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Abstract: The fatigue crack growth (FCG) process is usually accessed through the stress intensity
factor range, ∆K, which has some limitations. The cumulative plastic strain at the crack tip has pro-
vided results in good agreement with the experimental observations. Also, it allows understanding
the crack tip phenomena leading to FCG. Plastic deformation inevitably leads to micro-porosity
occurrence and damage accumulation, which can be evaluated with a damage model, such as Gurson–
Tvergaard–Needleman (GTN). This study aims to access the influence of the GTN parameters, related
to growth and nucleation of micro-voids, on the predicted crack growth rate. The results show the
connection between the porosity values and the crack closure level. Although the effect of the porosity
on the plastic strain, the predicted effect of the initial porosity on the predicted crack growth rate is
small. The sensitivity analysis identified the nucleation amplitude and Tvergaard’s loss of strength
parameter as the main factors, whose variation leads to larger changes in the crack growth rate.

Keywords: fatigue crack growth; accumulated plastic strain; GTN damage model; sensitivity analysis

1. Introduction

The fatigue crack growth (FCG) process is widely evaluated using the stress intensity
factor range (∆K) [1,2]. This concept is interesting because it is related to the stress and
strain fields occurring near the crack tip. Despite the importance of this parameter, it is not
able to explain phenomena such as the influence of the stress ratio or variable amplitude
loading [3]. The introduction of the crack closure concept allowed to explain the results
obtained when considering overloads [4], short cracks [5], and mean stress [6]. However,
the crack closure is related to non-linear concepts [7] while ∆K is fundamentally elastic [8].
The study of the nonlinear crack tip phenomena emerged as an alternative to the study
based on ∆K. Different non-linear parameters have been used, namely the range of cyclic
plastic strain [9], the size of the reverse plastic zone [10] and the total plastic dissipation
per cycle [11]. The plastic crack tip opening displacement (CTODp) has also been used to
predict FCG [12–15]. In this way, the plastic deformation at the crack tip can be understood
as the main driving force behind FCG [16]. In this line of work, models regarding the
cumulative plastic strain prove to provide results in good agreement with the experimental
trends [3,17,18].

Under the presence of high levels of plastic strain, ductile fracture tends to be of high
importance [19,20]. This process occurs at a microscale level involving three fundamental
stages: growth, nucleation, and coalescence of micro-voids [21,22]. Voids are defects
innate to the materials, which under specific conditions will subsequently grow. The void
growth process is highly affected by the stress state [23]. Indeed, the deviatoric stress
component is primarily responsible for void nucleation while the hydrostatic stress rules
the void growth and coalescence steps [24]. Thus, the stress triaxiality dictates which
are the active mechanisms behind void growth. Under low stress triaxiality, voids suffer
changes in shape without affecting the void volume fraction. In this way, fracture is mainly
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due to shape changing void growth [25]. Alternatively, on the presence of high stress
triaxiality, as it occurs at a fatigue crack tip [26], voids dilatate without changing their
shape [27]. In addition to growing, the number of voids can also increase. For high levels
of plastic deformation, void initiation arises by fracture of non-metallic inclusions and by
the decohesion of the inclusion–matrix interface [28,29]. At some point, voids become so
large that the interactions between them become inevitable. Coalescence occurs, leading to
ductile fracture.

Even if coalescence is not achieved, the mechanisms involving micro-voids deteriorate
the strength of the materials. This process is usually referred as damage accumulation [30].
The assessment of the damage accumulation is done with the so-called damage models.
GTN is one of them and encompasses the category of the micromechanical based coupled
models. These models consider that the properties of the materials are a function of
damage. They predict the damage accumulation through the consideration of individual
micro-defects in the material [31]. The GTN damage model is therefore used to predict the
damage build-up, which results in a strength loss of the material affecting the accumulation
of plastic strain at the crack tip, and consequentially the FCG rate.

This study aims to evaluate the influence of the GTN parameters on the crack growth
rate predicted by a node release numerical model. The values assigned to these parameters
define the growth and nucleation of micro-voids. Thus, the GTN model accounts for the
material loss of mechanical resistance, while the plastic strain is considered the fatigue
crack growth driving force.

The paper is organized as follows: in the next section the numerical model is presented
including the node release method, the material yield criterion, isotropic and hardening
laws, geometry, mesh and applied loading. Then, the GTN model formulation is presented
and discussed. In the third section there is the presentation and discussion of the results
obtained by analyzing each one of the GTN parameters. Finally, there is a sensitivity
analysis, carried out to access the influence of the studied parameters.

2. Numerical Model

All numerical simulations were performed with the in-house finite element code
DD3IMP, originally developed to simulate deep-drawing processes [32,33]. The mechanical
model follows an updated lagrangian scheme to describe the evolution of the deformation
process, which considers large elastoplastic strains and rotations. The fatigue crack propa-
gation is simulated with a node release numerical model [3,34,35]. This section presents
only the main features of the models currently implemented in the finite element code.

2.1. Elasto-Plastic Material Behaviour

All the simulations were performed on the 2024-T351 aluminium alloy. This alu-
minium alloy is currently used in several engineering applications, namely in the aero-
nautical industry due to the high strength to weight ratio. The calibration of the material
parameters, involved in the definition of the plastic behaviour of this alloy, was carried in
a previous study [36]. The isotropic elastic behaviour was described by the generalized
Hooke’s law. The shape of the yield surface was defined by the von Mises yield criterion.
The hardening behaviour, i.e., the evolution of the equivalent yield stress, σy, was described
by Swift law, given by Equation (1), combined with Armstrong-Frederick law, expressed
by Equation (2), to account the kinematic hardening.

