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Abstract: In this work, rotary friction welding processes of dissimilar AA7075/AA5083 aluminium
alloy rods with the diameter of 15 mm were performed at varying rotational speeds, typically 370 to
2500 rpm. The aim of this research is to improve mechanical properties, in particular, strength and
fatigue performance of the weld joints. Several experiments including macro and microstructural
examinations, Vickers microhardness measurements, tensile tests, fatigue tests and residual stress
measurements were carried out. Results showed that at higher rotational speeds, typically 540 rpm
or above, the dissimilar AA7075/AA5083 rotary friction weld joints revealed a static fracture in the
AA5083 base metal side, indicating that the joint efficiency is more than 100%. It seemed that the best
weld joint was achieved at the rotational speed of 1200 rpm, in which the friction heat was sufficient
to form metallurgical bonding without causing excessive flash and burn-off. In such a condition,
the fatigue strength of the weld joint was slightly higher than AA5083 base metal, but it was lower
than AA7075 base metal. It was confirmed that the crack origin is observed at the interface followed
by fatigue crack growth towards AA5083 side, and the growth of crack seemed to be controlled by
microstructure and residual stress.

Keywords: rotary friction welding; dissimilar AA7075/AA5083 weld; rotational speed; tensile
strength; residual stress; fatigue

1. Introduction

Over the years, aluminium alloys such as 5xxx series (Al-Mg alloys) and 7xxx series (Al-
Zn alloys) have been used for lightweight structures in the transportation industry due to
their excellent properties such as high strength-to-weight ratio, acceptable fatigue properties
resistance and good machinability [1,2]. AA5083 is the main aluminium alloy of 5xxx
series since it finds wide applications such as ship hulls, automobiles and various welded
structures exposed to corrosive environment, e.g., offshore oil rigs [3,4]. On the other hand,
AA7075 and its 7xxx series are among the principal choices for aircraft structures and
automotive applications [5]. In terms of weldability, AA5083 is readily welded by various
welding processes [6], and in contrast, AA7075 is considered to be unweldable by fusion
welding due to solidification cracking [7]. Therefore, dissimilar metal welding of these two
materials seems challenging and it needs an appropriate joining method.

Rotary friction welding (RFW) is a solid-state welding that has gained importance in
the manufacturing industry due to its advantages over other joining processes including
high reproducibility, short production time and low energy input. In addition, the welding
process can be easily automated, and it is feasible for joining dissimilar materials [8,9]. As
the name implies, RSW employs rotation to produce friction heat between two contacting
surfaces combined with axial force to accomplish friction welding. In such a condition,
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heat generated during welding seems to be a key factor determining quality of the weld
joint. The analysis of heat generation and temperature field during RFW using modeling
approach have been reported by several researchers [10–12].

In recent years, several research works on RFW have been conducted with the objective
of improving the quality of weld joints by considering welding parameters including
rotational speed, friction pressure, forging pressure, friction time and forging time. Among
these welding parameters, rotational speed has attracted more attention. Etesami et al. [13]
have investigated the effect of rotational speed on properties of friction AA2024 aluminium
alloy welded joints. According to the researchers, increasing rotational speed can reduce
the number of cracks and imperfections accompanied by increasing hardness and tensile
strengths. Li et al. [14] have studied characteristics of friction time and friction work
as a function of rotational speed. The results show that the friction time and friction
work profiles reveal a V-shaped appearance when the minimum values occur at 900 rpm.
Subsequently, the work of Uday et al. [15] suggested that an increase in rotational speed
increased frictional heat at the interface, resulting in softening of the material and to a
greater extent, recrystallization or even intermetallic formation. Therefore, the high quality
of RFW joints is produced as the rotational speed is optimised.

In some engineering applications, the use of dissimilar metal weld joints is often
necessary for the optimisation of properties such as strength, weight and corrosion. In
addition, the welding of dissimilar metals is required when the use of more costly single
metal only is limited [16]. During the last few years, extensive studies on dissimilar
metal rotary friction welded joints have been conducted with the aim of improving the
performance of the weld joints of different materials, some of which include stainless steel-
alloy steel [17,18], aluminium alloy–stainless steel [19,20], aluminium alloy–titanium [21,22]
and titanium–stainless steel [23].

