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Abstract: Mg–Ceramic–Ni hybrid foams were fabricated via continuousdepositing micro-arc oxi-
dation (MAO) ceramic coating and electroless Ni coating on the surface of the AZ91D foam struts.
Mechanical tests from room temperature (RT) to 300 ◦C were carried out to evaluate the compressive
properties and energy absorption capacities of two types of foams, i.e., AZ91D alloy foams and corre-
sponding hybrid foams. The effect of composite coatings and test temperature on the compressive
property of the foams was studied. The experimental results show that the MAOand Ni coatings
enhance the Mg foam struts, resulting in high compressive strength and energy absorption capacity
at each testing temperature. In addition, the compressive properties are also depending on testing
temperature. The different mechanical responses of the composite foams under various temperature
conditions are mainly attributed to the different deformation behaviors and failure modes of the
foam struts, which are confirmed by scanning electron microscopy (SEM) observation.

Keywords: Mg alloy; hybrid foams; coatings; deformation; compressive properties; energy
absorption capacity

1. Introduction

Mg foams have attracted wide attention overrecentyears due to their desirable proper-
ties, such as low density, high damping, good energy absorption capacity, electromagnetic
shielding, and biocompatible property [1,2]. In the automobile field, a high-performance
Mg foam is required as energy absorbing material for anti-collision components. However,
the low mechanical properties at room temperature (RT) and elevated temperatures of
the Mg have limited the industrial applications of the Mg foams [3–5]. Therefore, the
improvement in compressive properties, which is commonly adopted to assess the usability
of Mg foams [6], is an important issue.

Previous investigationshave revealed that the compressive properties of metallic foams
can be improved by several methods: particle reinforcement, the addition of alloy elements,
surface treatment, and so on [6–8]. Among these methods, surface treatment is effective
in improving the compressive properties of metallic foams. Some researchers have paid
attention to the depositing of a coating on the surface of the foam struts, such as electroless
deposition and micro-arc oxidation (MAO) [9–13]. T. Abdulla et al. [13] applied MAO
technology on the open-cell Al foams and found that the yield stress of Al foams can be
improved by a reasonable thickness. Silvio et al. [3] deposited an Ni coating on Al foams
and found that Ni coating enhances the yield strength at RT and elevated temperatures.
For Mg foams, Wang et al. [14] have successfully fabricated a Zn coating on Mg foams
and reported that this brought high compressive strength and corrosion resistance. Rua
et al. [11] applied the MAO coating on AZ31 foams, and the results showed that coated
and uncoated foams exhibited similar compressive strengths. Our recent investigation also
suggested that Ni–P coating could increase the compressive strength of Mg foams at RT [9].
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As mentioned above, these studies mostly deal with the effect of a single layer of
coating on the metallic foams. Currently, several studies of the composite coatings covering
the bulk Mg alloy show that a double layer of coating has superior corrosion properties
compared with a single layer. Song et al. [15] prepared high-quality composite coatings
by employing Ni-P coating and MAO coating on AZ91D alloy. It has been suggested that
composite coatings are beneficial to improve the corrosion resistance of the AZ91D metallic
alloy. Zhang et al. [16] found that the electroless Ni-P/Ni-B composite coatings deposited
on the surface of AZ91D alloy have a high degree of hardness and corrosion resistance.
Ezhilselvi et al. [17] have confirmed that the MAO/Ni-P composite coatings on the AZ31
alloy heighten corrosion resistance effectively. Considering the engineering application
of porous materials, the compressive properties of the Mg alloy foams should also be
improved along with the enhancement of corrosion resistance. Though some investigations
have applied single coating to Mg alloy foams, studies on composite coatings on reinforced
Mg foams are rarely reported.

In the present work, a type of composite coatings composed of a Ni electroless layer
and a MAO ceramic layer, was deposited on the surface of AZ91D alloy foams to fabricate
Mg–Ceramic–Ni hybrid foams. The effects of composite coatings on the compressive
properties and energy absorption capacities of the foams were studied. The effect of tem-
perature on the mechanical properties was also analyzed. The deformation behavior and
failure mechanisms of the AZ91D hybrid foams at different temperatures were discussed
by observing fracture morphologies of the foam struts.

