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Abstract: The paper presents a comparison of six recently introduced multiaxial fatigue strength
estimation criteria to four methods, the large-scope validation of which has already been published.
The results obtained for each newer method are analyzed and discussed. From the newer methods,
only the criterion by Böhme reaches an estimation quality similar to the best performing criteria.
The validation was performed on the FatLim data sets, but the primary focus of the paper is set
to analyzing the validation on a smaller AMSD25 data set derived from it. The comparison shows
that the application of AMSD25 for validation practice allows users to reduce the number of eval-
uated test cases, while generally preserving the worst cases showing the weaknesses of various
estimation methods.

Keywords: multiaxial fatigue; high-cycle fatigue; mean stress effect; AMSD25 benchmark

1. Introduction

One of the most famous early multiaxial fatigue strength solutions was proposed by
Gough and Pollard on the basis of their extensive experimental effort [1–3]. It was derived
in [1] for the input of nominal shear stress τxya and axial stress σxa amplitudes, which
corresponded to the experimental combination the authors were able to impose on the
tested samples.

The concept of the testing machine allowed the researchers to modify the mutual ratio
between acting bending moment and torque, but it did not allow them to check the effect
of the out-of-phase loading, or to involve any additional load channel. In the discussion
of their findings in [1], the idea of the critical plane, which could be responsible for the
damage level of the whole sample, was raised by Stanfield. This idea was successfully
implemented by Findley [4] in the first multiaxial fatigue strength criterion of the critical
plane type. Findley also focused in his experiments [5] on load combinations of bending
and torsion without any phase shift between them (this time at least significant mean
stresses were induced), but the concept of the critical plane allowed the criterion to process
also more complicated stress states.

The experimental effort went beyond that border in next years, and soon the concept
of pressurized hollow samples allowed experimenters to implement the further acting
stress in the hoop direction of the pressurized hollow sample (e.g., Rotvel [6]) or to induce
a phase shift between acting load channels (e.g., Mielke [7]). Once the hoop stress came
into play, the original Gough and Pollard criterion lost its significance because it was not
formulated to take such an input into account. Findings that the response of material under
out-of-phase loading is not identical to the response to in-phase loading with individual
stress amplitudes of the same magnitude (explicated, e.g., by Fatemi and Socie [8]) were
another driving force to replace this type of the criterion independent of the phase shift by
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newer solutions. Several concepts emerged in addition to the critical plane solution first
proposed by Findley:

1. The original critical plane solution split into two main branches differing in the
parameter which is found maximum to mark the plane as the critical one:

a. The entire equivalent stress derived from stresses on each evaluated plane [4,9,10];
b. The maximum shear stress range found on any evaluated plane [11–13].

2. Integral criteria, which integrate either the equivalent stress or individual stress
components over all potential orientations of planes in the evaluated point [14–17];

3. Invariant criteria, often based on an evaluation of the second invariant of the stress
tensor deviator and of the first invariant of the stress tensor [18–20].

The boom of inventing new multiaxial fatigue strength criteria started in the 1990s
up to the point, which Stefanov described: “It is fairly traditional that each author develops
his own criterion for fatigue life prediction and verifies it by his own experimental data. Then
some other author’s data are not satisfied by that criterion, and a new one is suggested. Thus
too many proposed criteria have been accumulated . . . Many criteria have remained isolated each
from other, without comparison or competition.” ([21], p. 42). The first decade of the 21st
century saw some attempts in limiting this abundance by increasing the scope of used
data sets of experimental data (named benchmark sets hereafter) on which the newly
proposed criteria should be validated (Weber [22], Susmel [23], Papuga [24,25]). This phase
could be ended by the survey paper by Papuga [26], who compared 18 different criteria
on the benchmark set of 407 data items. Be it the heated exchange of opinions between
Susmel [27] and Papuga [28] in the response to this article, or simply the attention of
fatigue researchers drifted away to focus on less-analyzed fatigue estimation domains, the
number of new creations among new multiaxial fatigue criteria decreased significantly after
that point.

An extensive comparison of various criteria was presented shortly after by Bruun and
Härkegård [29]. Papuga published several versions of his criteria in attempts to highlight
the importance of the mean shear stress effect [10,17,30]. The paper presented here focuses
on new criteria proposed in the literature after 2011, which were not benchmarked in such
a profound way because the scope of the data set used for their validation was substantially
smaller. Papuga et al. [31] proposed to use the newly established AMSD25 benchmark for
this special case, so that the properties of the new criteria could be shown. It comprises
57 items, which are completely described in the paper [31], and which thus can serve as the
primary input for any benchmarking analysis. The key ideas used in its definition were to
select the test items that provoked the highest variation in results among different evalu-
ated multiaxial fatigue strength criteria, or which were generally leading to bad estimates.
In that way, the majority of existing data items often used for benchmarking were aban-
doned, because the response to them is good enough by most existing multiaxial fatigue
strength criteria.

This paper focuses on benchmarking several recently developed multiaxial fatigue
strength criteria. Each was validated on another data set, differing both in the number of
items and in their selection. The validation in this paper is documented on the AMSD25
benchmark set. To see the difference in the response, the original full-scale FatLim data
set [32] used for its definition is also applied. The resulting data are compared and the
weak points of the new criteria are highlighted. To gain insight into the quality of new
criteria compared to other available multiaxial fatigue strength criteria, four reference
criteria are chosen. Three Papuga’s criteria are chosen as reference because of their good
performance proven in [10,17,30], and the fourth criterion is the Dang Van criterion [33].
It is chosen because it is currently the most widely used solution in industry, as it is
implemented as the key solution in most of the fatigue solver packages available on the
market [34].
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2. Materials and Methods
2.1. Used Benchmark Data Sets

The full FatLim benchmark is currently composed of 284 items. This is a much smaller
number than the FatLim referred to in [26], because many stringent criteria were applied to
assess the validity of the data accepted in it [32]. The load cases collected can be categorized
according to their various aspects into the groups shown in Table 1. This table describes
the number of items in the FatLim benchmark in the first position, while the number of
items in the reduced AMSD25 data set (published in full in [31]) is behind the slash. It has
already been mentioned that the key to the selection of items for the AMSD25 benchmark
set was the level of divergence of predictions produced by many different criteria from
perfect ones. The “AM” part of the title of the benchmark set refers to the absolute mean.
In the analysis, the mean value of the relative prediction error of various criteria on the
examined data item was evaluated in its absolute value. “SD” corresponds to the standard
deviation of these prediction outputs for each assessed item. When the sum of these two
parameters reached a critical value of 25%, the item was selected for the AMSD25 data set.

Table 1. The structure of the whole FatLim benchmark set and of the AMSD25 data set. The number
before the slash refers to the number of items of the group in the full FatLim data set, while the number
of items in the AMSD25 data set is behind the slash. Abbreviations: Uni—uniaxial loading, MS—
involves mean stresses, MS—involves compressive mean stresses, NP—non-proportional loading,
IP—in-phase loading, OOP—out-of-phase loading. The AMSD25/FL ratio depicts how many percent
of the original FatLim items remained in AMSD25.

Material
Group {Uni} {MS} {MS-} {NP} {IP} {IP, nMS} {OOP} {OOP, nMS} Total AMSD25/

FL Ratio

Al-alloys 25/11 42/19 0/0 9/1 24/8 13/1 5/1 3/0 58/20 34.5%
Cast irons 8/4 14/6 5/2 8/2 11/1 10/0 8/2 3/1 27/7 25.9%
Cu-alloys 0/0 0/0 0/0 7/0 1/0 1/0 7/0 7/0 8/0 0.0%

Steels 26/7 140/27 35/4 99/20 66/3 35/0 54/8 16/3 191/30 15.7%

Total 59/22 196/52 40/6 123/23 102/12 59/1 74/11 29/4 284/57 20.1%
AMSD25/FL 37.3% 26.5% 15.0% 18.7% 11.8% 1.7% 14.9% 13.8% 20.1%

This approach causes that the AMSD25 data set gathers above all items, for which
either too few methods provided good estimates (i.e., AM parameter was high) or the
estimates of individual methods were very different (i.e., SD parameter was high). It is
obvious in Table 1, that the group of in-phase {IP} loading is reduced to the AMSD25 data
set by the factor 9, and if there are no mean stresses {IP, nMS} the reduction factor reaches
59. This observation can be interpreted as implying that this kind of loading is successfully
simulated by almost any multiaxial fatigue strength criterion. Another interesting aspect is
that the same conversion ratio when calculated for other items shows that the biggest issue
for the prediction methods is not non-proportional {NP} or out-of-phase loading {OOP},
which are the typical focused cases for such methods, but the response to load cases with
non-zero mean stresses {MS}. This fact also projects to the Uniaxial group, which covers
the one-channel load cases, invariably with non-zero mean stress.

Another interesting point in this comparison is the representation of various material
types. This shows that the test cases on steels are much better represented by the multiaxial
fatigue strength criteria than it can be observed for aluminum alloys or for cast irons, which
diffused into the AMSD25 benchmark set in a larger proportion. It can only be speculated
on whether this is a material-dependent consequence, or if simply the more often tested
steel samples were routinely tested under load cases, which are harmless. The conversion
ratio 22 reached for the {Steels, IP} group shows that the latter option can be right at
least partly.
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2.2. Evaluated Multixial Fatigue Strength Criteria

Six new multiaxial fatigue strength criteria were selected for this paper. They
are described in the next subsections. In addition to them, four reference criteria are
included. PCN (Papuga’s Critical plane solution in Newer version) is the latest extension
of the original PCr critical plane method published first in [24] and rectified in [26].
It is chosen because of its general good prediction capability [10]. The PIN (Papuga’s
Integral criterion in Newer version) criterion, which is an extension of the integral PI
method [24,26], was published in [17]. It is chosen for the same reason, but also to
provide a better partner in comparison to the Böhme criterion, which is also of the
integral type. The MMP (Manson-McKnight-Papuga) criterion is included because
of its simplicity, allowing the analyst to run the computation within, e.g., MS Excel,
while it reaches still sufficient level of prediction quality (see [30,35]). The Dang Van
criterion [33] dominates practical engineering solutions, as it is implemented in most
fatigue solvers available on the market [34]. Results of these four additional criteria will
not be further scrutinized, they are provided here only to show the differences in the
response in comparison to the six assessed newer criteria.