Fatigue is one of the important design considerations for structures and components
which are subjected to cyclic loads in service. Several works have been conducted to
study fatigue behaviours of similar and dissimilar metal rotary friction weld joints. Some
reports have shown that fatigue behaviours of rotary friction welded 6061 aluminium
alloy joints, and the results showed that the fatigue strength of the weld joint was slightly
lower than that of the 6061 aluminium alloy base metal and the fracture origin occurred
near the weld interface [24,25]. Consistent with these works, Yang et al. [26], who have
worked on inertia friction Ni-based superalloy weld joints, showed that fatigue failure
of the inertia friction joint was located at the border between weld nugget zone (WNZ)
and thermomechanically affected zone (TMAZ), and this location of the fracture could be
related to the microhardness differences between TMAZ and WNZ. In the case of dissimilar
metal rotary friction weld joints between 304 austenitic stainless steel and 4340 steel, the
fatigue limit of the weld joints decreased as the rotational speed was increased due to
precipitation of chromium carbides which act as a stress raiser [27].

Recently, Lu et al. [28] have investigated mechanical properties of dissimilar iner-
tia friction welded 7005/5083 aluminium alloy joints with the results showed that the
strength of the weld joints increased with increasing rotational speed and according to
the researchers, the optimum rotational speed was achieved at 3000 rpm. Unfortunately,
further data on fatigue properties of the dissimilar metal rotary friction weld joints between
7xxx and 5xxx series are not yet well documented. Therefore, it is the subject of the present
investigation. It is worth noting that joining of these dissimilar alloys using RSW has a
potency for engineering applications such as the structural components of vehicles.

2. Materials and Methods
2.1. Materials

The materials used in this study were AA5083 and AA7075 aluminium alloy rods
which were treated using H112 and T6, respectively, and their chemical compositions are
given in Table 1, whereas the microstructures of the two base metals are shown in Figure 1.
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Table 1. Chemical compositions of AA5083 and AA7075 (wt. %).

Material Mg Zn Mn Fe Cr Si Cu Ti Al

AA5083 4.45 0.03 0.45 0.19 0.07 0.08 0.02 0.01 Bal.
AA7075 2.25 5.21 0.12 0.25 0.21 0.32 1.31 0.09 Bal.
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Figure 1. Microstructures of aluminium alloy rods: (a) AA7075 and (b) AA5083.

Referring to Figure 1a, it can be seen that the microstructure of the AA7075 is com-
posed of elongated grains parallel to the rolling direction typical of wrought product.
Similar microstructural feature is observed in AA5083 in Figure 1b but unlike AA7075, the
microstructure of AA5083 reveals coarser grains. The mechanical properties of AA7075
and AA5083 base metals obtained from the measurements with their standards given in
brackets are presented in Table 2. Of note is that the tensile tests were conducted in triplicate
to ensure reproducibility with the tensile specimens which were prepared according to
ASTM E8/E8M-16 standard. The hardness measurements were taken along the centre line
of the parallel section of the rods and along the radial direction on the cross section of the
rods. Referring to Table 2, it can be seen that the strength and hardness of AA7075 are
higher than that of AA5083.

Table 2. Mechanical properties of the base materials.

Mechanical Properties AA5083 AA7075

Tensile strength (MPa) 294.9 ± 05.4 (282 min) 592.6 ± 7.4 (556 min)
Yield strength (MPa) 176.6 ± 14.9 (171 min) 414.8 ± 5.3 (495 min)

Ductility (% elongation) 25.7 ± 0.89 (27.5) 9.6 ± 0.3 (10)
Vickers microhardness (Hv) 86.4 ± 3.77 (96) 185.6 ± 8.4 (175)

2.2. The Rotary Friction Welding Process

In this work, the rotary friction welding machine was built by modification of a lathe
machine. The specimens were machined in the form of a cylindrical rod having 15 mm in
diameter and 50 mm in length. The AA5083 cylindrical rod was positioned as stationary
side (SS) which was moved axially, whereas the second rod, namely AA7075 acted as
rotary side (RS), as shown in Figure 2. The temperature changes during friction welding
process were measured by two K-type thermocouples, namely (Tc1) and (Tc2) attached
to the AA5083 rod (stationary side) at the initial distances of 2 mm and 10 mm from the
interface, respectively.
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Figure 2. Principle setup for rotary friction welding.