σy(ε
p) = K

(( σ0

K

) 1
n
+ εp

)n

, (1)

.
X = CX

[
XSat

σ

(
σ′ −X

)] .
ε

p
, with

.
X(0) = 0, (2)

for the Swift law: σ0, K and n are the material parameters and εp is the equivalent cumula-
tive plastic strain. In the case of Armstrong-Frederick: X is the back stress tensor, XSat and
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CX are material parameters, σ′ is the deviatoric component of the Cauchy stress tensor,
σ is the equivalent stress, and

.
ε

p
is the equivalent plastic strain rate. The isotropic and

kinematic hardening parameters were simultaneously calibrated using the stress–strain
curves obtained in smooth specimens of the experimental low cycle fatigue tests, which are
presented in Table 1.

Table 1. Elastic properties of 2024-T351 aluminium alloy and parameters for the Swift isotropic
hardening law combined with the Armstrong–Frederick kinematic hardening law.

Material E (GPa) ν Y0 (MPa) K n XSat (MPa) CX

AA 2024-T351 72.26 0.29 288.96 389.00 0.056 111.84 138.80

2.2. Boundary Conditions, Geometry, and Specimen Descritization

The study was performed in compact tension (CT) specimens, whose geometry and
main dimensions are shown in Figure 1. A thickness of 0.1 mm was considered in the
numerical model. Plane strain conditions were imposed, in all simulations of the study,
by constraining out of plane displacements on a both faces of the component. Thus, the
obtained results are independent of the specimen thickness.

Figure 1. Compact tension specimen used to model AA2024-T351, with dimensions in mm.

The finite element mesh of the specimen (Figure 2) is composed by three distinct
zones: a very refined area near the crack tip, a transition zone, and a coarser mesh in the far
side of the crack zone. The more refined zone considers a rectangular box with elements of
8 × 8 µm2, allowing an accurate prediction of the stress and strain fields at the crack tip
zone [37]. On the other hand, the coarser zone allows to reduce the computational cost. In
the end 7287 linear hexahedral finite elements and 14,918 nodes were used.

Figure 2. Finite element mesh. The refined mesh is shown in the image on the bottom left corner.
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2.3. Loading Case and Propagation Criterion

The CT specimen is loaded, in mode I, with constant amplitude load cycles, which
vary between a minimum force of 4.17 N (Fmin = 4.17 N) and a maximum force of 41.67 N
(Fmax = 41.67 N). This leads to a stress ratio of 0.1 (R = 0.1). Some load cycles are presented,
in terms of the pseudo-time in Figure 3, highlighting the triangular load pattern.

Figure 3. Loading cycles applied to the CT specimen. Fmin = 4.17 N, Fmax = 41.67 N, R = 0.1.

During loading, the crack path arises in the symmetry plane of the CT specimen.
The advance of the crack is simulated through successive node releases, according to the
proposed numerical model. The discretization of the crack path leads to a discrete crack
growth, as each increment represents the size of an 8 µm element. When the equivalent
plastic strain, evaluated at the node containing the crack tip, reaches a critical value, ε

p
c ,

which based on a prior study [3] was set to be 110% (εp
c = 1.1), the node is released. Thus,

the predicted FCG rate is obtained from the ratio between the crack increment (8 µm) and
the number of load cycles, ∆N, required to reach the critical value of plastic strain

da
dN

=
8

∆N
(3)

Note that the numerical model follows a total plastic strain (TPS) strategy. This means
that the plastic strain, and porosity, accumulated in the previous load cycles, at a certain
node are not reset when a propagation occurs.

2.4. GTN Model
2.4.1. Gurson’s Damage Model

Gurson firstly proposed a yield potential for porous material, which was derived
using micro-mechanical assumptions, by performing an upper bound limit load analysis
to a representative volume element (RVE) containing a spherical void [38]. The plastic
potential of the initial Gurson’s model is given by [39]

φ =

(
σ 2

σy

)2

+ 2 f cosh
(

tr σ

2σy

)
− 1− f 2, (4)

where tr σ denotes the trace of the stress tensor and σy denotes the flow stress in the
matrix material which is defined in terms of the effective plastic strain, using the Swift law
(Equation (1)). The yield potential for the porous material was described in terms of the
void volume fraction, f , which represents the ratio between the volume of the void and the
volume of the RVE (VRVE) [20]. Alternatively, it can be described in terms of the volume of
the material (Vm)

Vm

VRVE
= (1− f ), (5)
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While the matrix was assumed to be free of voids and obey the pressure insensitive
von Mises criteria, Gurson’s surface, by assuming a flow rule, depends on the hydrostatic
stress [27]. This plastic flow rule is expressed by [40]

.
ε

p
=

.
γ

∂φ

∂σ
=

.
εd

p
+

.
εv

p =
.
γσ′ +

1
3

.
γ f σysinh

(
3p
2σy

)
I, (6)

where the plastic strain rate tensor,
.
ε

p, involves two terms: the deviatoric,
.

εd
p, and vol-

umetric,
.
εv

p, plastic strains. I is the entity matrix,
.
γ is the plastic multiplier and p the

hydrostatic-pressure.
Finally, the evolution law for the void volume fraction is given by

.
f = (1− f )

.
εv

p =
(

f − f 2
) .