2.2.1. Khalij and Pagnacco (KP) Criterion

This criterion [36] was created with the interesting idea of extending the applicability
of the general Gough–Pollard criterion to more complicated cases that also encompass
the general plane stress state, including another normal stress component. The original
Gough–Pollard formula combining the axial stress amplitude σxa and the shear stress
amplitude τxy follows: (

σxa

s−1

)2
+

(
τxya

t−1

)2
≤ 1. (1)

Here, s−1 refers to the fatigue strength in fully reversed axial loading, while t−1
corresponds to the fatigue strength in fully reversed torsion. Using the fatigue strength
ratio κ = s−1/t−1 as a key material parameter, the criterion can be rewritten as follows:

σeq,GP =
σ2

xa
s−1

+
κτ2

xya

t−1
≤ s−1 (2)

In [2], Gough and Pollard modified the criterion to a more complicated formula:

(κ − 1)
(

σxa

s−1

)2
+

(
τxya

t−1

)2
+ (2− κ)

(
σxa

s−1

)
≤ 1, (3)

which was expected to better describe the response of the materials in their experiments.
The general formulation of the KP criterion [36] is based on extending the origi-

nal axial stress term to a formula, which also encompasses the second possible normal
stress σy:

aKP·
[σ2

x+σ2
y−σxσycosδyy ]

s2
−1

+ (
τxy
t−1

)2 + (1− aKP)

√
σ2

x+σ2
y+2σxσycosδyy

s−1
+ bKPσm,B+

cKPσm,C ≤ 1.
(4)

There are three material parameters involved (aKP, bKP, and cKP), the phase shift
between both normal stresses δyy and two stress parameters σm,B and σm,C, which are
calculated from complicated formulas [36] composed of mean values and amplitudes of all
involved stress channels. The two last addends in Equation (4) describing the effect of mean
stresses are completely retrieved from the paper by Liu [37]. The lengthy definition of σm,B
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and σm,C is so complicated that the authors of [36] admitted in personal communication
that an error was induced in the transcription of two from all parameters, and thus the
correct formulation should be found in [37]. Two of the material parameters involved in
Equation (4) are:

bKP = 7
4 s2
−1

[(
2
t0

)2
−
(

1
t−1

)2
]

cKP = 7
5

[
4
(

s−1
s0

)2
− 4bKP

21 − 1
] (5)

Here, s0 refers to the fatigue strength in repeated axial loading (that is, with the load
ratio R = 0), and t0 refers to the fatigue strength in repeated torsion. The last unknown ma-
terial parameter in Equation (4) is aKP, for which Khalij et al. set three different definitions.
The first one, designated OP, is derived by using Equation (4) for the pure torsion load case.
The authors expected the independence of Equation (4) on the chosen coordinate system,
and thus they evaluated the torsion load case on the plane normal to the principal direction.
This analysis reaches then:

aKP,OP = κ2/3 (6)

The other variant, marked GP, is inspired by the similarity of the form of Equation (4)
to Equation (3) of the Gough and Pollard criterion:

aKP,GP = κ − 1 (7)

The last version aNK is similarly inspired by the criterion proposed by Nishihara and
Kawamoto [38], which leads to

aKP,NK =
(

κ2 − 1
)

/2. (8)

It should be noted, however, that only the derivation of aKP,OP is rigorous, and thus
the other parameters aKP,NK and aKP,GP are expected to lead to erroneous results for the pure
torsion load case, and logically also elsewhere.

The KP criterion is not dependent on the phase shift between normal stress and
shear stress. Khalij et al. [36] see it legitimate as many other authors (see, e.g., [39]), though
Sonsino [40] or Papuga [41,42] devoted some effort to explaining that such an independence
is far from proven. The extension of the original Gough and Pollard criterion to the general
plane stress state is still insufficient for common applicability. The plane stress state is
achieved on a free unloaded surface only, and thus, e.g., computation of any pressurized
vessel or of some contact interface can reach the limits of an applicability of the KP criterion.

2.2.2. Wang and Shang Criterion

The Wang and Shang (WS) damage parameter is defined in [43]. It is composed of
normal stresses acting on the critical plane (amplitude value Na and mean value Nm) and
of relevant shear stresses on the same plane (amplitude value Ca and mean value Cm):

σeq,WS =

√
(aWCa + cWCm)

2 + (bW Na + dW Nm)
2. (9)

The four material parameters aW-dW are derived from the axial and torsion load cases
in the fully reversed mode and in the repeated mode of loading:
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aW = κ,

bW = κ√
3

cW = 2s−1
t0
− κ,

dW =

√
16s2
−1

s2
0
− 4s2

−1
t2
0
− κ√

3

(10)

In the formulation of Equation (9), the WS criterion resembles other critical plane
criteria, see, e.g., the PCN criterion hereafter. The specific point in using this criterion
according to Wang et al. is the way in which the critical plane is determined. Here comes
the important limitation, because to keep the calculation simple, the authors of [43] focus
solely on the combination of axial and torsion loads. Thanks to the simple load case,
the maximum shear stress Tmax acting in current time t of the stress cycle can be simply
computed from axial and shear stresses.

Such evaluation treats only planes perpendicular to the surface (i.e., only these
planes are examined in this criterion, though, e.g., Bannantine and Socie [44] proposed
to examine also the planes inclined by 45◦ to the surface), because the authors refer to
Papadopoulos et al. [39], who also focused only on those planes stating that this is the only
fracture mode observed for bending-torsion load combination. The angle between the
evaluated plane and the maximum shear stress plane ϕ(t) can be simply derived from
the Mohr’s circle. The angle to locate the critical plane is then obtained from a weighted
average over all the angles ϕ(t) calculated within the load cycle period:

ϕW = sign
[

∑
t

ϕ(t)·W(t)
]
· 1

Wtot
∑
t
|ϕ(t)|·W(t)

where Wtot = ∑
t

W(t).
(11)

This way of definition of the critical plane results in two stress states rotated by 90◦

one from another. From these two planes, the one reaching the higher equivalent stress
σeq,WS Equation (9) is chosen as the critical plane. The weight W(t) used to define the final
critical plane orientation ϕW is established from current values of the maximum shear stress
Tmax(t) and from its maximum and minimum values throughout the load cycle:

W(t) =
Tmax(t)−min

t
(Tmax(t))

max
t

(Tmax(t))−min
t
(Tmax(t))

(12)

If the KP criterion is defined only for plane stress state, in which two normal stresses
and one shear stress are applied concurrently, the WS criterion presents even more sub-
stantial limitation, because it is postulated solely for the case of concurring axial and
torsion loads. Technically, the criterion could be extended to cover full stress tensor input,
but this would call for an involvement of the other angle that defines the critical plane
orientation—similar, e.g., to the concept of weighted critical plane orientation proposed by
Carpinteri et al. [45]. Such an extension would raise many questions that would have to be
answered first. Because of that, this paper focuses solely on this current definition, which
means that the part of the data set will not be evaluated.

2.2.3. Böhme Criterion

The recently published criterion [46] was derived by its author to deal well with
fatigue in gear teeth, where not only the fatigue response on the surface of the gear tooth
was analyzed, but the same criterion should also be applicable in the gear tooth core. This
requirement is induced by the fact that the case-hardened gears have substantially different
properties on the surface and in the core and that the observed failures can be initiated
deep below the surface in the area where the case ends. The aforementioned KP or WS
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criteria would fail to provide an answer for this configuration because the stress state is
more complicated than their inputs allow. In the development, Böhme focused on integral
criteria only, and the final configuration, which he found optimum, is:

σeq,B =

√
15
8π

∫ 2π

ϕ=0

∫ π

θ=0

[
(aBC2

a + bBN2
a )(1 + dBNm)

2 + cBCaCm

]
sinθdθdϕ. (13)

The material parameters necessary for the computation are as follows:

aB = 1
5
(
3κ2 − 4

)
,

bB = 2
5
(
3− κ2),

cB = κ2

3

[(
2t−1

t0

)2
− d2

Bt2
0

35κ2

(
8− κ2)− 1

]
dB =

√[
3s0(11−2κ2)

70C

]2
+ 1

C

[(
2s−1

s0

)2
− 1

3

(
2s−1

t0

)2
+ κ2

3 − 1
]
− 3s0(11−2κ2)

70C

(14)

Here an additional material parameter C had to be introduced to shorten the record:

C =
s2

0
84

(
17− 4κ2

)
−

t2
0

105

(
8− κ2

)
. (15)

The criterion is identical to the Liu-Zenner criterion [47]:

σeq,LZ =

√√√√√ 15
8π

2π∫
ϕ=0

π∫
θ=0

[aLZC2
a(1 + cLZC2

m) + bLZ N2
a (1 + dLZ Nm)]sinθdθdϕ, (16)

if there is no mean stress involved. The basic difference is the way the mean stress effect
is implemented. Böhme had to deal with compressive mean stresses in his tasks, and he
wanted to ensure that negative mean normal stress will not lead to decreasing equivalent
stress down to negative values below the square root, while the mean shear stress effect
should be involved in some way.

The authors of [46] benchmarked several criteria on the test set that comprises 23 load
cases derived from the FatLim database, which included both axial mean stress and the
shear stress amplitude. The Böhme criterion was only slightly worse than the best perform-
ing PIN criterion [17], which, however, failed to provide adequate damage distribution for
analysis of real gear teeth.

2.2.4. MDC Criterion

The MDC criterion (Margetin–Ďurka–Chmelko) was published in [48] in a comparison
with several other criteria in a fatigue life analysis. The formulation for fatigue life estima-
tion presented there can be simply reconfigured to result in the fatigue strength evaluation:

σeq,M = aM

√
C2

a + N2
max

(
bM Ng

max − 1
)

. (17)

The material parameters necessary for the solution are provided by the authors:

aM = κ,

bM =

(
2τ′ f
σ′ f

)2(
2

σ′ f

)g
,

g = 2(bt−b)
b

(18)
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The critical plane in the authors’ definition is the plane with the maximum shear stress
range detected. The fact that the criterion was designed for the calculation of the fatigue life
Nf can be seen in the definition of the material parameters, which include the parameters
σ‘f and b of the Basquin formula for the fully reversed axial load:

σa = σ′ f
(

2N f

)b
(19)

and similar parameters τ‘f and bt should be recovered for the fully reversed torsion case. The
method was successfully tested in [48] on own experimental data of a common structural
steel S355, while the output was much worse for the very ductile C55 steel (this lack of
prediction quality in that case was similar, however, to the output of most methods tested
in [48]).

Within the benchmark tasks analyzed in the current paper, the important limitation
imposed by the formulation of the criterion is the necessity to deal with the description of
the Basquin curves. This restrains the application of the method to all cases in the FatLim
data set, which are derived from fatigue experiments via the staircase method, because the
description of the Basquin curve is not available for them.

2.2.5. Mertens’ Criterion MMMH, and the Derived Formula M3HW

The MMMH (Modified Mises–Mohr Hypothesis) is the invariant based criterion
published by Mertens et al. [49–51]. With the aim of considering also non-proportional
stresses in fatigue analysis, it features a sign determination. First, the equivalent stress
is calculated without the involvement of mean stresses. In the configuration intended
for evaluating the surface of smooth unnotched samples included in FatLim (up to three
normal stresses, one shear stress), the formula follows:

σeq,MMMH(t) = VM(t)·
√
(4− κ2)·M2

M(t) + κ2·R2
M(t), (20)

MM and RM represent the invariant modules of the hypothesis:

MM(t) = σx(t)+σy(t)
2 − σz(t),

RM(t) = VR·
√(

σx(t)−σy(t)
2

)2
− τ2

xy(t)
(21)

It must be mentioned explicitly to ensure the validity of Equation (21) that the coordi-
nate system must be oriented in such a way that x and y axes are tangential to the evaluated
surface, while z-axis is perpendicular to the surface (e.g., acting pressure). The parameter
VM(t) is a sign function derived from:

VM(t) = sign
[√

4− κ2·MM(t) + κ·RM(t)
]
. (22)

On the other hand, VR designates another sign function, the output of which is, how-
ever, much more complicated based on various possible configurations. For its computation,
reading [49] is recommended.