RFW processes of dissimilar AA7075/AA5083 aluminium alloys were carried out
using the RFW steps as shown in Figure 3 and Table 3. The first step of welding process
started as the faying surface came into contact with the stationary surface accompanied
by a rapid increase in axial pressure from 0 to 17 MPa for 2 s as marked by A in Figure 3
followed by friction stage at a constant pressure of 17 MPa for 10 s (step B). At the end of
friction stage, the rotational speed was stopped (step C), and at the same time, the upset
pressure of 85 MPa was applied for 4 s (step D), leading to bond formation. The weld
thermal cycles and changes in burn-off length as the response parameter were recorded
during welding.
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Figure 3. Rotary friction welding process stages.

Table 3. Friction welding parameters.

Parameters Levels

Rotating speed (rpm) 370, 540, 800, 1200, 1700, 2500
Friction pressure (MPa) 17

Friction time (s) 10
Forging pressure (MPa) 85

Forging time (s) 4

In this study, the welding parameters including friction pressure, friction time, forging
pressure and forging time were maintained constant, whereas rotational speed was varied
at 6 different rotational speeds of 370, 540, 800, 1200, 1700 and 2500 rpm.

2.3. Macro and Microstructures

Macro and microstructural examinations were carried on cross sections of the RFW
joints to identify various microstructures present in dynamically recrystallized zone (DRZ),
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thermomechanically affected zone (TMAZ), heat affected zone (HAZ) and base metals
(BM) of both rotary side (RS) and stationary side (SS). The samples were prepared in
accordance with standard laboratory techniques, including grinding, polishing and etching.
The etchant used was Keller’s reagent, which consisted of 2 mL HF, 3 mL HCl, 5 mL HNO3
and 190 mL water.

2.4. Microhardness Distributions

The Vickers microhardness measurements were conducted to assess the hardness
distributions across the RFW joints due to variations in the weld microstructures. The
microhardness measurements were taken at the centreline of the welded rods using the
load of 100 grf and dwell time of 10 s with centre-to-centre spacing of 500 µm (0.5 mm).

2.5. Mechanical Property Tests (Static and Fatigue Tests)

Tensile tests were carried out using an electromechanical-controlled universal testing
machine with the load capacity of 20 tonnes. The tensile specimens were prepared according
to ASTM E8/E8M-16 [29] as shown in Figure 4a. From this investigation, ultimate tensile
strength (UTS) and yield strength (YS) were obtained.
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In this study, rotary friction welded dissimilar AA7075/AA5083 aluminium alloy
weld joint produced at rotation speed of 1200 rpm was selected for fatigue tests because
at this condition, the strength of the weld joint was maximised with little flash, as will
be discussed in the next section. In addition, AA7075 and AA5083 base metals were also
fatigue tested as the references. The fatigue tests were carried out using a rotary bending
test with the size and geometry of specimens are shown in Figure 4b. The sinusoidal loads
(tension-compression) having a frequency of 48 Hz and load ratio, R of –1 were applied at
room temperature. From this investigation, S-N curves were created by applying various
stress amplitudes which resulted in various fatigue life, Nf. Subsequently, fatigue strength
or fatigue limit for each material or weld under study was determined as the specimen
achieved 1 × 107 load cycles.

In order to gain comprehensive understanding to the mechanism of crack initiation
and crack growth under cyclic loads in rotary friction-welded dissimilar AA5083/AA7050
joints, fractographic study using a low magnification microscope combined with scanning
electron microscope (SEM) were also conducted.

2.6. Residual Stress Measurements

The residual stress distributions across the weld joints were measured using neutron
diffraction technique at the National Nuclear Energy Agency of Indonesia (BATAN). In this
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technique, d-spacings were measured based on Bragg’s law in which the monochromatic
neutron beam with a wavelength of 1.83375 Å was diffracted on (311) plane at a scattering
angle, 2θ of 96.5◦ whereas the nominal size of gauge volume used was 2 × 2 × 2 mm3.
The d-spacings were measured in three principal directions, namely the axial, A (parallel
to the rod axis), hoop or tangential, H and radial, R directions. Results of these d-spacing
measurements were used to calculate the lattice strains (εi) in each principal direction, as
given by:

εi =
di− do

do
(1)

with di and do are strained and strained-free lattice parameters, respectively. The residual
stresses (σi) were calculated using Equation (2) as follows [30]:

σi =
E

1 + ν

[
εi +

ν

(1− 2ν)
(εA + εH + εR)

]
(2)

In this investigation, Young’s modulus, E and Poisson’s ratio, v for high strength
aluminium alloys were taken to be 70.2 GPa and 0.35, respectively, as suggested by
Pan et al. [31].