2. Materials and Methods
2.1. Specimen Fabrication

In this study, the commercial AZ91D alloy was used as the basal material, and indus-
trial spheroidal CaCl2 particles are adopted to prepare a porous AZ91D alloy. AZ91D is
one of the most commonly applied and cost-effective Mg alloy [18,19]. The details of the
preparation process of the open-cell AZ91D alloy foams, similar to that of pure Mg foams,
are given in our previous work [9].

The surface treatment on the AZ91D alloy foams includes the MAO process and the
electroless plating process. Before the surface treatment, the AZ91D alloy foams were
washed in an ultrasonic bath to remove the dirt and residue on the surfaces; they were
thenrinsed with deionized water and dried in the air. The MAO process on the AZ91D alloy
foams was conducted by MAO-50 equipment (Qiangshen Inc., Xi’an, China). The bath
compositions and process parameters of the MAO process are presented in Table 1. After
the MAO process, the electroless plating process that deposits the Ni–P layer on the MAO
layer includes the following processes: alkaline cleaning, acid pickling, fluoride activation,
and then electroless plating. The bath compositions and process parameters used in the
electroless plating process are presented in Table 2.

Table 1. Compositions and process parameters of the MAO process.

Composition Concentration (g/L) Process Conditions

NaAlO2 10 g/L

StirringKF 4 g/L
Na3C6H5O7·2H2O 3 g/L

NaOH 1 g/L
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Table 2. Bath compositions and process parameters in the electroless plating process.

Composition Concentration (g/L) Process Conditions

NiSO4·6H2O 20 g/L

2–3 h

NaH2PO2·H2O 18 g/L
CH3COONa 17 g/L

NH4HF2 10 g/L
Stabilizer Appropriate content
NH3·H2O Appropriate content

2.2. Compressive Test

The compressive tests of the AZ91D alloy foams and the AZ91D hybrid foams were
conducted using a universal mechanical machine (Instron 5869, Instron Inc. in Shanghai,
Shanghai, China) equipped with a high-temperature furnace. A sample with a size of
~12 mm × 12 mm × 28 mm was used for the compressive test. The testing strain rate was
1 × 10−3 s−1 and the testing temperatures were room temperature (RT), 100 ◦C, 200 ◦C
and 300 ◦C. Each specimen before the high-temperature tests was preheated to the testing
temperature and then held for 10 min in the furnace to achieve a stable temperature
environment. Each compressive condition was carried out on more than three specimens
to ascertain data reproducibility.

The parameters of the compressive strength and the energy absorption capacity were
measured to assess the mechanical properties of the AZ91D alloy foams and the AZ91D
hybrid foams. The compressive strength of the metallic foams is defined as the first peak
stress when the specimen is yielding beyond the linear-elastic region, or the stress at a
strain of 0.05 where the compressive curve is smooth without stress yield [9,20]. The energy
absorption capacity of the metallic foams can be calculated by the following formula [21]:

W =
∫ ε

0
σdε (1)

where σ and ε are the compressive stress and the compressive strain, respectively, and W is
the energy absorption capacity.

2.3. Characterizations

Microstructures on the surface and the cross-section of the AZ91D hybrid foamsand
the morphologies of the fracture surfaces after compressive tests were characterized by scan-
ning electron microscopy (SEM, VEGA3, TESCAN Corp., Brno, Czech Republic). Chemical
compositions and phases of the AZ91D hybrid foams were analyzed and determined
by energy-dispersive X-ray spectroscopy (EDS, Link-ISIS, British Oxford, UK) and X-ray
diffraction (XRD, D/Max2500, RIGAKU Corp., Yamanashi, Japan).

3. Results
3.1. Macroscopic Morphologiesand Microstructure

Figure 1 presents the macroscopic morphologies of the AZ91D alloy foams and the
AZ91D hybrid foams. Both kinds of the foams show typical open-cell structures. In addition,
different metallic lusters of the two contrast foams indicate that the duplex coating has
been well deposited on the surface of the foam struts.