The final equivalent stress amplitude is calculated as half of the difference between
the maximum and minimum values of the current equivalent stress within the load cycle:

σeq,a,MMMH =

[
max

t
σeq,MMMH(t)−min

t
σeq,MMMH(t)

]
/2, (23)
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In the case of an unnotched specimen loaded within the high-cycle fatigue regime, the
calculation of the equivalent mean stress stated in [51] is simplified to:

σeq,m,MMMH =

[
max

t
σ1(t)−min

t
σ3(t)

]
/2. (24)

where σ1 is the maximum principal stress and σ3 is the minimum principal stress. Using
the following expressions, the mean stress effect is considered according to [51] to calculate
the amplitude of the reduced fatigue strength s−1,red:

M = s−1−s0/2
s0/2

Q = M·(2+M)
1+2·M

s−1,red = s−1·
−Q+

√
Q2+4(1−Q)(1−Qσeq,m,MMMH/s−1)

2(1−Q)

(25)

The computed equivalent stress amplitude σeq,a,MMMH should thus be compared with
this value to check if the stress state record exceeds or stays below the limit state. Unfortu-
nately, the MMMH criterion in this version ended up with such a bad prediction quality
for cases with high mean stresses that its simple rearrangement according to the Walker
formula is proposed here to the new version of the criterion marked as M3HW:

σeq, M3HW = (σeq,a,MMMH + σeq,m,MMMH)
(1−w)· σw

eq,a,MMMH . (26)

The Walker formula was chosen because Papuga et al. highlighted its good predictive
properties on a broad data set in [52]. The formula contains the Walker coefficient w, which
allows its user to better tune the mean stress effect based on the available experimental data:

w =
log
(

s0
s−1

)
log 2

(27)

2.2.6. Yankin Criterion

The authors of [53] modified the original Sines criterion [19] by introducing two more
terms into the formula so that the combined influence of cyclic normal and shear stresses
could be effectively weighted from the point of view of both the amplitude and mean
values. The new version, denoted as Sines++ in [53], was proposed to estimate fatigue life.
It can be simply converted to the equivalent stress formula, which is expressed as:

σeq,Y =

√(
aY
√

J2a

)2
+
(

cY
√

J2m

)2
+ bY I1a + dY I1m, (28)

where
√

J2a and
√

J2m are amplitude and mean values of the second invariant of the stress
tensor deviator. Their calculation was implemented by Yankin et al. in the following form:

√
J2a =

1√
6

√(
σxa − σya

)2
+
(
σya − σza

)2
+ (σxa − σza)

2 + 6
(

τ2
xya + τ2

yza + τ2
xza

)
(29)

and

√
J2m =

1√
6

√(
σxm − σym

)2
+
(
σym − σzm

)2
+ (σxm − σzm)

2 + 6
(
τ2

xym + τ2
yzm + τ2

xzm
)
. (30)
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Amplitude and mean values of the first invariant of the stress tensor, I1a and I1m, are
calculated as follows:

I1a = σxa + σya + σza,
I1m = σxm + σym + σzm.

(31)

The model parameters were derived by the authors to be:

aY = κ, bY = 1− κ√
3

, cY =
s−1

Rmt
, dY =

s−1

Rm
− s−1√

3Rmt
, (32)

where Rm and Rmt are ultimate tensile strengths in tension and torsion, respectively.
Note that the proposed means of evaluating the

√
J2a and

√
J2m in Equations (29)

and (30) is suitable rather for in-phase loading. Since the FatLim database also contains
a number of multiaxial experiments applied with a phase shift of the load channels, the
analytical approach to calculate the minimum circumscribed sphere in the stress deviatoric
space [42] was adopted in this study instead of Equations (29) and (30).

The calculation of the criterion in cases involving mean stresses is dependent on the
value of the ultimate shear strength, which is a value only rarely available in published
experimental data sets, see its sparse appearance among the material properties for data sets
used in AMSD25 in Table 2. This limitation means that the method could be applied only
to 80 data items from the complete FatLim benchmark set. To increase a bit the credibility
of validating the Yankin criterion in the AMSD25 data set, an attempt was made to estimate
the Rmt value from Rm. Commonly in machine design, either von Mises stress theory or
Tresca stress theory are used to derive Rmt = 0.58 Rm or Rmt = 0.5 Rm, respectively. However,
those few cases, where both these material parameters are present, lead to Rmt from 0.76 Rm
to 0.92 Rm, i.e., to values substantially higher than those two, apparently conservative,
theories. Because of that, the proposals of this relation from the handbook [54] are used in
the following form:

Steels : Rmt = 0.75Rm,
Cast iron : Rmt = 1.30Rm,

Copper alloys : Rmt = 0.65Rm,
Aluminum alloys : Rmt = 0.65Rm,

(33)

Yankin’s model analysis using this set of formulas to derive the missing Rmt values is
marked DMW hereafter, while the one using von Mises stress is marked VM. The results of
both versions coincide in cases where the experimentally set Rmt value is available for its
direct application.

2.2.7. The Reference Criteria

The equivalent stresses of the individual criteria used as references are gathered in
Table 3 together with their material parameters. The PCN criterion is of the critical plane
type, with the critical plane set by maximizing the equivalent stress over all possible plane
orientations. The PIN criterion is of the integral type involved here to provide a counterpart
to the Böhme criterion of the same type. The MMP criterion is a simple solution derived
from von Mises equivalent stress, and it could be used as a counterpart to the M3HW (or
MMMH) criterion. It is intended for quick calculations, e.g., within MS Excel, while it still
ensures quite good prediction quality.

The Dang Van criterion in the implementation used in this study belongs to the
critical plane criteria. In this method, the detected maximum shear stress range defines the
critical plane. In this paper, the common formulation of a linear weighted combination
of the instantaneous shear stress excursion and of the current hydrostatic stress is used.
This variant is frequently used in various fatigue solvers. Papuga et al. have previously
shown [10] that the modified formulation combining the maximum shear stress amplitude
with maximum hydrostatic stress provides better results, because of the improved behavior
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under out-of-phase loading. The too extreme response to dephasing between axial and
shear stresses detected by the original formulation of the Dang Van criterion was also
confirmed in [41]. However, the reference to the current status quo is desired in this paper,
and so this original and frequently used formulation is used here.

Table 2. Description of the materials used within the AMSD25 data sets and of their material
parameters necessary to calculate the equivalent stresses by the criteria assessed in this paper. All
fatigue strengths presented here refer to the same number of cycles as the load cases described in
Tables 4–9.

Set Material Rm
(MPa)

Rmt
(MPa)

Re
(MPa)

s−1
(MPa)

s0
(MPa)

t−1
(MPa)

t0
(MPa) b (-) σ‘f

(MPa) bt (-) τ‘f
(MPa)

AR1 42CrMo4 1100 980 488.2 403.8 −0.102 1820 −0.066 948
BaB Ck35 706 569 539 342.1 540.5 230.0 430.3 −0.068 784 −0.089 649
Bai 34CrMo4 902 814 706 430.7 683.7 318.6 574.2 −0.073 1087 −0.088 994

BKL 100Cr6 2467 2115 866.0 1060.0 541.0
FAD 2124-T851 477 365 439 153.4 238.6 109.1 178.0 −0.190 2099 −0.113 514

FAD * 2124-T851 477 365 440 198.3 258.7 110.0 0.0 −0.127 1146 −0.129 655
FF ČSN 41 1523 560 517 400 244.5 385.3 169.0 330.5 −0.061 582 −0.028 252
Fin 76S-T61 508 419 470 262.3 377.8 172.6 288.6 −0.105 1043 −0.100 634

GrN GGG-60 635 425 318.0 400.0 225.0 411.0 −0.097 1109 −0.095 764
Han SAE4340 844 732 541.8 1028.5 365.2 −0.145 3611 −0.093 1211
HeG GGG-60 815 516 275.0 392.0 249.0
KLN 2017A-T4 545 395 177.5 244.2 104.5 150.8 −0.132 1215 −0.146 885
KLU 6082-T6 290 230 164.9 84.7 −0.124 1003 −0.163 902
Mie 25CrMo4 780 660 340.0 600.0 228.0

Mie ** 25CrMo4 780 660 361.0 600.0 228.0
PSSB X2CrNiMo17-12-2 416 210 313.0 0.0 258.6 −0.048 584 −0.050 496
Ra1 EN-GJV-450 498 368 185.7 236.6 185.6 268.3 −0.136 1158 −0.105 801
SaL 14S-T 498 227.1 374.8 119.7 218.9 −0.098 995 −0.183 1954
SiB Ck45 850 807 419.6 718.3 286.2

TAK 25CrMo4 801 672 340.0 600.0 228.0

Note: * material properties concern FAD044 load case only, ** material properties concern Mie03 load case only.

2.3. Method of Assessment

The equivalent stresses computed by various criteria described in Section 2.2 are
compared with the experimentally set fatigue strengths in fully reversed axial loading s−1
(presented in Table 2 in Section 2.1 for the materials involved in the AMSD25 data set).
All fatigue strengths of the materials presented in Table 2 relate to the same numbers of
cycles as the multiaxial load cases presented and analyzed in Tables 4–9. If the individual
formulas of criteria had been correct, the equivalent stress and the fatigue strength for each
data item in the benchmark set would be the same. As this is practically impossible, the
fatigue index error ∆FI is defined as a relative error:

∆FI =
σeq − s−1

s−1
(38)

The values of ∆FI equal to zero correspond to a rare perfect estimate, the positive
values concern cases of too safe (conservative) estimates, and the negative values relate to
unsafe (non-conservative) estimates.

There is one exception among the criteria, in which the equivalent stress is not directly
computed—the KP criterion. The left-hand side (LHS) of Equation (4) is compared there
with unity. That means that for this special case, ∆FI is defined in a different way:

∆FIKP = LHSKP − 1 (39)
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Table 3. Formulations of individual reference multiaxial fatigue strength criteria.

Abbrev. Ref. Formula of σeq

PCN [10]

σeq,PC =
√

aPCCa(Ca + cPCCm) + bPC
√

Na(Na + dPC Nm)

1 ≤ κ <
√

4
3 : aPC = κ2

2 +
√

κ4−κ2

2 , bPC = s−1

1 ≤ κ0 <
√

4
3 : cPC =

2s2
−1

aPC ·t2
0
·
(

1 +
√

1− 1
κ0

2

)
− 1 , dPC =

(
2s2
−1

bPC ·s0

)2
− 1

κ ≥
√

4
3 : aPC =

(
4·κ2

4+κ2

)2
, bPC = 8·s−1·κ2· 4−κ2

(4+κ2)2

κ0 ≥
√

4
3 : cPC = z

aPC
− 1, dPC = z

bPC
2 ·
(
4·s2
−1 − z·t2

0
)
− 1, z =

[
8·κ0·s−1

t0·(4+κ0
2)

]2

(34)

PIN [17]

σeq,PI =
√

1
4π

∫ 2π
ϕ=0

∫ π
θ=0[aPICa(Ca + cPICm) + bPI(Na + dPI Nm)] sin θdθ dϕ

aPI =
15
2 ·κ·

(
π·κ−4
3π−4κ

)
, bPI = 3·s−1·

[
1− κ·

(
π·κ−4
3π−4κ

)]
cPI = 10 s2

−1
aPI t2

0
− 20

3
bPI

πaPI t0
− 1, dPI = 6 s2

−1
bPI s0

(
1− s2

0
3t2

0

)
+ 4

3
s0

πt0
− 1

(35)

MMP [30]

σeq,MMP = σw
aP·(σaP + βP·σmP)

1−w

σaP =

√√√√√ 1
2

 (
σx,a − σy,a

)2
+
(
σy,a − σz,a

)2
+ (σz,a − σx,a)

2

+2·κ2
(

σ2
xy,a + σ2

yz,a + σ2
zx,a

) 

σmP =

√√√√√ 1
2

 (
σx,m − σy,m

)2
+
(
σy,m − σz,m

)2
+ (σz,m − σx,m)

2

+2·X2
m

(
σ2

xy,m + σ2
yz,m + σ2

zx,m

) 
w =

log s0
s−1

log2 , Xm = 2·κ·
[(

2·t−1
t0

) 1
1−w − 1

]
|σ1,max| ≥

∣∣σ3,min
∣∣ : βP = σ1,max

σ1,max−σ3,min

|σ1,max| <
∣∣σ3,min

∣∣ : βP =
σ1,min

σ1,max−σ3,min

(36)

DV [33]
σeq,DV = max

t
[aDV ·Ca(t) + bDV ·σH(t)]

aDV = κ, bDV = 3− 3
2 ·κ

(37)

Fatigue experiments tend to result in some scatter. Secondly, though the scope of
analyses performed to build up the FatLim set was tremendous and many potential items
were filtered out [32], it still relies on second-hand data. Some specific details that would
cause some given data items to be rejected can stay hidden. It is thus reasonable not to rely
on individual data items only but to validate the criteria on data sets as broad as possible,
so that the effect of such mishaps was marginalized.