γσysinh
(

3p
2σy

)
. (7)

2.4.2. Tvergaard and Needleman Contributions

From Gurson’s yield function, the complete loss of load carrying capacity occurs
at f = 1, which is unrealistically larger than experimental observations [41]. This way,
adjustments to the initial yield surface were proposed by Tvergaard [42,43] to better
represent the material response predicted by numerical cell studies [44]. The plastic
potential is therefore given by

φ =

(
σ2

σy

)2

+ 2q1 f cosh
(

q2
tr σ

2σy

)
− 1− q3 f 2, (8)

where q1, q2, and q3 are designated void interaction parameters, as they adjust Gurson’s
yield surface to account for the influence of neighboring voids.

In Gurson’s criteria the mechanisms of ductile fracture are modeled by explicitly
monitoring the void volume fraction. However, no void volume fraction evolution would
be predicted if the initial void ratio were zero, because nucleation was not considered in the
original model. Moreover, Gurson stated that plastic dilatation requires that some porosity
must be present. In its absence, porosity can sometimes be nucleated during straining at
second phases in a ductile matrix or at grain boundary misfits [38]. Several mechanisms
were proposed to modify the model to consider void nucleation, depending on strain

history [45]. This way the effective porosity,
.
f , was expressed by the sum of nucleation,

.
f

n
,

and growth,
.
f

g
, components

.
f =

.
f

n
+

.
f

g
, (9)

Chu and Needleman [46] proposed the most widely used nucleation law, which
considers nucleation in a statistical way, following a normal distribution. This process
could be driven either by plastic strain or hydrostatic pressure [47]. However, at low
temperature the nucleation of voids is dominated by plastic strain [48]. Therefore, one only
considered the plastic strain controlled void nucleation, which is given by

.
f n =

fN

sN
√

2π
exp

[
−1

2

(
εp − εN

sN

)2
]

.
ε

p
. (10)

where fN is the nucleation amplitude, i.e., the maximum fraction of porosity that can
be nucleated, driven by plastic strain, εN is the mean nucleation strain, sN the standard
deviation of the normal distribution.

The coalescence process is disabled in the numerical model. The node release occurs
when plastic strain reaches a critical value. Thus, the plastic damage is accounted only for
the strength loss of the material due to porosity build-up.
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In summary, the seven active parameters of the GTN model are: q1, q2, q3, f0, fN, εN,
and sN. The initial values for these parameters were set considering the standard values
for the Tvergaard parameters, the initial porosity was set to 0.01 as a first approximation.
The variation on the parameters were made through the possible range of values found on
existing bibliography [20,49].

3. Results and Discussion

This section presents the results attained by varying each one of the considered
parameters of the GTN model. The da/dN effects are analyzed and the reasons leading to
the obtained results are discussed.

3.1. Effect of Initial Void Volume Fraction, f0
The initial void volume fraction, f0, represents the fraction of the volume of material,

in terms of cells, that a priori, is composed by voids. Note that assuming a not null f0
imposes the existence of defects innate to the material. Moreover, if the nucleation process
is disabled, as it is the case, the damage evolution is represented only by the growth of the
pre-existing micro-voids. The primordial step to understand the influence of the different
GTN parameters on the porosity, plastic strain and, consequentially, fatigue crack growth
rate, is to understand the effect of the pre-existing voids. This way, da/dN was studied for
two different crack lengths: a0 = 11.5 mm and a0 = 19 mm. Note that these values will lead
to different ∆K values. Figure 4 shows the da/dN values, in natural scales, for the two initial
crack lengths in terms of four different initial porosities: 0.005, 0.01, 0.02, and 0.03. All the
values were obtained regarding the same propagation, at the stable FCG zone, i.e., after
the initial transient regime associated with the stabilization of cyclic plastic deformation
and formation of residual plastic wake. For a0 = 19 mm there is a clear influence of the
initial porosity on the da/dN. Moreover, it was expected that a higher initial porosity would
lead to higher plastic strain levels, and this way, higher propagation rates. However, the
results follow the opposite trend—i.e., for lower initial porosities the propagation rate is
higher—stabilizing for higher levels of porosity as show by the horizontal dotted line. A
similar trend is followed for a0 = 11.5 mm. The lower initial porosity also leads to a higher
da/dN, however, in this case the difference is much smaller. The stabilization in da/dN also
occurs sooner. Crack closure was disabled for a0 = 11.5 mm to identify the effect of this
mechanism on da/dN. The contact between the flanks of the crack is modeled considering
a rigid plane surface aligned with the crack symmetry plane. By disabling the contact
between the crack flank and this plane surface, crack closure is disabled. Results show that
in the absence of crack closure the da/dN rises, in an approximately linear fashion with f0,
as the dotted line indicates. However, as the authors believe that crack closure is a crucial
mechanism in FCG, it will be kept on the following parameters.