Figure 2 displays the microstructure of the AZ91D hybrid foams. It is clear in Figure 2a
that the hybrid foams are completely covered by the composite coatings. High magnifica-
tions as shown in Figure 2b,c exhibitthat those composite coatings are continuous, without
obvious defects, and their surface exhibits typical nodular morphology. The nodular diam-
eter measured from Figure 2d is in the range of 15–45 µm. Such high-quality composite
coatings mainly arise from the MAO layer that provides more depositing sites for nickel.
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Figure 2. Microstructure of AZ91D hybrid foams: (a) single strut. (b) enlarged image in the box
marked in (a) that showing uniform distribution of coating. (c) enlarged image in the box marked in
(b) that displaying nodular morphology of EN layer. (d) enlarged image in the box marked in (c) that
showing the detail of nodular morphology.

Figure 3 shows the EDS analysis of the surface for the AZ91D hybrid foams. The EDS
results demonstrate that the chemical compositions of the surface mainly include Ni and P
elements. The content of the P elements is in the range of 6–10 wt.%, indicating that such
a coating is a medium phosphorus coating [22]. The element distribution indicates that
the Ni and P elements are dispersed without segregation in the coating, while the Mg and
Al elements existed in the AZ91D substrate. In addition, the element of the MAO layer is
not detected, which confirms that the Ni–P layer is densely deposited on the MAO layer.
Owing to the high density of Ni, the density of the foams was increased by about 46%.

Figure 4 shows the microstructure of the cross-section for the AZ91D hybrid foams.
The composite coatings on the cross-section display a double-layer structure, which includes
an intermediate layer and a top layer from the substrate to the surface. The intermediate
MAO layer is generated from the AZ91D substrate, while the top Ni-P layer grows from the
MAO layer. The average thickness of the MAO layer and Ni–P layer is around 25 and 32 µm,
respectively. Some micro-pores are also observed in the MAO layer. These micro-pores
are mainly ascribed to the micro-arc discharges. During the MAO process, the micro-arc
discharges can produce an instantaneous high temperature and then melt the substrate,
resulting in the generation of the molten oxide ceramics [23]. Consequently, the MAO layer
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shows good adhesion with the substrate because it is metallurgically deposited on the metal
substrate [24]. It is noted that parts of the Ni–P layer are embedded in the micro-pores of
the MAO layer, as displayed in Figure 4d, indicating that the Ni–P layer and MAO layer
bond together by mechanical interlocking.
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Figure 5 displays the EDS analysis of the cross-section for AZ91D hybrid foams.
The EDS results illustrate that the composite coatings on the cross-section are mainly
composed of P, Ni, Al, O, and Mg elements. The Mg and Al elements mainly come from
the AZ91D substrate and the MAO layer, while the O elements are mostly from the MAO
layer. Meanwhile, it is observed that some Ni elements are also observed in the MAO layer,
confirming the mechanical interlocking between the Ni–P layer and the MAO layer. In
addition, the EDS results show the presence of C, F, and Na elements. The C elements
mainly come from the conductive adhesives, while the F and Na elements may derive from
the MAO electrolyte.
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Figure 5. EDS analysis of the cross-section of the AZ91D hybrid foams: SEM image and composition
distribution of Ni, P, Al, O, Mg, C, F and Na element.

Figure 6 presents the XRD patterns of the AZ91D alloy foams and the AZ91D hybrid
foams. From Figure 6a, it can be identified that the AZ91D alloy foams mainly consist
of the α-Mg matrix and the β-Mg17Al12 eutectic phase, while the XRD pattern for the
AZ91D hybrid foams in Figure 6b illustrates a sharp diffraction peak at around 45◦, which
corresponds to the diffraction peak of (111) planes of Ni. The peak intensity with a wide
region indicates that the Ni–P layer is mainly a mixture of nanocrystalline plus amorphous
elements. The absence of other diffraction peaks also confirms strongly that a thick and
dense Ni–P top layer of high-quality is deposited on the MAO intermediate layer.
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3.2. Compressive Properties