The results gathered in the next section will thus refer to individual load cases only
for the AMSD25 data set [31], i.e., to data items, which generate either a large deviation
from zero ∆FI or a large scatter in the prediction quality for most fatigue strength criteria.
This complete printout can also serve as some kind of a reference for future research papers
dealing with new criteria. To get the information of the prediction quality overall and in
particular subsets, however, the ∆FI statistics over specific FatLim (sub)sets will be used
and presented. The most important parameters of the statistical analysis are listed below:

• The average value (Aver.) shows the potential bias of the method to produce too
conservative or too non-conservative results. The closer to zero, the better.

• The standard deviation value (SD) shows the overall scatter of the data. The smaller,
the better.

• The maximum value (Max.) shows the potential tendency of the method to produce
outliers in the conservative direction. The closer to zero, the better.

• The minimum value (Min.) shows the potential tendency of the method to produce
outliers in the non-conservative direction. The closer to zero, the better.
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Apart from evaluating the overall statistical report, subgroups of various load cases
are formed and analyzed within this paper to provide an information about characteristic
behavior of individual criteria in given situations. The most important such groups are:

• {Ax}—39 items: only axial load cases;
• {To}—20 items: only torsion load cases;
• {MS}—196 items: load cases, when at least one mean stress is active;
• {MS-}—40 items: load cases, where some normal mean stress is compressive;
• {nMS}—88 items: load cases with no mean stress involved;
• {NP}—123 items: non-proportional load cases that cause the principal directions to

rotate (also, e.g., one constant load channel and the other one non-constant);
• {IP}—102 items: in-phase load cases (the principal directions remain fixed);
• {IP, nMS}—59 items: intersection of {IP} and {nMS} groups;
• {OOP}—74 items: subgroup of {NP} set; out-of-phase cases, in which the rotation of

principal directions is caused by the non-zero phase shift between stress components;
• {OOP, nMS}—29 items: intersection of {OOP} and {nMS} groups.

3. Results

The results of computations are reported in Tables 4–9 for the AMSD25 data set. They
are grouped into three different load case types. Tables 4 and 5 concern the combination
of tension and torsion, where the loading description is covered in Table 4 together with
the fatigue response of the reference criteria, while Table 5 describes the response of newly
evaluated methods. A similar composition is used in Tables 6 and 7, which focus on
plane bending and torsion combination, and in Tables 8 and 9, which cover the load cases
including the second and third normal stress channels induced usually by pressurizing a
hollow sample.

Table 4. Tension–torsion load cases in the AMSD25 data set and the response of reference multiaxial
fatigue strength criteria to them.

Item σxa (MPa)
σxm

(MPa)
τxya

(MPa)
τxym

(MPa)
δxy (◦)

∆FI (%)

PCN PIN MMP DV

AR1004 481.6 0.0 278.1 0.0 90 16.3% 14.6% 20.3% −1.3%
BaB004 331.6 0.0 0.0 304.0 0 13.8% 2.8% −3.1% −3.1%
BaB009 0.0 −549.2 281.9 0.0 0 20.5% 2.3% −17.8% −18.6%
BaB013 0.0 588.4 155.3 0.0 0 −4.2% 6.7% 3.6% 11.6%
Bai007 363.4 0.0 0.0 431.5 0 4.9% −3.1% −15.6% −15.6%
Bai008 353.2 0.0 0.0 647.2 0 9.1% −2.1% −18.0% −18.0%
Bai011 306.1 306.1 0.0 490.3 0 4.2% −2.4% −13.1% −5.9%
Bai013 0.0 −549.2 398.2 0.0 0 22.5% 8.0% 1.5% −16.4%
Bai016 0.0 353.0 297.9 0.0 0 6.0% 8.2% 5.0% 20.0%
Bai017 0.0 509.9 257.6 0.0 0 0.4% 6.1% 2.4% 19.2%
Bai018 0.0 696.3 210.9 0.0 0 −5.7% 3.5% −1.2% 18.6%
BKL01 503.0 614.8 0.0 0.0 0 1.0% 2.1% 1.3% −27.7%
BKL02 437.0 1019.7 0.0 0.0 0 7.8% 14.2% 11.7% −26.0%
BKL03 417.0 1251.0 0.0 0.0 0 11.5% 21.5% 18.0% −23.0%
BKL04 372.0 1488.0 0.0 0.0 0 12.4% 26.2% 19.0% −22.7%
BKL06 607.0 0.0 303.5 0.0 90 −11.7% −9.7% −10.2% −29.9%
BKL08 417.0 509.7 208.5 0.0 90 −0.9% −2.2% −5.9% −40.1%

FAD003 66.3 375.6 0.0 0.0 0 −3.2% 0.1% −6.3% 15.9%
FAD011 58.9 58.9 58.9 58.9 90 −8.3% −9.0% −27.6% −33.0%
FAD012 0.0 0.0 65.3 196.4 0 −4.2% −5.1% −40.2% −40.2%
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Table 4. Cont.

Item σxa (MPa)
σxm

(MPa)
τxya

(MPa)
τxym

(MPa)
δxy (◦)

∆FI (%)

PCN PIN MMP DV

FAD014 55.7 55.7 55.8 55.7 0 −11.4% −14.1% −27.4% −21.2%
FAD044 86.4 259.2 0.0 0.0 0 −1.2% 10.3% −2.1% −43.6%
GrN003 146.1 146.1 84.7 84.7 0 −3.8% −8.2% −14.0% −23.3%
HeG02 221.0 0.0 110.5 0.0 90 −2.8% 1.7% −8.2% −19.6%
HeG06 271.0 −135.5 135.5 135.5 180 −2.4% −0.1% −21.1% −1.0%
Mie03 338.0 −338.0 0.0 0.0 0 −22.4% −6.2% −30.4% −25.9%

PSSB003 302.0 0.0 151.0 0.0 90 10.8% 10.7% 12.8% −3.5%
Ra1001 59.4 415.6 0.0 0.0 0 3.6% 19.5% 7.3% 43.8%
Ra1002 82.1 246.3 0.0 0.0 0 1.3% 6.7% 2.6% 10.5%
Ra1004 282.0 −169.2 0.0 0.0 0 −15.4% 7.9% 4.5% 6.3%
Ra1033 0.0 0.0 134.2 134.2 0 6.5% 0.2% −27.7% −27.7%

Table 5. The response of evaluated new multiaxial fatigue strength criteria to the tension–torsion
load cases from AMSD25 data set. The void cells in the MDC column mark the load cases run in the
staircase scheme, which does not provide material parameters required by the MDC criterion for its
calculation.

Item

∆FI (%)

KP
WS Böhme MDC M3HW

Yankin

NK OP GP VM DMW

AR1004 45.8% 45.4% 45.8% −4.4% 19.4% 21.1% −1.3% −1.3% −1.3%
BaB004 9.7% 9.3% 10.1% 26.5% 5.3% 202.3% 20.9% 12.6% 12.6%
BaB009 28.2% 28.2% 28.2% 26.2% −2.7% 120.9% 22.6% 34.6% 34.6%
BaB013 4.2% 4.2% 4.2% 73.6% −2.3% 312.2% 3.8% 13.7% 13.7%
Bai007 3.7% 1.2% 4.6% −45.2% −5.1% 210.8% 9.5% 3.1% 3.1%
Bai008 31.7% 28.8% 32.6% −45.1% −1.3% 350.4% 16.0% 20.1% 20.1%
Bai011 26.9% 22.9% 28.2% −17.7% −5.0% 330.7% 4.5% 12.5% 12.5%
Bai013 42.4% 42.4% 42.4% 37.5% 9.9% 131.5% 25.0% 30.9% 30.9%
Bai016 10.3% 10.3% 10.3% 47.0% 11.3% 75.1% 15.3% 10.9% 10.9%
Bai017 2.0% 2.0% 2.0% 67.2% 3.7% 153.6% 9.2% 8.9% 8.9%
Bai018 −0.3% −0.3% −0.3% 84.7% −7.1% 266.1% −0.1% 10.4% 10.4%
BKL01 16.0% 14.2% 20.4% 4.9% 0.9% 2.3% −36.4% −32.9%
BKL02 93.0% 91.2% 97.5% 35.5% 11.4% 18.4% −33.9% −30.2%
BKL03 151.7% 149.9% 156.2% 55.3% 18.8% 28.6% −28.9% −25.5%
BKL04 218.6% 216.9% 223.1% 73.5% 18.4% 34.3% −24.5% −21.8%
BKL06 −14.8% −16.3% −11.0% −17.9% −15.2% −29.9% −29.9% −29.9%
BKL08 −4.8% −6.7% −0.3% 17.1% −8.1% −15.2% −47.3% −44.3%

FAD003 191.3% 187.1% 193.3% 66.9% −13.0% −100.0% −14.0% −3.6% −3.6%
FAD011 −13.5% −17.5% −11.5% −15.9% −20.4% −11.6% −33.8% −32.6% −32.6%
FAD012 98.6% 98.6% 98.6% 0.5% −4.7% −40.2% −9.4% −19.5% −19.5%
FAD014 −20.8% −24.7% −18.9% −21.8% −20.1% −13.5% −20.2% −28.7% −28.7%
FAD044 87.1% 88.1% 95.0% 13.2% −7.0% −13.4% 2.4% −27.3% −27.3%
GrN003 2.5% −1.7% 4.6% −16.1% −12.0% −18.0% −6.2% −29.2% −23.7%
HeG02 −1.7% −6.4% −1.6% −35.0% −7.6% −19.6% −19.6% −19.6%
HeG06 33.3% 32.9% 33.3% −5.2% −19.6% 26.5% 25.2% 20.1%
Mie03 −16.2% −16.7% −15.2% −18.0% −10.6% −6.4% 4.0% −0.1%

PSSB003 29.8% 28.9% 29.9% −14.5% 12.0% 70.9% −3.5% −3.5% −3.5%
Ra1001 249.8% 242.6% 249.8% 166.5% −3.4% 76.7% 23.7% −1.0% 1.3%
Ra1002 95.7% 87.5% 95.7% 68.1% −3.0% 39.3% 8.9% −25.7% −20.2%
Ra1004 9.9% 36.2% 9.9% 10.1% −35.5% 0.0% 51.8% 58.2% 53.1%
Ra1033 0.0% 0.0% 0.0% 0.0% 0.0% −27.7% 13.5% −13.9% −24.8%
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Table 6. The cases of plane bending-torsion load in the AMSD25 data set and the response of the
reference multiaxial fatigue strength criteria to them.

Item σxa (MPa)
σxm

(MPa)
τxya

(MPa)
τxym

(MPa)
δxy (◦)

∆FI (%)

PCN PIN MMP DV

Fin14 0.0 0.0 126.4 310.3 0 4.5% 26.6% 3.1% −26.8%
Han004 504.1 713.0 0.0 0.0 0 0.0% 0.5% 0.0% 0.1%
Han005 492.2 862.0 0.0 0.0 0 −0.5% 0.1% −0.8% −0.6%
KLN06 0.0 0.0 73.4 50.0 0 −10.0% −16.8% −18.1% −29.8%
KLN07 0.0 0.0 78.7 75.0 0 3.1% 4.1% −7.5% −24.6%
KLN08 0.0 0.0 68.0 100.0 0 −0.2% 5.3% −13.1% −34.9%
KLN09 60.8 50.0 60.8 50.0 0 −4.8% −13.2% −13.6% −19.4%
KLN10 53.0 75.0 53.0 75.0 0 −4.3% −9.1% −14.6% −21.6%
KLN11 51.3 100.0 51.3 100.0 0 1.3% 4.7% −9.7% −17.2%
KLN12 93.5 50.0 46.8 25.0 0 −9.4% −19.4% −16.8% −17.9%
KLN13 79.4 75.0 39.7 37.5 0 −12.3% −23.2% −19.5% −21.9%
KLN14 65.1 136.0 32.5 68.0 0 −9.5% −15.9% −17.4% −17.0%
KLU001 93.0 0.0 93.0 0.0 0 19.1% 18.5% 18.6% 15.1%
SaL02 182.0 198.6 0.0 0.0 0 −1.4% −1.5% −1.5% −1.3%
SaL03 170.3 297.9 0.0 0.0 0 −0.1% 4.9% 1.2% 2.8%
SaL04 146.3 397.1 0.0 0.0 0 −4.2% 2.6% −2.9% 1.5%
SaL07 0 0 86.0 231.7 0 −10.6% −1.6% −9.9% −28.1%

Table 7. The response of the new multiaxial fatigue strength criteria evaluated to the cases of plane
bending-torsion load from the AMSD25 data set.

