease in Q1

Si units with increasing Al2O3 concentration,
indicating the polymerization of the silicate structure. The association of the [AlO4]
tetrahedral units with the [SiO4] tetrahedral silicate network induced the polymeriza-
tion of the slag structure and an increase in the viscosity of the molten slag.
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