To explain the unexpected behaviour observed in Figure 4, the porosity evolution was
studied, in terms of the plastic strain build-up through the load cycles between the 24th
and 25th propagation, for all the porosity values on the two distinct crack lengths. Note
that plastic strain is the driving force of porosity accumulation. Also, porosity will always
present an oscillating behaviour, because during the unloading phase of each loading cycle
the stress verified at the crack tip is of compressive nature. This stress causes the partially
close of the micro voids on the material. One should note that the micro-cavities do not
disappear as the plastic damage is of irreversible character. Figure 5a shows the referred
results for a0 = 11.5 mm while Figure 5b presents analogous data, but for a0 = 19 mm. As
expected, Figure 5a shows that the porosity, at the beginning of a propagation, rises with
f0. On the other hand, the slope of the curves is slightly higher for lower values of f0 since
some saturation occurs for f0 = 0.02 and f0 = 0.03. These last results were not expected,
the initial increase on porosity is higher for these initial porosity values, but on the latter
part of the propagation the void growth mechanism saturates. For a0 = 19 mm the porosity
at the beginning of the propagation also rises with the initial porosity. However, note
that the trends followed for the different values of f0 are opposite to the ones verified for
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a0 = 11.5 mm: here higher values of initial porosity led to higher porosity accumulation
rates during the propagation. Thus, two conclusions may be drawn. Firstly, somehow
the initial porosity affects the growth of the micro-voids. Secondly, no saturation occurs
for this initial crack length, thus, it must be due to the higher levels of ∆K at the crack tip.
Additionally, the porosity variations between the two stages of the load cycles are much
more relevant for a0 = 19 mm and the slopes are higher for this crack length too, which is
also explainable due to the higher ∆K. Finally, even if higher values of f0 lead to higher
porosity levels, for both crack lengths, as it was expected, the distance between the curves
is not proportional to the difference between the initial porosities. Thus, other mechanisms
need to be involved in the process.

Figure 4. Fatigue crack growth rate in terms of the initial porosity for two distinct crack lengths
(a0 = 11.5 mm and a0 = 19 mm). Results are shown in natural scales. Nucleation and coalescence are
disabled. (q1 = 1.5, q2 = 1, q3 = 2.25, Fmax = 41.67, Fmin = 4.17, R = 0.1, plane strain state).

Figure 5. Porosity growth due to the accumulation of plastic strain for distinct values of f0 for: (a) a0 = 11.5 mm and
(b) a0 = 19 mm. Results are shown in natural scales.

The evolution of the porosity is directly influenced by the material parameters adopted
in the GTN model. However, the numerical model considers plastic strain to determine the
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crack propagation. Thus, this is the entity to be studied to explain the da/dN values shown
previously. Figure 6 presents the plastic strain build-up in terms of pseudo-time. Note that
the instants presented on the scale are relative to the beginning of the new propagation, the
time was reset to allow the comparison of the 25th propagation, which due to the da/dN
differences occurs at different instants of the simulation. Results are shown in natural
scales. Again, Figure 6a is relative to a0 = 11.5 mm and Figure 6b to a0 = 19 mm. For the
first initial crack length, plastic strain grows inside a narrow band, delimited by the traced
lines, which explains the similar results of da/dN for the different values of f0. Note that
for the lower initial porosity the plastic strain accumulation is slightly faster, departing
from the linear trend followed by the other curves, which is in accordance with the da/dN
results. Additionally higher f0 values result in higher plastic strains at the beginning of the
propagation, which agrees with the porosity outcomes. For a0 = 19 mm the plastic strain at
the beginning of the propagation also rises with f0, however, overall, it is much higher for
this initial crack length. The porosity levels are distinct for both initial crack lengths due
to ∆K. Curves can be grouped in two groups: f0 = 0.005 and f0 = 0.01, which result in a
faster, slightly not linear, accumulation, in agreement with the faster da/dN; f0 = 0.02 and
f0 = 0.03 lead to a slower, linear, plastic strain build-ups, and propagation rates. The da/dN
results are, this way, well explained. However, explaining the plastic strain trends is the
major challenge as it will close the questions loop.

Figure 6. Plastic strain accumulation vs. pseudo-time for the different values of f0 for : (a) a0 = 11.5 mm; (b) a0 = 19 mm.

Crack closure is usually able to explain the trends followed by the plastic strain.
Consequently, an analysis analogous to the ones discussed previously was performed
at the node immediately behind the crack tip. Crack closure was evaluated through the
following equation:

U∗ =
Fopen − Fmin

Fmax − Fmin
(11)

where Fopen is the crack opening load, Fmin is the minimum load and Fmax is the maximum
load. This parameter quantifies the fraction of load cycle during which the crack is closed.

Figure 7a presents the crack closure for a0 = 11.5 mm while Figure 7b refers to
a0 = 19 mm. Crack closure is evaluated as a function of propagation percentage. This
scale is preferential to pseudo time, in this case, because all curves begin and end at the
same point, improving the comparison between them. At 0% the accumulation begins and
at 100% node release occurs. For a0 = 11.5 mm the crack closure trend is different for each
value of f0 explaining the also alike accumulations of plastic strain. Thus, higher porosi-
ties and higher plastic strains generate higher levels of crack closure, which protects the
material from the lower mechanical resistance conferred by the higher porosity, levelling
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the plastic strain accumulation. The lower level of crack closure for f0 = 0.005 results in a
faster plastic strain build-up and consequentially a higher da/dN. In the case of a0 = 19 mm
the same grouping, performed for plastic strain, can be made. The two lowest values of
f0 suffer smaller deformations inducing lower levels of crack closure. Strain ratcheting
also occurs disabling the stabilization of crack closure. This allows a faster accumulation of
plastic strain, especially for f0 = 0.005, where crack closure completely ceases, explaining
the higher propagation rates. The second group, with higher f0 values, has a much higher
crack closure. Consequentially the plastic strain accumulation is delayed resulting in lower
levels of da/dN. The obtained propagation rates are, this way, fully explained. Note that
for this second group no strain ratcheting occurs. Thus, the disabling of this phenomenon
must be related or with the higher f0 or with the higher void growth rate experienced for
higher values of f0.