Item

∆FI (%)

KP
WS Böhme MDC M3HW

Yankin

NK OP GP VM DMW

Fin14 92.7% 92.7% 92.7% 8.5% 7.2% −26.8% 15.4% 4.1% 4.1%
Han004 4.8% 4.0% 5.6% 6.8% 0.0% −35.0% −0.6% 29.5% 35.7%
Han005 6.5% 5.4% 7.5% 11.7% −0.9% −62.5% −2.0% 41.4% 47.2%
KLN06 −29.6% −29.6% −29.6% −11.3% −10.5% −29.8% −15.8% −28.0% −28.4%
KLN07 4.2% 4.2% 4.2% 3.1% 3.3% −24.6% −4.2% −20.9% −21.7%
KLN08 26.7% 26.7% 26.7% 2.0% −0.1% −34.9% −8.8% −27.5% −29.0%
KLN09 −23.0% −23.5% −17.5% −10.2% −8.3% −29.2% −10.8% −29.7% −29.2%
KLN10 −1.1% −1.5% 4.0% −7.3% −8.0% −33.5% −10.7% −34.7% −34.4%
KLN11 41.3% 40.9% 46.3% 2.2% −1.7% −29.5% −4.6% −31.9% −32.0%
KLN12 −35.7% −36.2% −29.6% −15.6% −13.2% −24.9% −14.2% −29.6% −28.8%
KLN13 −34.2% −34.6% −28.1% −17.7% −17.1% −30.0% −17.7% −38.3% −37.3%
KLN14 11.3% 10.8% 17.0% −8.2% −14.6% −21.3% −14.2% −41.4% −40.6%
KLU001 42.6% 45.9% 53.6% 26.8% 23.4% 19.5% 23.4% 19.8% 19.8%
SaL02 −5.7% −4.1% 0.7% −2.0% −1.7% 131.9% −1.7% −11.2% −8.5%
SaL03 16.3% 18.1% 23.8% −2.6% 0.5% 255.4% −0.7% −5.6% −2.7%
SaL04 40.1% 42.4% 49.3% −9.1% −5.2% 381.1% −7.3% 0.3% 2.7%
SaL07 24.9% 24.9% 24.9% −10.1% −10.9% −28.1% −8.2% 8.0% 1.4%

Table 8. Load cases including pressurizing in the AMSD25 data set and the response of reference
multiaxial fatigue strength criteria to them.

Item
σxa

(MPa)
σxm

(MPa)
σya

(MPa)
σym

(MPa)
σzm

(MPa)
τxya

(MPa)
δxy (◦) δy (◦)

∆FI (%)

PCN PIN MMP DV

FF057 0.0 241.9 0.0 18.2 0.0 146.5 0 0 1.9% 8.2% 5.2% 16.4%
FF059 0.0 227.5 0.0 −19.5 −40.0 171.8 0 0 13.1% 12.0% 16.3% 20.9%
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Table 8. Cont.

Item
σxa

(MPa)
σxm

(MPa)
σya

(MPa)
σym

(MPa)
σzm

(MPa)
τxya

(MPa)
δxy (◦) δy (◦)

∆FI (%)

PCN PIN MMP DV

Mie06 261.0 170.0 261.0 340.0 0.0 0.0 0 0 −6.7% 21.1% −14.6% 34.5%
Mie07 275.0 170.0 275.0 340.0 0.0 0.0 0 60 3.8% 23.2% −10.8% 31.0%
Mie08 240.0 170.0 240.0 340.0 0.0 0.0 0 90 4.2% 15.2% −20.3% 16.8%
SiB008 335.2 0.0 368.7 368.7 0.0 0.0 0 0 1.6% 27.1% −10.0% 32.7%
SiB009 309.7 309.7 340.6 340.6 0.0 0.0 0 0 −3.4% 25.6% −9.2% 42.3%
SiB010 301.1 301.1 331.2 331.2 0.0 0.0 0 90 8.9% 21.7% −11.7% 25.8%
TAK10 223.6 255.0 167.7 210.8 0.0 111.8 90 180 5.1% 9.3% −13.8% 24.8%

Table 9. The response of the new multiaxial fatigue strength criteria evaluated to load cases from the
AMSD25 data set including pressurizing. The void cells mark the load cases, which the criteria are
not able to process.

Item

∆FI (%)

KP
WS Böhme MDC M3HW

Yankin

NK OP GP VM DMW

FF057 5.9% 5.9% 5.9% 8.6% 12.6% 7.9% 7.9%
FF059 20.9% 27.1% 16.9% 16.9%
Mie06 17.1% 4.9% 28.6% 15.6% 15.7% −2.5% 8.6%
Mie07 35.9% 30.5% 41.0% 20.7% −0.8% −9.4% 1.5%
Mie08 21.2% 21.2% 21.2% 9.8% −17.2% −2.7% 8.8%
SiB008 30.9% 17.2% 41.4% 27.1% 29.9% 9.2% 14.4%
SiB009 27.4% 14.0% 37.6% 23.5% 20.0% 0.0% 13.6%
SiB010 36.5% 37.6% 35.8% 21.0% −7.8% 3.2% 17.0%
TAK10 9.1% 19.9% −1.0% 7.6% −3.2% −6.7% 4.7%

In addition to these results, the ∆FI statistics were gathered in Table 10 for the entire
FatLim set comprising 284 items, for the AMSD25 data set and for several more selections
from FatLim. Evaluation on these groups is enforced by the inability of specific criteria
either to work with particular data inputs or by the unavailability of specific material
parameters necessary for their computation. These limited data sets are:

• {KP}—272 items. No load cases including the third normal stress are involved.
• {WS}—224 items: Only the combination of axial and torsion load channels is accepted.
• {MDC}—167 items: Only load cases for which the Basquin curve description was

available are involved, thus setting aside any results from staircase experiments.
• {Y}—80 items: Only load cases for which the Rmt value is available from experiments.

Table 10. Summary of the ∆FI statistics for various configurations of the evaluated benchmark sets.

∆FI statistics for the full fatLim benchmark—284 items

∆FI
PCN PIN MMP DV

Khalij-Pagnacco
WS Böhme MDC M3HW

Yankin

par. NK OP GOU VM DMW

Max. 24.2% 28.9% 20.3% 43.8% 249.8% 242.6% 249.8% 166.5% 29.5% 381.1% 51.8% 58.2% 53.1%

Min. −22.4% −15.4% −45.2% −43.6% −39.3% −36.2% −48.2% −45.2% −35.5% −100.0% −35.3% −47.3% −44.3%

Aver. 1.1% 1.9% −5.1% −2.2% 11.3% 10.0% 13.5% 1.1% −0.2% 22.9% −0.9% −3.3% −2.0%

SD 6.1% 7.2% 10.8% 15.9% 31.2% 30.8% 31.7% 22.7% 8.8% 73.4% 12.7% 14.7% 13.8%
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Table 10. Cont.

∆FI statistics for {KP} set—272 items without cases including the third normal stress channel

∆FI
PCN PIN MMP DV

Khalij-Pagnacco
WS Böhme MDC M3HW

Yankin

par. NK OP GOU VM DMW

Max. 22.5% 28.9% 20.3% 43.8% 249.8% 242.6% 249.8% 166.5% 29.5% 381.1% 51.8% 58.2% 53.1%

Min. −22.4% −15.4% −45.2% −43.6% −39.3% −36.2% −48.2% −45.2% −35.5% −100.0% −35.3% −47.3% −44.3%

Aver. 0.8% 1.5% −5.1% −2.5% 11.3% 10.0% 13.5% 1.1% −0.7% 22.9% −1.2% −3.3% −2.3%

SD 5.8% 7.0% 10.7% 16.1% 31.2% 30.8% 31.7% 22.7% 8.4% 73.4% 12.4% 14.5% 13.8%

∆FI statistics for {WS} set—224 items of axial and torsion loading only

∆FI
PCN PIN MMP DV

Khalij-Pagnacco
WS Böhme MDC M3HW

Yankin

par. NK OP GOU VM DMW

Max. 22.5% 28.9% 20.3% 43.8% 249.8% 242.6% 249.8% 166.5% 29.5% 381.1% 51.8% 58.2% 53.1%

Min. −22.4% −15.4% −40.2% −43.6% −35.7% −36.2% −29.6% −45.2% −35.5% −100.0% −35.3% −47.3% −44.3%

Aver. 0.9% 0.3% −3.6% −5.3% 12.2% 10.9% 14.6% 1.4% −1.5% 22.9% −1.5% −3.7% −3.4%

SD 6.1% 6.0% 10.0% 14.7% 33.4% 33.2% 33.6% 22.8% 7.7% 73.4% 12.2% 15.1% 14.4%

∆FI statistics for {MDC} set—167 items including the description of relevant Basquin curves

∆FI
PCN PIN MMP DV

Khalij-Pagnacco
WS Böhme MDC M3HW

Yankin

par. NK OP GOU VM DMW

Max. 22.5% 28.9% 20.3% 43.8% 249.8% 242.6% 249.8% 166.5% 29.5% 381.1% 51.8% 58.2% 53.1%

Min. −15.4% −15.4% −40.2% −43.6% −35.7% −36.2% −29.6% −45.2% −35.5% −100.0% −35.3% −41.4% −40.6%

Aver. 0.9% 0.0% −4.4% −4.1% 12.1% 10.9% 14.2% 1.8% −1.6% 22.9% −0.7% −2.4% −2.3%

SD 6.0% 5.8% 10.5% 14.9% 32.2% 32.0% 32.4% 24.4% 7.7% 73.4% 12.0% 15.1% 14.9%

∆FI statistics for {Y} set—80 items with the experimentally-set values of ultimate shear strength

∆FI
PCN PIN MMP DV

Khalij-Pagnacco
WS Böhme MDC M3HW

Yankin

par. NK OP GOU

Max. 22.5% 15.8% 16.3% 20.9% 191.3% 187.1% 193.3% 84.7% 20.9% 350.4% 27.1% 34.6%

Min. −11.4% −14.1% −40.2% −43.6% −24.0% −24.7% −24.0% −45.2% −20.4% −100.0% −35.3% −32.6%

Aver. 1.6% 0.9% −5.3% −3.2% 13.0% 11.5% 14.6% 3.4% −0.7% 48.5% 1.6% −0.7%

SD 6.1% 5.3% 9.2% 13.9% 32.5% 32.3% 32.7% 26.6% 7.9% 92.0% 11.7% 12.2%

∆FI statistics for AMSD25 set—57 items

∆FI
PCN PIN MMP DV

Khalij-Pagnacco
WS Böhme MDC M3HW

Yankin

par. NK OP GOU VM DMW

Max. 22.5% 28.9% 20.3% 43.8% 249.8% 242.6% 249.8% 166.5% 27.1% 381.1% 51.8% 58.2% 53.1%

Min. −22.4% −15.4% −40.2% −43.6% −35.7% −36.2% −29.6% −45.2% −35.5% −100.0% −33.8% −47.3% −44.3%

Aver. 0.8% 4.2% −8.9% −7.2% 31.7% 30.6% 34.3% 12.2% 0.1% 64.5% 3.0% −6.0% −4.3%

SD 9.0% 11.3% 14.9% 24.8% 57.2% 56.6% 57.4% 38.7% 13.1% 129.4% 17.2% 23.1% 23.2%

Due to these limitations imposed and accepted, the relevant criterion can be fully
compared with other criteria only on the data set for which its limitations were applied.
Thus, e.g., the KP criterion can be compared to other non-limited data only on the {KP}
data set, but, e.g., the MDC criterion, which imposes further limitations, is comparable to
the KP criterion only on the {MDC} set.