Figure 7 displays the compressive stress–strain curves of the AZ91D alloy foams and
the AZ91D hybrid foams from RT to 300 ◦C. Generally, the compressive stress–strain curves
of metallic foams show three typical stages, i.e., a linear-elastic stage, a plateau stage, and a
densification stage [9,25]. In this study, Figure 6a shows that the stress–strain curves of the
experimental foams gained from compression tests at RT are fluctuating, and the expected
plateau is almost missing. The study performed by Florek shows that the structural
deformation mechanism in foams affects the mechanical response. The sudden stress drop
in the stress–strain curve is attributed to brittle cell walls cracking, while increasing stress
before final densification is caused by the ductile cell walls bending [26]. The hybrid foams
exhibit more significant stress fluctuations at the plateau stage as compared with the alloy
foams, indicating more cracking of the foam strut. In addition, with increasing temperature,
the stress fluctuations for the two types of foams gradually become weak, which indicates
compressive deformation behavior, which changes at different temperatures.
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The compressive strengths of the AZ91D alloy foams and the AZ91D hybrid foams
from RT to 300 ◦C can be compared in Figure 8. The compressive strengths of the hybrid
foams are much higher than those of the alloy foams at all of the testing temperatures.
This reveals that the composite coatings can effectively enhance the compressive strength
of the alloy foams at each testing temperature. Zhang et al. [16] have suggested that the
Ni–P coating significantly increases the Vickers Hardness (HV) of AZ91D alloy from 100
HV to 587 HV, which is attributed to the high strength of Ni–P coating. Meanwhile, our
previous study [27] has reported that the Ni–P coating provides the open-cell Al foams with
a good strengthening effect on heat resistance, suggesting that the Ni–P coating possesses
high thermal stability. Besides the high strength and thermal stability of the Ni–P coating,
the MAO ceramic coating also plays the same role in the compressive strength of the Al
foams at RT and elevated temperatures [28]. Owing to the high performance of Ni–P
and MAO layers at RT and elevated temperatures, the mechanical properties of the foam
struts are accordingly enhanced by the composite coatings, resulting in higher compressive
strength of the hybrid foams than that of the alloy foams. Moreover, with the increase in
the temperature from RT to 100 ◦C, 200 ◦C, and 300 ◦C, the compressive strength of the
alloy foams is gradually decreased by 11.44%, 56.48%, and 70.51%, while that of the hybrid
foams is decreased by 10.61%, 26.68%, and 48.81%, respectively. The smaller reduction ratio
of the compressive strength for the hybrid foams at elevated temperatures also confirms
the high strength and thermal stability of the composite coatings.
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Figure 9 presents the energy absorption capacity–compressive strain curves of the
alloy foams and the hybrid foams from RT to 300 ◦C. The energy absorption capacity of the
hybrid foams is much higher than that of the alloy foams at RT and elevated temperatures.
The energy absorption capacities of both alloy foams and hybrid foams are also gradually
reduced with the increase in temperature. When the temperature increases from RT to
100 ◦C, 200 ◦C, and 300 ◦C, the decrease ratio of the energy absorption capacity for the alloy
foams is 51.87%, 61.87%, and 73.38%, while that for the hybrid foams is 26.17%, 48.23%, and
67.43%, respectively. The higher energy absorption capacity and the smaller decrease ratio
of the hybrid foams indicate that the composite coatings can raise the energy absorption
capacity of the alloy foams at each testing temperature.
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3.3. Deformation Behavior and Failure Modeof the Foam Struts

Figure 10 shows the fracture morphologies and the EDS analysis of the hybrid foams
at RT. It is observed that the fracture mainly occurs at the foam struts, and the failure
of the foam struts can be divided into three typical types. For one type, the fracture
morphology is a flat plane on the substrate, and Figure 10b indicates that the substrate
exhibits a typical brittle fracture mode. For the other type, the straight and large cracks,
asshown in Figure 10c,d, also demonstrate the brittle rupture characteristics of the MAO
layer and Ni-P layer, as confirmed by the EDS-1 and EDS-2 analyses, respectively. For the
final type, the Ni–P layer was peeled off from the MAO layer, as shown in Figure 10a, and
this indicates that the mechanical interlocking between the MAO layer and the Ni–P layer
is weaker than the metallurgical bonding between the MAO layer and the substrate.