3. Results and Discussion
3.1. Weld Thermal Cycles

The understanding of temperature field during welding is important since it deter-
mines weld microstructure, residual stress and burn-off length, all of which affect the weld
mechanical properties. The weld thermal cycles taken from the distances of 2 and 10 mm,
respectively, from the interface are shown in Figure 5. Referring to Figure 5a, it can be
seen that each weld thermal cycle shows similar behaviour in which the temperature rises
sharply during heating to reach a maximum or peak temperature, Tp followed by a slower
cooling rate towards ambient temperature. As the rotational speed is increased then the
peak temperature, Tp increases as well accompanied by slower cooling rate. It is worth
noting that the peak temperatures, Tp at high rotational speeds, typically 1700 and 2500 rpm
recorded by the thermocouple Tc1 are around 451.0 and 466.3 ◦C, respectively. These tem-
peratures are sufficient to make AA7075 (Al-5.1 wt. % Zn) to reach the supersaturated
solid solution (SSSS) condition required for precipitation hardening in the AA7075 side on
further cooling to the room temperature. This precipitation hardening will be discussed in
the next section. Subsequently, the peak temperature, Tp decreases with increasing distance
of x, as indicated by Tc2 (Figure 5b).
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Based on these results, the temperature field of the RFW joints may be approached
using the analytical solution of heat conduction for a momentary area source in the infinite
rod, as given by [32,33]:

T − T0 =
Q/A

ρc(4παt)1/2 · e
− x2

4αt−b∗t (3)

where T is temperature (K), To is initial temperature (K), Q is heat energy (J), ρ is density
(g/mm3), α is thermal diffusivity (mm2/s) which is equal to λ/ρc, λ is thermal conductivity
(J/mm.s.K), A is area (mm2), x is distance from the heat source and t is time (s). The term b*
in Equation (3) is the heat transfer coefficient with its magnitude given by Equation (4):

b∗ = (αC + αr)P/ρcA (4)

with αc and αr are coefficients of convective heat transfer and heat radiation, respectively,
whereas P is the perimeter. Of note is that the heat energy, Q, in Equation (3) is calculated
using the following Equation (5) [33]:

Q = kπdn f F (5)

where F is axial force, d is outer diameter of the welded rod, n is the rotation speed, f is the
friction coefficient, k is constant with its value depending on the type of power distribution
over the cross section of the work piece.

3.2. Burn-Off Length

Figure 6 shows typical dissimilar metal rotary friction welded joints between AA7075
and AA5083 produced using various rotational speeds. It can be seen that an increase in
the rotational speed increases burnt-off length accompanied by the formation of more flash
metals, especially on the AA7075 side. It seems that increasing the amount of flash metal at
a higher rotational speed could be related to the higher friction heat with its magnitude
linearly proportional to the rotational speed, according to Equation (4).
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Figure 6. The dissimilar AA7075/AA5083 friction welded joints at different rotational speeds with
AA7075 and AA5083 are positioned as rotary-side (RS) and stationary-side (SS) respectively. From
left to right: 370, 540, 800, 1200, 1700 and 2500 rpm.

Another finding from this investigation is that the burn-off lengths of all weld joints
under study are asymmetrical, with the total loss of length in AA7075 being higher than that
observed in AA5083, despite the strength of the AA7075 being higher than that of AA5083
at room temperature, as given in Table 2. The plausible explanation is that the thermal
conductivity and also thermal diffusivity of AA7075 are lower than that of AA5083 [34] so
that the frictional heat is piled up at the AA7075 side during welding, whereas in AA5083,
the heat is easily dissipated. As a result, more softening and higher deformation occur in
the AA7075 side.

The relationship between burn-off length and rotational speed is shown in Figure 7. It
can be seen that at a low rotational speed, typically of 370 rpm, the total burn-off length is
around 2.81 mm. Furthermore, the total burn-off length increases steadily as the rotational
speed is increased up to 1200 rpm. However, a sharp increase in the total burn-off length
occurs as the rotational speed is further increased up to 2500 rpm. In this condition, the
frictional heat required for bond formation is excessive, resulting in wastage of base metals
as flash. Similar behaviours are observed in the burn-off lengths of the AA7075 rotary side
(RS) and the AA5083 stationary side (SS).
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Figure 7. Burn-off lengths of the weld joints under various rotational speeds.