Because understanding of fatigue performance of individual criteria only from
Table 10 can be limited, and the Discussion section refers often to the response of cri-
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teria to the subsets described in the list at the end of Section 2, two additional tables were
added. Table 11 refers to the average values of ∆FI obtained in these subsets, while Table 12
describes the standard deviations of ∆FI calculated for individual evaluated criteria. Al-
though maximum and minimum values would help to detect anomalous behavior of some
criteria in particular conditions, these values are not provided because of the length of the
paper. Usually, an abrupt change of the average value, an increased standard deviation, or
a combination of both helps to detect such occurrences.

The information delivered within Tables 4–12 is rigorous and comparable with other
future attempts; it does not allow the reader, however, to quickly grasp the quality of
individual criteria. Because of that, Figure 1 was added. It presents histograms of the
fatigue index error for the six newly documented criteria and their versions. Due to the
lack of space, histograms for the reference criteria are not provided.

Table 11. Summary of the ∆FI averages obtained for individual criteria and for various subgroups
of FatLim.

∆FI
PCN PIN MMP DV

Khalij-Pagnacco
WS Böhme MDC M3HW

Yankin

Subset NK OP GOU VM DMW

Ax −0.6% 3.1% −0.9% −3.7% 36.9% 36.1% 39.4% 13.7% −1.8% 33.2% 3.8% −4.9% −2.8%

To −1.6% −2.1% −17.4% −17.4% 13.5% 13.5% 13.5% −1.5% −2.0% −17.7% 2.0% −3.7% −6.8%

MS 0.9% 2.7% −7.7% −2.3% 13.0% 11.9% 14.9% 4.9% 0.0% 33.2% 1.5% −3.2% −1.4%

MS- 2.1% 6.3% −6.1% −3.0% 6.3% 7.7% 7.0% 4.1% 1.8% 38.4% 8.5% 8.4% 8.3%

nMS 1.6% 0.2% 0.8% −2.0% 7.7% 6.1% 10.7% −5.1% −0.6% 3.6% −6.1% −3.3% −3.3%

NP 1.7% 3.5% −4.9% −3.5% 7.9% 7.4% 9.1% 4.0% 0.7% 64.4% −3.4% −4.4% −2.6%

IP 1.6% 0.3% −4.5% 3.0% 4.9% 2.2% 8.4% −6.2% −0.3% 0.2% −0.2% −1.1% 0.0%

IP,
nMS 2.7% −0.1% −0.7% 4.2% 5.5% 3.6% 8.2% −5.9% −0.3% 4.0% −0.3% 2.1% 2.1%

OOP 0.0% 3.2% −6.6% −6.5% 9.0% 8.5% 10.9% −0.9% −1.0% 3.5% −11.5% −11.7% −8.5%

OOP,
nMS −0.7% 1.0% 3.8% −14.4% 12.3% 11.1% 15.6% −3.5% −1.2% 2.7% −17.8% −14.3% −14.3%

Table 12. Summary of standard deviations of the ∆FI obtained for individual criteria and for various
subgroups of FatLim.

∆FI
PCN PIN MMP DV

Khalij-Pagnacco
WS Böhme MDC M3HW

Yankin

Subset NK OP GOU VM DMW

Ax 5.8% 6.8% 8.3% 17.5% 64.8% 63.5% 65.0% 33.6% 9.0% 90.7% 13.1% 19.8% 19.2%

To 5.1% 5.6% 12.1% 12.1% 33.0% 33.0% 33.0% 5.2% 5.2% 12.3% 11.2% 12.4% 11.4%

MS 6.4% 7.7% 11.0% 17.8% 36.8% 36.1% 37.3% 26.4% 9.5% 88.7% 12.7% 16.3% 15.2%

MS- 9.9% 7.3% 12.8% 14.9% 16.0% 15.8% 16.7% 16.8% 13.2% 55.8% 13.7% 17.7% 14.3%

nMS 5.4% 5.6% 7.6% 10.8% 12.5% 13.5% 13.2% 12.7% 7.1% 12.6% 11.0% 10.0% 10.0%

NP 7.1% 6.6% 12.0% 16.1% 16.7% 16.2% 18.1% 25.9% 9.8% 99.7% 15.1% 15.4% 14.0%

IP 4.6% 7.7% 7.8% 13.2% 12.9% 12.7% 13.5% 10.0% 7.9% 10.8% 7.9% 11.2% 11.0%

IP,
nMS 3.9% 5.7% 5.7% 4.9% 8.8% 9.7% 9.5% 11.3% 6.2% 6.1% 6.2% 5.0% 5.0%

OOP 6.0% 7.0% 13.6% 17.5% 18.3% 17.6% 20.1% 14.8% 10.3% 25.3% 12.6% 13.3% 12.8%

OOP,
nMS 7.1% 5.5% 9.9% 8.5% 16.8% 18.0% 17.5% 15.0% 8.4% 21.9% 9.0% 8.6% 8.6%
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count of items to which the criterion was applicable and not to the entire FatLim. 
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are invariably connected to non-zero mean stresses). In tension it concerns three load cases 
with very high mean tensile stresses (load ratio R > 0.5) or with significant compressive 
stresses (R = −4). These are relatively extreme cases (and this is the reason why they project 
into AMSD25), but other criteria master them relatively better. The same tendency in 
providing extreme outliers in quality of predicted values for high mean stresses (above R 
> 0.5) is also observed in torsion. 

This behavior is interesting because KP criterion belongs to those material properties 
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that the expected difference in a parameter definition (Equations (6)–(8)) does not occur at 
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Figure 1. Histograms of ∆FI occurrence in the FatLim full set (blue) and in the AMSD25 subset
(salmon). The total count numbers refer to the number of items in each of those test sets, on which
the criterion could be applied. The number of outliers describes how many more items would be
depicted in the histogram if its whole range could be shown. The relative count refers to the total
count of items to which the criterion was applicable and not to the entire FatLim.

4. Discussion
4.1. KP Criterion

The results of the Khalij and Pagnacco criterion, which extends the Gough–Pollard
solution (and Nishihara–Kawamoto solution in the specific NK variant), are not persuasive
for using the method in any of the current three formulations. One of the issues is the
inappropriate response to purely axial {Ax} and to purely torsion {To} load cases (which are
invariably connected to non-zero mean stresses). In tension it concerns three load cases
with very high mean tensile stresses (load ratio R > 0.5) or with significant compressive
stresses (R = −4). These are relatively extreme cases (and this is the reason why they project
into AMSD25), but other criteria master them relatively better. The same tendency in
providing extreme outliers in quality of predicted values for high mean stresses (above
R > 0.5) is also observed in torsion.
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This behavior is interesting because KP criterion belongs to those material properties
derived from four fatigue strengths, i.e., including the cases of repeated loading s0 and
t0. For these load cases, the criterion should provide perfect results if the material
parameters are set right. However, its response to higher mean stresses fails. Surprising
is the finding that all KP variants provide identical results for the pure torsion load cases.
This means that the expected difference in a parameter definition (Equations (6)–(8))
does not occur at all. The reason is simple—all addends, including it, in Equation (4)
are zero in such a case. The condition for which aOP was derived (projection of the pure
torsion load case to the principal plane) is not applied. Attempts to apply a similar
transformation of the stress state to principal stresses, for which is then ∆FI calculated,
show that the criterion in the form in Equation (4) is not independent of the coordinate
system and that extremely different results can be obtained for the same stress state if
transferred to different coordinate systems.

If the KP criterion provides the correct output for t0 case as expected, the more
critical is the s0 case of the repeated axial loading. Khalij and Pagnacco decided to
implement the mean stress effect as proposed within the Liu and Zenner criterion, in
its analytical formulation derived for the plane stress state [37]. The formulation there
and in [36] differs. Khalij and Pagnacco, in a personal communication, admitted that
an error was induced in the transcription into their paper. It should be noted, however,
that there are multiple other works by Liu or Zenner [14,55] and the formulation of these
parameters is changing in many of them. None of our attempts rectified the response to
the s0 case, though various alternative setups of the mean stress effect were checked. It
must be doubted whether mixing of parts of various criteria without modifying their
parameters accordingly is possible. The formulations regarding the normal stresses
in both criteria differ quite substantially. The Liu-Zenner solution in the analytical
formulation for the repeated load case (σx,a = s0/2, σy,a = τxy,a = 0) results in s2

0/4 term
only in the amplitude part of the equivalent stress. If the same check is performed
for the KP criterion (i.e., without the part concerning the mean stresses), Equation (4)
in the amplitude part reduces to αs2

0/4 + (1− α)s0s−1. It is obvious that if the authors
of [36] attempted to connect to these two different formulations the same part describing
the mean stress effect, the output cannot coincide. To obtain the correct output for the
KP criterion, the relevant material parameters in the mean stress part b·σm,B + c·σm,C
would have to be derived accordingly to the amplitude part definition, which is not
the case.

The insufficient response to load cases including mean stresses also projects into
the calculation response to the multiaxial load cases. If the load cases without any mean
stress are evaluated (which because of the possibilities to mechanically exert loading
corresponds only to axial–torsion combination), the quality of results gets closer to
other criteria. There are still some cases that cause a worsening of the statistical output.
The analysis of the full FatLim table shows that this worsened output concerns cases
where the stress on any channel exceeds approximately 85% of the relevant fatigue
strength (e.g., the shear stress amplitude compared to the shear fatigue strength)—in
such cases the criterion tends to be too conservative (irrespective of the variant of a
parameter definition). The worst two {nMS} cases (the response to load cases AR1004
and KLU001) as regards the prediction quality of the KP criterion are contained within
the AMSD25 data set. Many others with ∆FI by only 5–10% lower are not in AMSD25,
however, which means that the worse response to such load cases is specific only to the
KP criterion.

It should be noted that for a representative comparison of the prediction quality of the
KP criterion with other new criteria if accepting its intrinsic limitation to plane stress cases,
the statistics relevant for the {KP} set should be used in Table 10.
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4.2. WS Criterion

It was already noted in Section 2.2.2 that one of the issues of this criterion is its limited
applicability to axial–torsion load cases only. If only this group of test cases is analyzed
(see the response to {WS} set in Table 10) the overall results are better than those of the KP
criterion, but they are obviously inferior to other methods that perform better. Analysis
of individual test groups shows that while the pure torsion cases are evaluated quite well,
the pure axial load cases tend to be extremely conservative for high load ratios. This
output is obtained despite the fact that the WS criterion is a four-parametric criterion. It
responds perfectly to repeated tension load case because it is used as one of the inputs
for defining the dW parameter. The simple weighted sum of normal stress terms in the
damage parameter Equation (10) is not capable of providing better results. This unpleas-
ant property also projects into multiaxial load cases, whenever the mean normal stress
is higher.

The analysis of the group of load cases without any mean stress uncovers another
interesting trend. The criterion tends to lead to over-conservative results for materials with
a fatigue strength ratio κ > 1.73, which are sometimes designated as extra-ductile [26,39]. On
the other hand, the trend for κ < 1.41 seems to be opposite, i.e., to tend to non-conservative
estimates. If there is no mean stress involved, the criterion reduces to:

σeq,WS =

√
(aWCa)

2 + (bW Na)
2, (40)

which is nearly identical to the formulation of the QCP criterion proposed by Papuga and
Halama [10]. These authors refer to the mathematical derivation used by Papuga and
Růžička in [24] to derive the material parameters of critical plane criteria, and they note
that his form of quadratic combination of shear and normal stress amplitudes results
in two different sets of material parameters for different values of the fatigue strength
ratio κ, where the border between both sets is at κ = 1.41. The way the critical plane
is derived in the WS criterion differs from the QCP solution (which uses the simple
maximization of the equivalent stress over all planes), but it seems that the solution
which uses parameters provided in Equation (11) need not be complete, because these
parameters could be valid only within the range of 1.41 < κ < 1.73. Such a split in
the validity of the material parameters for different domains would certainly affect
the quality of the fatigue prediction results. Whether or not this assumption is right,
the observed behavior dependent on the fatigue strength ratio value projects both
to the in-phase and out-of-phase groups, where thus the WS criterion rates not well
enough compared to other methods. This is striking if taking into account, e.g., the
simplicity of conditions of the {IP,nMS} group of load cases, for which the WS criterion
results in the higher standard deviation of ∆FI than any other criterion from more than
30 evaluated criteria.