Figure 7. Crack closure level for: (a) a0 = 11.5 mm (b) a0 = 19 mm.

3.2. Effect of the Tvergaard Parameters, q1, q2, and q3

As referred, Tvergaard modified the Gurson’s model to account for micro-void interac-
tions adding three additional parameters: q1, q2, and q3. Each one of these parameters has
a specific effect on the growth of micro voids process. q1 accounts for the loss of strength
due to the interactions occurring between different voids, q2 and q3 influence the effect
of the stress triaxiality and void volume fraction, respectively, on the plastic potential.
Tvergaard proposed standard values for these parameters that are widely used (q1 = 1.5,
q2 = 1, q3 = 2.25). However, to not disregard the importance of these parameters they were
also included in the sensitivity analysis. The effect of these parameters on the predicted
da/dN is shown in Figure 8. Each curve represents one of the parameters and the results
are presented in natural scales. The loading case is the same applied in the study of f0.

3.2.1. Analysis of q1

Results presented in Figure 8 show that the variation of q1 has little effect on the FCG
rate. The low slope of the trend line is evidence of that. This means that the build-up of
plastic strain is similar for all values of q1. This fact does not mean that porosity follows
the same trends. These two variables were studied on the node containing the crack tip.
Results are presented in Figure 9a, in the case of plastic strain, and Figure 9b, in the case of
the porosity. As expected, the plastic strain build ups are almost overlapped, for the three
distinct values of q1, explaining the similar da/dN values. In the case of the porosity there
is an increase, in the overall porosity level, with q1. This increase in porosity occurs due
to two conditions: higher porosities at the beginning of the new accumulation, when the
minimum in plastic strain is achieved; and higher slopes of the porosity build-up, during
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the propagation. Thus, one can conclude that raising q1 results in a harsher loss of strength
of the material, which manifests itself by an increase in porosity. However, this effect is
not as hard as the one verified for f0. In the presence of crack closure, the plastic strain
build-up ends up being unchanged leading to similar values of da/dN.

Figure 8. da/dN in terms of each Tvergaard parameter for a0 = 11.5 mm. Results are shown in natural
scales. Nucleation and coalescence are disabled. When q1 is changed: q2 = 1 and q3 = 2.25. When q2 is
changed: q1 = 1.5 and q3 = 2.25. When q3 is changed: q1 = 1.5 and q2 = 1. (f 0 = 0.01).

Figure 9. (a) Plastic strain evolution for distinct values of q1. The q1 = 2 curve is almost indistinguishable because it is
overlapped by the others. (b) Porosity evolution due to the increase in plastic strain. Results are shown in natural scales.

3.2.2. Analysis of q2

The da/dN values in terms of the three distinct values of q2 parameter (0.77; 1 and
1.25) are shown in Figure 8. There is no linear relation between q2 and da/dN, the higher
FCG rate is attained for q2 = 0.77, there is a minimum in the propagation speed for q2 = 1
and then an intermediate value for q2 = 1.25. This trend indicates that another mechanism
may be influencing the fatigue crack growth. Empirically, from previous results, one is
expecting that crack closure is the responsible for the registered variations. Figure 10a
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presents the plastic strain accumulation for the studied values of q2. The results agree
with the da/dN values and with the expectation that crack closure has a main role in the
process. The smaller value of q2 has a lower initial plastic strain, i.e., after the previous
propagation occurred. However, the higher plastic strain accumulation rate, evidenced
by the higher slope of the respective curve, compensates this fact resulting in the faster
propagation rate. Note that for q2 = 1 and q2 = 1.25 the plastic strain accumulation rate
is similar, however, as a higher initial plastic strain arises for q2 = 1.25 the da/dN ends
up being higher. Figure 10b presents the porosity evolution, with plastic strain, for the
previous values of q2. As expected, higher q2 values are translated in higher porosities.
However, the relation between the initial plastic strain is not linearly coincident with the
initial porosity, i.e., only the higher value of q2 has a higher initial plastic strain. Note
that even if the higher porosity leads to the higher initial plastic strain, this entity is very
similar for the remaining values of q2, despite the notorious difference in the porosity level.
Overall, the porosity trends are similar: there is a harsher initial increase followed by a
linear evolution with a lower slope. The slopes are alike for the different q2 values being
the initial disparity preserved during the propagation. Thus, one can conclude that higher
values of q2 result in higher values of porosity, but not necessarily higher da/dN.

Figure 10. (a) Plastic strain evolution in terms of the distinct values of q2. (b) Porosity evolution, due to the increase in
plastic strain, for the same values of q2 previously referred. Results are shown in natural scales.