3.3. Macro and Microstructure

The macrostructures of all rotary friction welded dissimilar AA7075/AA5083 joints
with AA7075 and AA5083 rods are located in rotary side (RS) and stationary side (SS) sides,
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respectively, are shown in Figure 8. It can be seen that at low rotational speeds, typically of
370 and 540 rpm, large interfaces having a double convex shape are formed and low flash
metals are observed. In addition, some weld defects in the form of incomplete bonding
are observed in both weld joints. As the rotational speed is increased up to 1200 rpm, the
interface tends to be thin and flat with more flashes preferentially formed at the AA7075
side. On further increase in rotational speed up to 1700 rpm or more, the interface becomes
very thin, and it is bent towards the AA5083 side, resulting in a single convex shape with
excessive flash materials, especially at the AA7075 side. It seems that the thickness and
shape of interfaces and also flashes could be linked to the rotational speed which determines
friction heat required for bond formation. The present investigation has confirmed that
increasing rotational speed increases friction heat, hence making the edges of the weld joint
plastically free flowing, and under upset pressure, more interface materials are extruded
out of the weld joint as flashes.
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Microstructures of the dissimilar AA7075/AA5083 rotary friction welded joints at
interface under various rotational speeds taken from the centre line position are shown
in Figure 9. Referring to Figure 9, it can be seen that the microstructures of TMAZ for all
weld joints consist of fine elongated grains parallel to the interface. In addition, the grains
of TMAZ in AA7075 rotary side (RS) are coarser than that of TMAZ at the 5083 stationary
side (SS) due to heat accumulation at the 7075 side, which causes severe grain growth of
recrystallized grains. However, in the case of high rotational speed, typically 2500 rpm, the
grains at TMAZ of 7075 side become finer. This grain refinement probably resulted from the
recrystallised grains which are shattered by severe plastic deformation before the growth
up. These microstructural examinations are consistent with the work of Li et al. [35].
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Figure 9. Microstructures of the dissimilar AA7075/AA5083 rotary friction welded joints near
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AA7075 and AA5083 are located as rotary side (RS) and stationary side (SS), respectively.

Referring to Figure 9, it can be seen that the width of DRZs decreases as the rotational
speed increases consistent with the previous work which shows that narrow DRZs are
associated with higher burn-off length due to higher rotational speed [36]. Another mi-
crostructural feature observed in Figure 9 is the presence of very fine grains in DRZs. The
magnified DRZ microstructure taken from the weld joint produced at the rotational speed
of 1200 rpm is shown in Figure 10. It can be seen that the microstructure of the DRZ at inter-
face exhibits fine equiaxed grains as a result of dynamic recrystallisation under combined
effect of friction heat and axial force during welding. The presence of the fine-grained
microstructure in DRZ is beneficial because it provides high strength and also hardness
according to the Hall–Petch relationship.
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Figure 10. An example of DRZ microstructure near the interface produced at the rotational speed of
1200 rpm.

3.4. Microharness Distributions of the RFW Joints

Microhardness distributions across the rotary friction weld joints taken at the centreline
of the welded rods are shown in Figure 11. It can be seen that the hardness profiles of
the weld joints in AA7075 (rotary side) and AA5083 (stationary side) are asymmetrical
due to differences in metallurgical properties and strengthening mechanism of the two
aluminium alloys. The average hardness values of AA7075 and AA5083 base metals are
around 175 Hv and 96 Hv, respectively, whereas the high hardness region is observed at the
DRZ region, where its maximum hardness occurs at the interface for all weld joints under
study. It seems that the high hardness in DRZ is associated with its fine grain structure
as a result of recrystallisation under forging (axial force). On the other hand, TMAZ at
the AA7075 side shows a significant increase in the hardness than TMAZ at the AA5083
side, suggesting that the strengthening mechanism of TMAZ in AA7075 is associated
with combined effect of strain hardening by axial force and re-precipitation whereas in
TMAZ at AA5083, the strengthening mechanism takes place by strain hardening only. This
investigation also reveals that increasing rotational speed increases the hardness of TMAZ
at the AA7075 side until the high values of hardness are achieved at the rotation speed of
1700 rpm. Furthermore, the hardness degrades as the rotational speed is further increased
up to 2500 rpm.
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Changes in hardness may be explained based on principles of precipitation harden-
ing. It seems that as the rotational speed is increased, much friction heat is piled up at the
AA7075 side during welding, hence resulting in re-precipitation in TMAZ at AA7075, which
increases the hardness. It has been reported [37] that the sequence of precipitation reactions
that occurs in AA7075 aluminium alloy is given by the following reactions: SSSS→GP
zone→metastable η’(Mg(Zn,Al,Cu)2)→stable η(MgZn2). Based on this precipitation reac-
tion, the high hardness is associated with the formation of finer precipitates (η’) or θ”/θ’
phases for AA2xxx which are coherent and semi-coherent with the aluminum matrix [38].
However, as the friction heat is very high at the rotational speed of 2500 rpm, coarsening
and dissolution of η (MgZn2) occur leading to loss of hardness in TMAZ of AA7075.