The WS criterion is interesting by its specific solution for defining the critical plane.
This difference in comparison with other concepts of the critical plane definition should
become more obvious for out-of-phase cases above all. To analyze this possible effect but not
to get affected by the mentioned dependency of the criterion quality on the fatigue strength
ratio κ, the domains in which the criterion presents some issues had to be eliminated from
the set. The final set for the comparison {Ax + To, OOP, nMS, 1.41 < κ < 1.73} derived from
FatLim reaches 13 items only. Within them, the mean ∆FI of the WS criterion is −8.3%
and the standard deviation of ∆FI is 7.9%, which are values better than those obtained
by the Dang Van method or other new criteria except of Böhme (mean ∆FI = 5.4%, S.D.
(∆FI) = 6.7%), but worse than PCN, which does not present this significant shift from zero
∆FI (mean ∆FI = −0.8%, SD (∆FI) = 7.3%). It can be concluded that the modified definition
of the critical plane does not bring a substantial enough improvement.
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4.3. Böhme Criterion

This criterion is the best performing solution among the newly evaluated criteria
tested here. If a detailed analysis is performed, some issues can be discovered, however.
While the response to the mean torsion cases in {To} group is of a standard similar with
PIN or PCN, the scatter of the results is substantially increased in the domain of mean
normal stresses in {Ax} group. This worsening can be attributed to the response to the two
load cases with compressive mean stresses on the cast iron tested by Rausch [56], i.e., in
the domain, for which Böhme originally developed his model. The benchmarking done
in [46] did not detect this issue, because it focused solely on cases including the shear stress
amplitude, whereas the Rausch’s tests causing problems here are solely uniaxial. If these
two tests are removed, the ∆FI statistics of the {Ax} group improves to values achieved by
PIN or PCN.

The potential relationship between too non-conservative response of the criterion in
relation to the negative mean normal stress and to brittle materials is confirmed in the
observation of the {MS-} group, where a similar trend is found for data from Cengiz [57]
and Heidenreich et al. [58] on cast irons.

Because, among the criteria evaluated here, the Böhme criterion is comparable only
to the PIN or PCN methods and it surpasses the prediction quality of all newly assessed
criteria, these two methods were the main counterpart in the evaluation. In most cases, they
provide results of smaller scatter, which can be documented in the ∆FI statistics. This can
also be observed in the reduced {IP, nMS} and {OP, nMS} groups where only the equivalent
stress without any mean stress effect is compared. It is worth recalling that at that moment
the Böhme criterion reduces to the formula identical to the Liu-Zenner method [47].

4.4. MDC Criterion

The criterion is formulated as three-parametric, which is likely to affect its prediction
quality in comparison to other criteria, which utilize four parameters, two of which are
usually related to load states including the mean stress. MDC criterion has no such feature,
as the required parameters in addition to s−1 and t−1 describe again only the response of
material to fully reversed loading in the domain of limited lifetime. They reflect in no way
the mean stress response.

The mean stress response is thus based on maximum normal stress. Papuga has
already commented in [26] that the use of Nmax squared for the equivalent stress definition
within quadratic QCP or in the Spagnoli criterion [59] tends to provide too conservative
estimates for higher load ratios. In the MDC criterion, the response seems to be further
worsened by the dependency on material parameters of the Basquin curves in axial and
torsion loading. This makes the mean stress effect act oddly, if not even randomly. This
issue projects to the {MS} group, with an extreme impact on {Ax} group, which results in ∆FI
values between −100% and 381%. Over-conservative results are obtained for the data set
from Sauer (SaL, [60]) above all, but even if this data set had been removed, the mean stress
response would be too exaggerated. In comparison to this group, {To} test group results in
statistics closer to many other criteria, though it is far beyond well-ranking criteria.

The noted lower bound ∆FI = −100% concerns the FAD003 load case solely. It can
serve as a good illustration of the consequences caused by the selection of the terms in
the bracket close to Nmax term in Equation (17). The choice of the ratio of fatigue strength
coefficient is a first questionable step, because the term (2τ‘f/ σ‘fi)2 reaches values between
0.17 and 15.4 for different materials within the FatLim data set. If the whole bM parameter
is evaluated, it can be found that it spans between 0.0003 for the Sauer set ([60], present also
in AMSD25 as SaL) and the value of 2014 in the Sanetra–Esderts set ([61,62], not present
in AMSD25). This wide range of values that affect not only the effect of Nm but also of
Na could serve as a kind of warning. All parameters used to calculate bM are unaffected
by the response of the material to the mean stress effect. The key question then is: Is any
relation of the bM parameter to the potential influence of Nm on the equivalent stress likely
to be correct?
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The FAD003 case results in a moderate response in this case as its bM parameter reaches
68.7. The reason why the FAD003 evaluation is going wrong way (up to the negative term
below the square root of Equation (18)), is surprisingly linked to the exponent g (Equation
(18)), which changes wildly within FatLim set of materials from −1.38 to 1.75. In the case
of FAD003, this value is −0.81, which means that the higher mean stress in the FAD003
load case causes the complete bracket multiplying the Nmax term to fall below zero. In
connection with the low shear stress amplitude in this load case, it leads to a negative
output below the square root. The criterion cannot provide a real output to calculate the
equivalent stress. It is important to note that this does not happen for a case with high
compressive mean stresses, but vice versa for a case of high tensile mean stress, which goes
in a false direction due to factors unrelated to the mean stress effect.

If the {nMS} group is assessed to study the general behavior of the criterion without
the problematic mean stress effect, a single non-conservative outlier can be found for a test
case from Simbürger’s data [63], which is well mastered by most other criteria (and thus
it did not project into AMSD25). No other explanation for this output can be found than
that it is again caused by the erratic behavior of the MDC criterion caused by the selection
of bM and g parameters, as commented in the previous paragraph. Even in this {nMS}
case, though there is no mean stress, this effect remains active because Nmax reduces to Na.
Another outlier, this time on the conservative side up to ∆FI = 70.9% can be found for the
PSSB003 case, which is also in AMSD25. If these two outliers were removed, the range of
∆FI values would reduce to 36.3%, which would be a nice value that many other criteria
are not able to reach. However, the QCP criterion [10], which is also built as a combination
of quadratic terms of shear and normal stress amplitudes, is for this {nMS} case reaching
results which are less scattered. In this way it can be stated that the bracket with Basquin
curve terms, which harmed the implementation of the mean stress effect, also negatively
affects the {nMS} group of tests.

The reasonable well-substantiated comparison of the MDC criterion with other newer
methods in Table 10 can be found in the statistics for the {MDC} set. This test set is already
much smaller in its scope than the original FatLim data set, which limits the universality of
the evaluation in a certain way.

4.5. Mertens Criterion MMMH and the Derived M3HW Formulation

It was previously commented in this paper that the original formulation of the MMMH
criterion (Equation (25)) from Mertens et al. [51] does not provide acceptable results due
to inappropriately mastered mean stress effect. Its reformulated version M3HW from
Equation (26) will be documented here. It could be commented that this is unfair, e.g., to
the MDC criterion, which also suffers from the inaccurate implementation of the mean
stress effect. However, the concept of the MMMH criterion based on the calculation of
two scalar stress parameters σeq,a,MMMH and σeq,m,MMMH provides input to the commonly
solved question of the mean stress effect. The multitude of approaches designed to deal
with it was commented, e.g., by [52,64], and the Walker formula is well documented to
provide reasonably good solution, while also taking into account that the fatigue strength
in repeated axial loading s0, necessary for its computation via Equation (27), is available for
all affected load cases within FatLim. The implementation of the mean stress effect in the
MDC or KP criteria is much more complicated, and many ways to deal with it could be
designed. Because of this, the authors of this paper did not dare to intervene in those cases.

It is reasonable to demonstrate the comparison of prediction quality of the MMMH
and M3HW versions adequately. Some details on it can be found in Table 13, where the
prediction results were analyzed on the {Ax} group derived from the entire FatLim data
set. Both the most extreme points referred in Max. and Min. parameters for the MMMH
criterion are contained within the AMSD25 data set. These are FAD003 (the minimum value
in MMMH evaluation, R = 0.7) and Ra1002 (the maximum, R = 0.5), while these load cases
do not produce the extreme results anymore in the M3HW variant. The mean stress effect
incorporated in Equation (25) is based on the fatigue strength in repeated axial loading
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similarly to the Walker formula in Equation (27). Thanks to that both solutions achieve
∆FI = 0% for this load case, but the response to the load cases with high mean stress is
inappropriate in the original MMMH configuration. It is logical that this lack of precision
to deal with the mean stress effect projects to other load cases, including multiaxial ones.
This is the reason why Section 3 refers to results solely of the M3HW version, and not to
the original MMMH criterion.

Table 13. Comparison of the MMMH and M3HW versions of the MMMH criterion on the {Ax} group
from the FatLim data set.

∆FI (%) in {Ax} Max. Min. Aver. SD

MMMH 245.3 −990.5 −27.8 200.7
M3HW 51.8 −16.3 3.8 13.1

The involvement of the Walker formula in the equivalent stress amplitude compu-
tation in the M3HW criterion makes its result in the {Ax} group better than most of the
newly compared criteria here, and even of many other older criteria of the two-parametric
nature not calibrated to the material response to the s0 case. Among the new methods,
only the Böhme criterion shows a better performance, which coincides with the note by
Papuga et al. [10], that the inclusion of the mean shear stress effect positively affects the
predictive quality also within the {Ax} group. In the case of {To} group concerning the pure
torsion cases, the M3HW criterion ranks behind the Böhme and WS criteria, which are
both perfect for the t0 case, and their general behavior within this group is closer to the
experimental response.

It is interesting to note that M3HW (or MMMH) criterion reaches identical output as
the Böhme criterion for the {IP} group of in-phase load cases. A very similar output to the
Böhme criterion is delivered by M3HW (and MMMH) in the value of the standard deviation
of ∆FI also for the {OOP, nMS} data set group, but criteria based on MMMH have the mean
fatigue index substantially shifted to the non-conservative prediction (−17.8%). If the
criterion were to provide better prediction quality comparable with other better performing
criteria presented here, improving the response to the {OOP, nMS} configuration should be
focused on.

4.6. Yankin Criterion

The criterion is evaluated in two versions depending on the formula used for calculat-
ing the shear strength in the cases where it is missing. The output in Tables 5, 7, 9 and 10
shows that the use of the factors proposed in [54] and here provided in Equation (33) gener-
ates better results in most cases than the use of simple application of the von Mises formula.
Within the {Ax} group, the mean ∆FI value is closer to zero and the standard deviation of
the DMW version is also slightly better than that of the VM variant. Therefore, the DMW
variant will be commented on in the next description of the prediction accuracy trends.

Despite the fact that this is a four-parametric criterion, the mean stress effect is not
derived from repeated loading cases, which projects into non-zero ∆FI values obtained for
s0 and t0 cases, in some cases even quite close to the extreme value found for this criterion
within the subset (Ra1033 load case available also in AMSD25, when evaluated within
{To} group).