To verify the hypothesis, referred before, that crack closure has a key role in the
process, affecting the attained crack propagation rates, the level of this entity during the
propagation was studied. A similar approach, to the one presented in Section 3.1, was
followed. Results are presented in Figure 11. The trends are once again similar for all
the values of the studied parameter as there is a stabilization after an initial peak in crack
closure. The higher initial plastic strain, for q2 = 1.25, results in an initial higher crack
closure. After stabilizing, the maximum value of crack closure is still reached for q2 = 1.25,
but close to the one attained for q2 = 1. This agrees with the similar slopes registered by
the plastic strain accumulation (see Figure 10a) for these two values. Note that, with a
closer look, one can see that the slope is slightly lower for the higher value of q2 agreeing
with the higher crack closure levels attained. The lower value in crack closure is obtained
for q2 = 0.77. As the protective fashion induced by this entity is lesser, the plastic strain
accumulation is faster resulting in a higher da/dN. In conclusion, higher porosities result in
higher crack closure levels which, consequentially, influences da/dN explaining the plastic
strain trends and da/dN values.
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Figure 11. Crack closure level for distinct values of q2. Results are presented in terms of the percentage
of load cycles completed to the load cycles needed to propagation to occur.

3.2.3. Analysis of q3

The da/dN results, shown in Figure 8, demonstrate that the q3 parameter has little
effect on the FCG rate. The slope of the trend line added to the results is almost null. To
support this result, the plastic strain accumulation was studied on the node containing
the crack tip. The obtained results are presented in Figure 12a. As expected, the curves
are almost overlapped agreeing with the da/dN. The porosity evolution is presented in
Figure 12b. The curves are also overlapped, which explains the similarity in the plastic
strain accumulation.

Figure 12. (a) Plastic strain evolution in terms of the distinct values of q3. (b) Porosity evolution, due to the increase in
plastic strain, for the same values of q3 previously referred. Results are shown in natural scales.
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3.3. Effect of the Void Fraction to Be Nucleated, fN

The void fraction to be nucleated by means of plastic strain rate, fN, influences the
nucleation process by means of Equation (10). This parameter is related to the voids
nucleated by debonding of the second phase particles, in this case, with dependence on
the history of plastic strain. The physical meaning of this numeric parameter is that a total
fraction, equal to fN, of new voids may be nucleated due to plastic strain.

Figure 13 presents the da/dN in terms of different values of fN in: (a) log-log scales
for fN = {0.001; 0.01; 0.1} and (b) natural scales for fN = {0; 0.001; 0.01; 0.1}. These values
were selected based on the common range of values for this aluminium alloy (0.001 to
0.1) [33]. The natural scales were introduced to allow the presentation of the point attained
for fN = 0. This value of fN means that no void nucleation occurs due to plastic strain
history. Simulations were performed on an initial crack length of 11.5 mm, which leads to
medium levels of ∆K (~7.9 MPa ·m2), sitting in the Paris-Erdogan regime of a da/dN-∆K
curve. In log-log scales the curve is not linear, a small increase in da/dN is achieved from
0.001 to 0.01, which was expected since the porosity to be nucleated is smaller or of the
magnitude of the considered initial porosity ( f0 = 0.01). da/dN is then almost doubled
when the porosity to be nucleated approaches an order of magnitude more than f0. In
natural scales there is an initial increment when nucleation is activated and then the curve
stabilizes in a linear trend. These results show that unlike the increase in f0, the activation
of the nucleation process, and the increase on the nucleated porosity, rise the da/dN. Such
results suggest that nucleation interferes with crack closure.

Figure 13. da/dN in terms of fN , for an initial crack length of 11.5 mm in: (a) log-log scales; (b) natural scales. Coalescence is
disabled, (q1 = 1.5, q2 = 1, q3 = 2.25, f 0 = 0.01, εN =0.25 and sN = 0.1).

To understand the influence of the nucleation process on da/dN it is crucial to study
the porosity and plastic strain evolutions. These entities are proven to highly influence
crack closure and da/dN itself. Figure 14a shows the plastic strain evolution for the same
entire propagation, in terms of pseudo-time, for the different fN values. Note that, as with
Figure 5, an entire propagation is shown. Figure 14b presents the porosity evolution with
plastic strain build-up for the same entire propagations previously referred. Porosity is
shown in logarithmic scales due to the different orders of magnitude achieved. The increase
on the fraction of porosity to be nucleated causes a small increase on the plastic strain at
the beginning of the propagation. As expected, the introduction of the nucleation process
accelerates the build-up of plastic strain, explaining the increase in da/dN. Moreover, a
small nucleation amplitude ( fN = 0.001) results in a small increase in the accumulation
speed of plastic strain, coinciding with the small increment witnessed in natural scales.
The plastic strain trend keeps almost linear until the order of magnitude of the initial
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porosity is reached. For the higher value, a quadratic behaviour is followed, explaining
the slope increase in log-log scales. Nucleation was set to occur around a plastic strain of
0.25—marked with a vertical dashed line on Figure 14b. Results show that the nucleation
process does not change the initial trend followed by porosity. Also, the porosity evolution
is never completely linear, and it tends to saturate. Saturation occurs latter and is more
prominent for higher values of fN . Overall, the porosity level increases with the growth of
the nucleation amplitude, validating its effect. Additionally, it does not seem to influence
the growth of micro-voids process. Note that for fN = 0 the increase in porosity, which
must be due to the growth of micro-voids, is about ∆ fvoid growth = 0.01 the overall increase
in porosity is of ∆ f = 0.025. Being a part, equal to fN , related to the nucleation process
(∆ fNucleation = 0.01), to void growth process remain a part of ∆ fvoid growth = 0.015, which
is the same that was attained when no nucleation occurred.