3.5. Tensile Strengths

Figure 12 shows results of tensile strengths given in ultimate tensile strength (UTS)
and yield strength (YS) as a function of rotational speed. It is worth noting that except weld
joint produced by a low rotational speed of 370 rpm, all weld joints under study are found
to fracture in the AA5083 base metal region with their strengths are relatively the same
indicating that the joint efficiency defined as the ratio of the strength of weld joint to that
of its base metal is higher than 100%. It seems that a low rotation speed of 370 rpm is not
sufficient to generate friction heat required for bond formation. However, as the rotational
speed is increased above 370 rpm, the bond is completely formed resulting in high strength
weld joints. As a consequence, the location of fracture is shifted from the weld region
to the AA5083 base metal. These results are consistent with the hardness distribution in
Figure 11 in which static fracture occurs in the region with the lowest hardness, i.e., AA5083
base metal.
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Figure 12. The tensile strengths of the weld joints at various rotational speeds.

3.6. Residual Stress

The rotary friction welded dissimilar AA7075/AA5083 joint produced using the
rotational speed of 1200 rpm is selected for this study since it has high strength without
excessive flash. The distributions of residual stresses in three directions, namely axial stress,
hoop stress and radial stress are shown in Figure 13. In general, the residual stress profiles
in three directions show similar behaviours in which the residual stresses in the DRZ
region and its surrounding area are compressive with the minimum values of −154.0 MPa,
−122.0 MPa and −41.6 MPa are observed at the interface for radial, axial and hoop stresses,
respectively. Furthermore, the compressive residual stresses in the DRZ region and its
adjacent area are balanced by tensile residual stresses outside the DRZ to maintain static
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equilibrium hence forming M-shaped profile. It seems that the compressive residual
stresses present at DRZ and its adjacent area are associated with axial forces applied during
weld formation. Another behaviour observed in this investigation is that the residual stress
profiles of the dissimilar AA7075/AA5083 metal weld joints are asymmetrical, with higher
tensile residual stresses are formed in AA7075 base metal at the distance of 4 to 12 mm
away from the weld centreline. This region has lower hardness compared with the initial
hardness of AA7075 as shown in Figure 11. This discovery seems to suggest that the regions
outside DRZ having lower hardness are associated with tensile residual stresses and in
contrast, the high hardness in DRZ could be linked to compressive residual stress. The
possible correlation between hardness, residual stress and fatigue properties in the weld
joints were previously reported by James et al. [39]. Of note is that all residual stresses
measured along the axial axis of the dissimilar AA7075/AA5083 welded joints are lower
than the yield stress of the corresponding base metals.
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3.7. Fatigue Behaviours

Figure 14 shows S–N curves of the dissimilar AA7075/AA5083 metal weld joint
produced using a rotational speed of 1200 rpm with its base metals, namely AA7075 and
AA5083 are also used as the references. As commonly observed in aluminium alloys, all
S-N curves do not reveal a well-defined endurance limit below which fatigue failure does
not occur. Therefore, fatigue strength or fatigue limit used in this study is determined as
the strength at the number of cycles of 107 cycles [40]. Referring to Figure 14, it can be seen
that the fatigue strength of the weld joint is around 116.5 MPa which is slightly higher than
that of AA5083 base metal but in comparison with AA7075 base metal, the fatigue life of
the weld joint is 1.59 times lower.
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Figure 14. S-N curves of the rotary friction welded AA7075/AA5083 joint at 1200 rpm with its
base metals.