The performance of the Yankin criterion within the {nMS} group is moderate compared
to other newly analyzed methods. It could be rated as similar to the Dang Van criterion
as regards the reached statistical parameters. If the subgroup {IP, nMS} is assessed, this
method is even the best one among all the criteria evaluated, with the sole exception of the
PCN criterion. The criterion, however, suffers when evaluated on the {OOP, nMS} subgroup
from extremely non-conservative mean ∆FI value of −14.3%, close to the value obtained
by the Dang Van criterion or the M3HW criterion treated above.
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This value is obtained when analyzing the second invariant of the stress tensor de-
viator by the method of the minimum circumscribed hyperball, which is commonly used
in other analyses (see e.g., [39]). Papuga et al. recently showed in [42] that this family of
criteria can benefit from using the scheme of the minimum circumscribed hyperellipsoid
instead, which could move these unsafe prediction outputs typical in the {OOP} group
closer to zero ∆FI if applied here. This option was checked together with the DMW
setup, and it improved the prediction results to some extent. This improvement concerns,
however, only the group {OOP} and the subgroups derived from it, so its overall effect
on the entire data set is limited. Within the {OOP, nMS} group, its application leads to
the improvement of the mean ∆FI = −14.3% (minimum circumscribed hyperball) to the
mean ∆FI = 5.4%. Although this value is at least conservative, the move so far away
from zero can be found excessive. This option of the computation setup was not thus
further analyzed.

If the {Y} subgroup is evaluated in Table 10, the results of the Yankin criterion are sec-
ond best among the newly assessed criteria after the Böhme criterion. The most important
outliers and a space for improvement are not in the domain of out-of-phase tests, where
the option mentioned above is open for discussion, but in the implementation of the mean
stress effect. The chosen dependency on static strength parameters does not seem to bring
its fruit as it was expected by the authors.

4.7. Comparison of the Responses to FatLim and AMSD25 Data Sets

One of the questions this paper should answer is whether the shortened AMSD25
data set is usable for a quick evaluation of new criteria, so that researchers could easily
check if their new proposals are promising for further elaboration. To find out, several
new quantities were computed from Table 10, and they are provided in Table 14. These
are the reduction factors RFmax and RFmin to evaluate if some particular outliers of the ∆FI
maximums or minimums were filtered out during the reduction of FatLim to AMSD25,
and to what extent it affected the maximum and minimum ∆FI values. These are relative
parameters computed in this way:

RFmax =
max

FatLim
∆FI− max

AMSD25
∆FI

max
FatLim

∆FI

RFmin =
min

FatLim
∆FI− min

AMSD25
∆FI

min
FatLim

∆FI

(41)

The third parameter xSD describes the increase in the ∆FI standard deviation related
to reducing FatLim to AMSD25. The increase is inevitable as the AMSD25 data set contains
the data, which present the hardest nuts to crack for most criteria:

xSD =
st.dev.
AMSD25

∆FI

st.dev.
FatLim

∆FI
(42)

Table 14 shows that the reduction of the FatLim data set of 284 items to the smaller
and more easily documented AMSD25 data set comprising 57 items is possible. It is true
that some of the outliers for some of the criteria were lost in the reduction process, as can
be seen by the RF factors, but the value of the standard deviation is the more descriptive
and the more important parameter of the overall scatter, according to the authors. It can be
observed that it worsened in this process by relatively narrow range of xSD factor between
1.41 and 1.95. It could be thus expected that the standard deviation of ∆FI of some new
criterion on AMSD25 could be projected to the estimated standard deviation of the entire
FatLim data set if divided by a factor of 1.4.
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Table 14. Evaluation of the impact of the reduction in data set content from the FatLim set to the
AMSD25 data set.

Param PCN PIN MMP DV
Khalij-Pagnacco

WS Böhme MDC M3HW
Yankin

NK OP GOU VM DMW

RFmax 7.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 8.0% 0.0% 0.0% 0.0% 0.0%
RFmin 0.0% 0.0% 11.1% 0.2% 9.0% 0.0% 38.5% 0.0% 0.0% 0.0% 4.1% 0.0% 0.0%
xSD 1.50 1.95 1.41 1.67 1.77 1.77 1.77 1.58 1.71 1.76 1.43 1.53 1.56

This analysis can be completed by the check of the shift of the average ∆FI value due
to the reduction. This value can change relatively wildly for the worst criteria, but their
performance in other statistical parameters in Table 10 or Table 14 shows that something
such as this can be expected. If the better performing criteria are assessed, this is within 5%
in the absolute value. Even here, AMSD25 seems to promise quick and relatively precise
estimates of the general properties of the new criteria. This value becomes much bigger in
the case of KP and MDC criteria (and to some extent also in the case of the WS criterion),
but these deviations are quite logical outcomes when the mean stress effect is not properly
mastered, thus causing extreme dispersion of the fatigue index errors.

5. Conclusions

The paper reports on a comparison of six recently introduced multiaxial fatigue
strength estimation criteria—the KP criterion by Khalij et al. [36], the WS criterion by Wang
et al. [43], the Böhme criterion [46], the MDC criterion by Margetin et al. [48], the MMMH
criterion by Mertens et al. [51], and the Yankin criterion [53]. To refer to their quality, the
complete FatLim data set [32] and the abbreviated AMSD25 data set [31] were used for
validation. To get some reference to previous attempts at such large-scale validation [26],
four reference criteria were chosen—the PCN criterion [10], the PIN criterion [17], the MMP
criterion [30], and the Dang Van criterion [33]. The following conclusions can be drawn:

1. Although none of the newly validated criteria delivered better prediction quality than
the PCN (or PIN) criterion, the Böhme criterion is quite close to it. No other criterion
provides a similarly precise output, mostly due to the implementation of the mean
stress effect that fails.

2. The WS criterion based on a specific solution for critical plane determination does not
provide any proof that its use in out-of-phase load cases brings any improvement in
comparison to the maximum damage concept.

3. The MDC criterion establishes its mean stress effect based on the parameters of the
Basquin curves in fully reversed axial loading and in fully reversed torsion. The
results clearly manifest that this decision brings about an unreasonable scatter in
prediction quality for cases including mean stresses.

4. The original MMMH criterion introduced by Mertens et al. [51] was modified to a
new formulation M3HW, which binds the amplitude and mean stress components
through the Walker formula. The original MMMH formula led to high aberrations
when mastering the load cases with high mean stresses.

5. The application of the shorter AMSD25 data set for validation practice is promising,
because the set allows to limit the scope of necessary calculations while preserving
the most demanding load cases.
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Abbreviations

The following abbreviations are used in this manuscript:
AMSD25 dataset defined in [31]
DV Dang Van criterion [33]
DMW version of the shear strength estimation related to [54]
IP in-phase loading
KP Khalij–Pagnacco criterion [36]
LHS left-hand side of a formula
MDC Margetin–Ďurka–Chmelko criterion [48]
MMP Manson–McKnight–Papuga criterion [30]
MS load case including mean stress
MS- load case including negative mean stress
nMS load case without any mean stress involved
NP non-proportional loading
OOP out-of-phase loading
PCN Papuga PCN critical plane criterion [10]
PIN Papuga PIN integral criterion [17]
SD standard deviation
VM version of the shear strength estimation from von Mises formula
WS Wang–Shang criterion [43]
Nomenclature
a,b,c,d,g (-) material parameters of various multiaxial fatigue strength estimation methods
b (-) fatigue strength exponent in axial loading
bt (-) fatigue strength exponent in torsion
C (MPa) shear stress on an examined plane
δ (◦) phase shift of the given stress signal
∆FI (%) fatigue index error
FI (-) fatigue index√

J2 (-) second invariant of the stress tensor deviator
κ (-) ratio of fatigue strengths in fully reversed loadings (s−1/t−1)
N (MPa) normal stress on an examined plane
Re (MPa) yield stress
Rm (MPa) tensile strength
Rmt (MPa) shear strength
s (MPa) fatigue strength in axial loading
σ (MPa) nominal axial stress induced by axial loading
s’f (MPa) fatigue strength coefficient in axial loading
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sH (MPa) hydrostatic stress
t (MPa) fatigue strength in torsion
τ (MPa) nominal shear stress induced by torsion
τ’f (MPa) fatigue strength coefficient in torsion
θ, ϕ (◦) Euler angles defining the orientation of the examined plane
Indexes
0 related to repeated loading (from 0 to val, where val is the stress value)
−1 related to fully reversed loading (from -val to val, where val is the stress value)
a amplitude
Eq equivalent
m mean value
max maximum value

x,y,z
cylindrical coordinate system, where x coincides with the sample axis, y is
tangential and z radial

References
1. Gough, H.J.; Pollard, H.V. The Strength of Metals under Combined Alternating Stresses. Proc. Inst. Mech. Eng. 1935, 131, 3–103.

[CrossRef]
2. Gough, H.J.; Pollard, H.V. Properties of Some Materials for Cast Crankshafts, with Special Reference to Combined Stresses. Proc.

Inst. Automob. Eng. 1936, 31, 821–893. [CrossRef]
3. Gough, H.J. Engineering Steels under Combined Cyclic and Static Stresses. Proc. Inst. Mech. Eng. 1949, 160, 417–440. [CrossRef]
4. Findley, W.N.; Coleman, J.J.; Hanley, B.C. Theory for Combined Bending and Torsion Fatigue Data for SAE 4340 Steel. In Technical

Report No. 1 on Basic Research on Fatigue Failures under Combined Stress; Brown University: Providence, RI, USA, 1956.
5. Findley, W.N. Combined-Stress Fatigue Strength of 76S-T61 Aluminum Alloy with Superimposed Mean Stresses and Corrections for

Yielding; National Advisory Committee for Aeronautics: Washington, DC, USA, 1953.
6. Rotvel, F. Biaxial Fatigue Tests with Zero Mean Stresses Using Tubular Specimens. Int. J. Mech. Sci. 1970, 12, 597–613. [CrossRef]
7. Mielke, S. Festigkeitsverhalten Metallischer Werkstoffe unter Zweiachsiger Schwingender Beanspruchung mit Verschiedenen

Spannungszeitverläufen. Ph.D. Thesis, RWTH Aachen, Aachen, Germany, 1980.
8. Fatemi, A.; Socie, D.F. A Critical Plane Approach to Multiaxial Fatigue Damage Including Out-of-Phase Loading. Fatigue Fract.

Eng. Mater. Struct. 1988, 11, 149–165. [CrossRef]
9. Ninic, D.; Stark, H.L. A Multiaxial Fatigue Damage Function. Int. J. Fatigue 2007, 29, 533–548. [CrossRef]
10. Papuga, J.; Halama, R. Mean Stress Effect in Multiaxial Fatigue Limit Criteria. Arch. Appl. Mech. 2019, 89, 823–834. [CrossRef]
11. Matake, T. An Explanation on Fatigue Limit under Combined Stress. Bull. JSME 1977, 20, 257–263. [CrossRef]
12. McDiarmid, D. Mean Stress Effects in Biaxial Fatigue Where the Stresses Are Out-of-Phase and Different Frequencies. In Fatigue

under Biaxial/Multiaxial Loading; ESIS: Rome, Italy, 1991; pp. 321–335.
13. Susmel, L.; Tovo, R.; Lazzarin, P. The Mean Stress Effect on the High-Cycle Fatigue Strength from a Multiaxial Fatigue Point of

View. Int. J. Fatigue 2005, 27, 928–943. [CrossRef]
14. Liu, J.; Zenner, H. Berechnung Der Dauerschwingfestigkeit Bei Mehrachsiger Beanspruchung-Teil 1. Mater. Und Werkst. 1993, 24,

240–249. [CrossRef]
15. Papadopoulos, I.V. A New Criterion of Fatigue Strength for Out-of-Phase Bending and Torsion of Hard Metals. Int. J. Fatigue

1994, 16, 377–384. [CrossRef]
16. Kenmeugne, J.L.; Vidal-Salle, E.; Robert, J.L.; Bahuaud, R.J. On a New Multiaxial Fatigue Criterion Based on a Selective Integration

Approach. In Fatigue '96: Proceedings of the 6th International Fatigue Congress; Elsevier: Amsterdam, The Netherlands, 1996; pp.
1013–1018.
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