Figure 14. (a) Evolution of plastic strain for the same entire propagation depending on the fN 0.015. With fN = 0 value.
(b) Evolution of porosity in terms of plastic strain for the different values of fN, porosity is in logarithmic scale.

Crack closure was studied, through the same propagation presented in Figure 14,
for the different values of fN. Results are presented in Figure 15 and show that the crack
closure evolution is almost independent of fN. The followed trend is similar for all the
values of the nucleation amplitude: there is an initial peak followed by a fast stabilization
at low levels of crack closure. Note that the curve for fN = 0.001 is very close to the curve
without nucleation which is in accordance with the previous results. Crack closure is a
bit higher for fN = 0.01 which was also expected due to the higher levels of plastic strain
occurring at the crack tip. However, it seems to occur a saturation for fN = 0.1, as the
significantly higher level of plastic strain does not result in a higher crack closure.

3.4. Effect of the Mean Nucleation Strain, εN

Chu and Needleman [42] idealized that nucleation occurs due to a mean plastic strain,
εN. The nucleation strain is distributed in a normal fashion around that mean. As this
distribution is affected by a standard deviation, the nucleation may occur before and, of
course, after the mean nucleation strain. This parameter is expected to affect the porosity
distribution through the load cycles of each propagation. Figure 16 presents the da/dN
values, in natural scales, for a crack with an initial length of 11.5 mm, in terms of four
distinct εN values: 0.15, 0.25, 0.35, and 0.5. Results show that the effect of this parameter in
terms of da/dN is negligible.
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Figure 15. Crack closure through the same propagation studied in Figure 6.

Figure 16. da/dN in terms of different values of εN Results are presented in natural scales. Coalescence
is disabled, q1 = 1.5, q2 = 1, q3 = 2.25, f 0 = 0.01, fN =0.01, and sN = 0.1.

Porosity and plastic strain were studied, on the node located at the crack tip, with
the intent to explain the observed da/dN trend. Likewise Figure 6, the plastic strain and
porosity evolutions, through a single propagation, are presented in Figure 17. The plastic
strain at the beginning of the propagation is very similar for all the values of εN. Moreover,
its evolution is almost linear and the slope variations are contained in a narrow area
(delimited by the two dashed lines) for the different values of the mean nucleation strain.
This explains the maintenance of da/dN for the different values of εN. Additionally, the
higher value of plastic strain at the beginning of the propagation is achieved for εN = 0.15,
which is in accordance with higher value of porosity, at the same instant, registered in
Figure 17b. As the maximum porosity is reached for εN = 0.5, the second higher plastic
strain accumulation rate is obtained for this same value of mean nucleation strain. Thus, the
plastic strain results are in good agreement with the porosity ones. Figure 17b shows that
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at the beginning of the propagation, smaller values of εN lead to higher initial porosities.
This is in accordance with the normal distribution concept. Note that a mean nucleation
strain of εN = 0.15 implies that the higher rate of nucleation should occur for a plastic
strain of 0.15. Results show that, for this εN, porosity tend to increase significantly at the
beginning of plastic strain accumulation, saturating for higher values of deformation—as
it moves away from the nucleation mean strain. On the other hand, for εN = 0.5, the
normal distribution is centred with the range of plastic strains that were reached. Thus, the
porosity evolution has a much more linear trend, as it can be seen by the dashed-pointed
line. Also, for εN = 0.15 the plastic strains covered are almost completely placed on the left
side of the distribution, losing importance with the grow up of plastic strain. On the other
hand, for εN = 0.5, the plastic strain covers a much more important area of the normal
distribution, explaining the higher levels of porosity obtained.

Figure 17. (a) Evolution of plastic strain for the same entire propagation depending on the εN value. (b) Evolution of
porosity in terms of plastic strain for the different values of εN. All the results are in natural scales.

3.5. Influence of the Standard Deviation on Void Nucleation, sN

Varying the standard deviation of the distribution allows to model different ranges of
plastic strain over which voids nucleate. Small standard deviations are supposed to cause
the porosity to increase in a narrow band of strain increments, while higher deviations
should smooth the nucleation process. Also, narrow ranges of nucleation, caused by small
values of sN, were shown to have a destabilizing effect in the model [20]. To access the
influence of these particularities on the fatigue crack growth rate, da/dN was calculated
for different values of sN: 0.01, 0.1, and 0.2. The result is presented in Figure 18 in natural
scales for the same initial crack length: a0 = 11.5 mm. The influence of this parameter
is small—da/dN is basically independent of sN—as shown by the very small slope of the
linear tend line. Although, for sN = 0.1 da/dN is higher than for the two remaining values.