The mechanism of fatigue and some aspects of the fatigue phenomenon are better
understood using optical and SEM fractographic methods as shown in Figure 15. For this
reason, the weld joint after fatigue test at the applied stress, σf of 137 MPa and the number
of cycles, Nf of 6.7 × 105 cycles is selected for this fractographic study because this weld is
categorised as high cycle fatigue which is the more common case in engineering practice.
Referring to Figure 15a, it can be seen that the fatigue failure seems to occur by the growth
of a single fatigue crack with three distinct regions are clearly seen, namely crack origin,
fatigue crack growth and final failure regions. Further examination on the fracture surface
as shown in Figure 15b shows that the fatigue crack nucleus is initiated at the interface in
DRZ. It seems probably that this crack origin could be linked to the heterogeneity of the
material in terms of microstructure and microhardness at the interface which reflects the
stress concentration factor (Kt) as suggested by Yang et al. [26]. Subsequently, the crack
continues to grow from DRZ towards TMAZ of AA5083 side. Apparently, this TMAZ
region of AA5083 side provides easy path for the growing crack. This is because the
mechanical properties (hardness and strength) of AA5083 are lower than that of AA7075.
It seems that better fatigue performance of the age-hardened AA7075 found in this study
is associated with the presence of fine precipitates which are dispersed uniformly [41]. In
addition, the residual stresses present outside DRZ region, i.e., TMAZ and base metal are
tensile as shown in Figure 13 and these tensile residual stresses can cause the fatigue crack
growth rate to increase [42]. This is because the total stress acting in these regions is the
sum of external stress and residual stress. Accordingly, tensile stress can magnify the total
stress and in contrast, compressive residual stress reduces the total stress.
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high cycle fatigue testing taken from: (a) cross section and (b) parallel section of the welded rod with
(c,d) SEM fractographs obtained from the regions marked A and B in Figure 15a, respectively.

Figure 15c shows SEM fractograph taken from the region marked A in Figure 15a. It
can be seen that the fracture surface appears to be cleavage fracture in which the fatigue
crack propagates across fine equiaxed grains. In addition, Figure 15c also reveals the
presence of striations typical of fatigue fracture. Further SEM examination on the final
fracture region marked B in Figure 15a is shown in Figure 15d. It can be seen that striations
no longer exist, and the fracture surface is marked by the presence of dimples or microvoids
which are commonly observed in ductile fracture surfaces.

4. Conclusions

The present investigation has endeavoured to study effects of rotational speed on mi-
crostructure, strength and fatigue behaviours of rotary friction dissimilar AA7053/AA5083
weld joints, and the conclusions that can be drawn are summarised as follows:

1. Increasing rotational speed causes microstructural changes, i.e., the width of DRZ
decreases, the interface becomes thin and coarsening microstructure in TMAZ. The
high rotational speed also increases the burn-off length and the amount of flash. These
microstructural changes are related to high friction heat under high rotational speed
combined with axial force during weld formation.

2. The burn-off length and the amount flash of AA7075 rotary side are higher than that
of AA5083 stationary side. These results are associated with the accumulation of
friction heat in AA7075 side during welding due its lower thermal conductivity and
diffusivity compared with AA5083.

3. A low rotational speed, typically 370 rpm is not sufficient to generate the heat required
for bond formation resulting in low strength. In contrast, a high rotational speed,
typically 2500 rpm produces high strength weld joints, but it causes high burn-off
lengths, which leads to wastage of base metals in the form of flash. It seems that the
optimum condition is likely to be achieved at the rotational speed of 1200 rpm owing
to the balance between strength and the amount of flash.

4. The high hardness of TMAZ in AA7075 side is associated with axial force combined
with re-precipitation during welding.
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5. The distributions of residual stresses in rotary friction dissimilar AA7075/AA5083
welded joint shows M-shaped profile in which compressive residual stresses are
present at the DRZ and its adjacent area whereas outside the DRZ, the residual
stresses are tensile to meet static equilibrium.

6. The fatigue strength of rotary friction dissimilar AA7075/AA5083 weld joint falls
within the fatigue strength of AA5083 and AA7075. The crack initiation is found at the
interface which act as stress raiser and the fatigue crack propagates towards TMAZ
of AA5083 side which provides easy paths for fatigue crack growth. Under such a
condition, the growing crack seems to be controlled by microstructure and tensile
residual stress present at the TMAZ in AA5083 side.

7. It seems that apart from rotational speed, other welding parameters such as friction
time and forging pressure needs to be paid attention for future work.
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