Figure 11 shows the fracture morphologies of the hybrid foams at elevated tempera-
tures (100 ◦C, 200 ◦C, and 300 ◦C). At 100 ◦C, as shown in Figure 11a,b, the brittle fracture
occurs at the Ni–P layer and the substrate, as indicated by the straight crack boundaries.
At 200 ◦C, as displayed in Figure 11c,d, the crack boundaries of the substrate transform
into bent or not straight forms, which indicates the softening effect of the temperature
on the AZ91D substrate. At 300 ◦C, in Figure 11e,f, the straight crack boundary on the
composite coatings confirms the brittle fracture for the composite coatings even at 300 ◦C.
However, AZ91D substrate shows a softening behavior, which indicates that the bending
or/and buckling deformation mode would increase at elevated temperature, an observation
agreeing with the previous investigations [29,30].

Based on the SEM observations of the fracture morphologies, it can be concluded that
the failure of the hybrid foams is mostly attributed to the failure of the foam struts, including
the fracture modes of the substrate and the composite coatings. The different failure
characteristics of the foam struts at all of the testing temperatures can be clearly illustrated
by the schematic diagrams of the crack features of the substrate and the composite coatings,
as shown in Figure 12. Figure 12a presents the undeformed foam struts which include three
components: the AZ91D substrate, the MAO layer, and the Ni–P layer. When the foam
struts suffer from the compressive stress at RT and 100 ◦C (Figure 12b), all of the components
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show brittle rupture features. At 200 ◦C (Figure 12c), the failure of the substrate transforms
into ductile features such as the action of more slip systems of the AZ91D substrate at
elevated temperature, while the Ni–P and MAO layers still present a brittle fracture. At
300 ◦C (Figure 12d), the ductile fracture of the AZ91D substrate changes into bending,
while the composite coatings still display a brittle fracture.
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Figure 12. Schematic diagrams of (a) the hybrid foam struts:, (b) crack features at 100 ◦C. (c) crack
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The above deformation behaviors and failure modes of foam struts can be well indi-
cated by the stress fluctuation at the plateau region in the compressive stress–strain curves.
It has been suggested that the stress fluctuation at the plateau stage during compression
should be attributed to the brittle fracture of coating for the open-cell Mg foams or Al
foams [9,13]. In the present work, since the brittle characteristics of the composite coat-
ings are displayed at all of the given temperatures, the different stress fluctuations in the
compressive stress–strain curves are considered to arise from the different deformation
behaviors of the AZ91D substrate. It is well known that the increase of temperature pro-
motes the activity of non-basal slips, dislocation creeps, and/or grain boundary sliding,
which enhances the well plastic accommodation of Mg alloy [31–33]. Lu et al. recently
found that the increase of temperature from RT to 200 ◦C promotes the activation of more
dislocation slip systems during the deformation of Mg foams, resulting in the deformation
transforming from a conjugate-like shear behavior into a uniform deformation [30]. The
β-Mg17Al12 phase in the AZ91D substrate is also easy to deform and slide along the grain
boundaries at above 120 ◦C, which also accelerates the deformation of Mg substrate at ele-
vated temperatures [34]. The uniform plastic deformation of the present AZ91D substrate
is gradually enhanced with the increase of testing temperature, which can be confirmed by
the change of fracture features, i.e., brittle fracture changes into ductile fracture, followed by
bending for the substrate. Therefore, it is reasonable to deduce that the different mechanical
responses for the hybrid foams during compressive deformation are mainly attributed to
the different failure mechanisms of the foam struts at different testing temperatures.

4. Conclusions

Composite coatings, including a ceramic layer and a Nilayer, were successfully fabri-
cated on the surface of porous AZ91D magnesium alloy by MAO technology and electroless
plating process to form Mg–Ceramic–Ni hybrid foams. The compressive strengthsof the
alloy foams at various test temperatures are significantly improved by the composite coat-
ings, which is attributed to their high strength and thermal stability. With the increase of
temperature from RT to 300 ◦C, the fracture feature of the alloy strut gradually transforms
from brittle fracture to ductile fracture, while the failure mode of composite coatings present
a brittle fracture at all of the testing temperatures. As a consequence, the energy absorption
capacities of the foams are enhanced by the composite coatings.
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