To explain the FCG rates the same process of the previous parameters was followed.
The plastic strain and porosity were obtained in the node located at the crack tip. Results are
presented in Figure 19a, in the case of plastic strain, for the three values of sN, throughout
the same single propagation occurred at the end of the process, where da/dN has already
stabilized. Analogous results, but this time for the porosity, are presented in Figure 19b.
The plastic strain evolution explains the da/dN differences shown in Figure 18. The trends
are similar, however faster accumulations occur for sN = 0.1 and sN = 0.2 which is in
accordance with the faster propagation rates that were obtained. The standard deviation
parameter affects essentially the porosity evolution, which should be able to explain the
plastic strain trends. Figure 19b shows that the trends followed by porosity are very distinct.
The higher standard deviation results in the more linear trend. This was already expected
because nucleation occurs in a larger range of strains reducing the porosity growth for each
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plastic strain increment. Of course, that nucleation will eventually cease but this event is
very smooth. For sN = 0.1 there is an initial linear increase in porosity until plastic strain
reaches about 0.35. This is explained by the fact that nucleation occurs around εN = 0.25
with a standard deviation of 0.1. After that nucleation starts to decrease and porosity rises
only due to the growth of micro voids, resulting in a kind of saturation. The transition
here is less smooth as nucleation was more concentrated resulting in higher increments of
porosity; when this process ceases, the slope of the curve for sN = 0.1 falls below the curve
for sN = 0.2 as in the last nucleation is still occurring. The higher initial increase in porosity
results in a higher plastic strain level at the initial load cycles. The higher plastic strain
then causes more porosity, like a snowball effect. This explains the overall higher porosity
resisted for this standard deviation. However, note that, at the end of the propagation,
the higher nucleation range for sN = 0.2 ends up offsetting the initial higher increase for
sN = 0.1 resulting in a similar final porosity value.

Figure 18. Effect of sN on da/dN. Results are presented in natural scales for three distinct values of
sN: 0.01, 0.1, and 0.2. Coalescence is disabled, q1 = 1.5, q2 = 1, q3 = 2.25, f 0 = 0.01, fN = 0.01, and
εN = 0.25.

Figure 19. (a) Plastic strain evolution throughout a single propagation for the three values of sN (b) Porosity build-up for
the same propagations referred before. Results are presented in natural scales.

For sN = 0.01 the nucleation band is so narrow that porosity jumps. Note that porosity
is computed at the Gauss points. As this process has a destabilizing effect a smoothening



Metals 2021, 11, 1183 18 of 21

operation is executed by considering the average of the entities in the two Gauss point
closer to the node containing the crack tip. This way, two distinct jumps are captured in the
process, one for each gauss point considered in the average, as plastic strain increases at
different trends in each Gauss point. When nucleation occurs in a Gauss point, in the other
it does not, thus when the average is computed the porosity rises half of the nucleation
amplitude. The same process eventually occurs in the other Gauss point. To prove this
explanation the porosity was measured, in terms of plastic strain growth, for one of the
Gauss points closer to the node located at the crack tip (Figure 20), considering sN = 0.01.
Note that in this case the increase in porosity, due to nucleation, is exactly the nucleation
amplitude and only one jump is captured. However, a higher plastic strain is achieved
at the end of the propagation because the crack propagates when a plastic strain of 110%
is reached in the node, which is the average of the two Gauss points. Thus, the plastic
strain in the other Gauss point compensates the higher value reached in the one studied in
Figure 20 and the average at the node will be of 110%.

Figure 20. Porosity accumulation due to the occurrence of plastic strain at the Gauss point located
immediately after the node containing the crack tip.

4. Sensitivity Analysis

To access the influence of each parameter, studied in the previous section, a sensitivity
analysis was carried out. This process allows to compare the variations on the output
entities caused by different input parameters, with different physical dimensions.

The final output of a FCG oriented numerical model is the fatigue crack growth
rate, expressed by da/dN. Thus, this is the target entity of the sensitivity analysis. The
non-dimensional sensitivity of da/dN, to the selected GTN parameters is expressed as

∇ f =
∂
(

da
dN

)
p

∂mp

mp(
da
dN

)
p

, (12)

where∇ f is the sensitivity coefficient and mp represents the GTN material parameter. Each
sensitivity coefficient represents the change rate of da/dN caused by a variation of a specific
material parameter. Note that a sensitivity of 0.5 indicates that a variation of 1% in mp
produces a variation of 0.5% in (da/dN)p. The results obtained in the sensitivity analysis
are presented in Figure 21. The sensitivity analysis was performed at the central point, or
at one of the central points in the case where even number of values for the parameter were
studied. Results show that q2 parameter has by far the biggest influence on da/dN. q1 is also
important while q3 has almost no influence. fN is the nucleation related parameter with
most importance, followed by εN and finally sN. f0 has also low importance.
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Figure 21. Sensitivity analysis carried out on the following parameters: f0 = 0.01; q1 = 1.5; q2 = 1;
q3 = 1.5625; fN = 0.01; εN = 0.25 and sN = 0.1.

5. Conclusions

The influence of the growth and nucleation of micro-voids on the fatigue crack growth
rate was studied using numerical simulation. The propagation is simulated by node release,
which occurs when the accumulated plastic strain reaches a critical value. GTN damage
model was adopted to account for the loss of strength, due to the accumulation of damage
(porosity), which accompanies the occurrence of plastic strain. Crack closure has been
considered in this study and represents a key role, since it reduces the stress intensity at the
crack tip, balancing the effect of porosity. Moreover, higher porosity values are linked to
large plastic strains, which produce higher crack closure levels, reducing the accumulation
of plastic strain. These three entities are interrelated, and their effect cannot be separated.
The inclusion of the nucleation process naturally induces higher fatigue crack growth rates
while some saturation occurs on crack closure.

The sensitivity analysis showed that the parameter q2, introduced by Tvergaard to
account for the effect of stress tri-axiality, which tends to be high at a crack tip, is the most
relevant parameter concerning crack growth rates. The nucleation amplitude, fN, and
q1, another parameter introduced by Tvergaard to account for the loss of strength due to
inter-void interactions, are of secondary importance. Finally, da/dN showed to have almost
null sensitivity to q3.
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