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Abstract: 7N01-T4 aluminum alloy were welded into three layers by metal inert gas (MIG) welding,
with ER5087 welding wire containing Zr and ER5356 welding wire without Zr, respectively. The
microstructures and face bend properties of the ER5356 and ER5087 welded joints were investigated.
The weld zone (WZ) of the ER5087 welded joint had a smaller grain size than that of the ER5356
welded joint. Two kinds of welded joints were not broken via the face-bend test. However, there
were some small holes and microcracks on the surface of the ER5356 welded joint, and there were no
obvious defects on the surface of the ER5087 welded joint. The face bending specimen metallography
shows that the grains of the cover layer were elongated, and the grains of the bottom layer were
extruded. The ER5087 welded joint had a better bending performance than the ER5356 welded joint
due to the microstructure refinement of the WZ through adding Zr element in ER5087 welding wire.

Keywords: 7N01-T4 aluminum alloy; MIG; ER5356 welding wire; ER5087 welding wire; face bend

1. Introduction

Lightweight is the key technology to achieve high speed, energy saving, and emission
reduction, and promote high-quality economic development. The use of high-strength
aluminum alloy materials is an important and effective way to achieve lightweight. 7N01
aluminum alloy is an Al–Zn–Mg aluminum alloy with good extrusion performance, excel-
lent welding performance, and high weld quality [1–3]. It is an ideal light and high-strength
material mainly used for high-speed rail section beams, vehicle end buffers, bases, sills,
side member framework, frame sleepers, etc. [4,5].

Welding wire is the key factor affecting the composition, microstructure, mechanics,
and corrosion resistance of weld metal and base metal near the weld [6,7]. The quality of
welding wire directly affects the service performance of welded joints. Some researchers
have studied the influence of different welding filler wires on the microstructure and
properties of aluminum alloy welded joints. Ishak et al. [8] found that ER5356 (Al–Mg)
welding wire had higher welding efficiency than ER4043 (Al–Si) welding wire by MIG on
7075 aluminum alloys. The fusion zone (FZ) of the ER4043 welded joint had a smaller grain
size than that of the ER5356 welded joint. Peng et al. [9] found that the mechanical and
corrosion properties of the ER5183 welded joint (containing Zr) wire were better than those
of the ER5356 welded joint. Huan et al. [10] studied the effect of different welding wires
(ER4047 and ER5183) on the FZ formation and the pores, microstructure, and mechanical
properties in CMT welded joints of aluminum alloy. The average grain size of the FZ in
the ER4047 welded joint was smaller than that in the ER5183 welded joint. The addition of
rare elements into welding wire can also improve properties of the welded joint [11–16].
Zhao et al. [12] studied that the additions of Sc, Er, and Zr in the ER5356 welding wire
resulted in significant grain refinement and improvement of the strength of the 7A52
aluminum alloy welded joint. After a detailed literature study, it has been found that the
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studies mainly focus on the influence of welding wire on tensile, fatigue, and corrosion
properties. There is little research on the effect of welding wire composition on the bend
properties of 7N01 aluminum alloy joint.

Welded joint performance under bending load is an important reference index for
quality control and application design. As an important structural material of high-speed
trains, 7N01 aluminum alloy medium plate needs a large number of welded connections,
and the bending performance of welded joints directly affects the safety of vehicles. Dutra
et al. [17] studied whether the weld surface defects of the bending sample meet the require-
ments. The major research has been found related to the bending macroscopic morphology
of aluminum alloy welded joints so far [17–19]. However, the bending mechanism and mi-
cromorphology of bending joints have rarely been reported. Hence, two common welding
filler wires (ER5356 and ER5087) were used to weld the 7N01-T4 aluminum alloy by MIG.
The microstructures, face bend behavior, and mechanical properties of the weld joints filled
with ER5087 and ER5356 were studied.

2. Experimental Materials and Methods
2.1. Experimental Materials

The 7N01-T4 aluminum alloy plates with a thickness of 12 mm were used. The size of
the welding sample was 300 mm × 150 mm × 12 mm. The filled materials were ER5356
(Al–Mg alloy) and ER5087 (Al–Mg alloy) welding wire with a diameter of 1.6 mm. The
chemical composition of 7N01-T4 aluminum alloy and the two welding wires (ER5087 and
ER5356) are shown in Table 1.

Table 1. Chemical compositions of 7N01-T4 aluminum alloy and the welding wires (wt. %).

Alloy Si Fe Cu Mn Mg Zn Ti Cr Zr Al

7N01-T4 ≤0.30 ≤0.30 ≤0.20 0.2–0.7 1.0–2.0 4.0–5.0 ≤0.20 ≤0.30 — Bal.
ER5356 0.05 0.10 <0.01 0.14 5.00 <0.01 0.07 0.06 — Bal.
ER5087 0.25 0.40 0.05 0.90 4.80 0.25 0.15 0.15 0.15 Bal.

2.2. Experimental Methods

MIG adopts mechanical welding, the shielding gas was 99.99% high-purity argon,
and the gas flow was 30 L/min. “V-shape” groove was made by milling with 70◦ groove
angle, and the root face was 2 mm. Welding process was divided into three layers, and
the welding direction was perpendicular to the rolling direction. The groove size of the
sample profile is shown in Figure 1, the welding process parameters are listed in Table 2.
The cross-sectional morphologies of the two welded joints are exhibited in Figure 2. It can
be seen that there was no porosity, incomplete fusion, macrocracks, or other defects in the
two kinds of welded joints, indicating that both ER5356 and ER5087 welding wires had
good compatibilities with the 7N01-T4 base metal.
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Figure 2. Cross-sectional morphologies of the two welded joints. (a) ER5356 welded joint, (b) ER5087
welded joint.

Table 2. MIG welding parameters of 7N01-T4 aluminum alloy.

Weld Layer Welding Current/A Welding Voltage V Welding Speed/(mm·s−1)

The cover layer 250 24 8
The middle layer 260 24.5 7
The bottom layer 250 24 7

The samples were corroded by Keller reagent and the metallographic structure of
the welded joint was observed by Zeiss microscope. The micromorphology was observed
by JSM-6480 tungsten filament scanning electron microscope (SEM). Energy disperse
spectroscopy (EDS) in SEM was used to analyze the chemical composition. Vickers micro-
hardness were measured on KB-30S automatic Vickers micro-hardness indenter. The face
bending performance of the welded joints was detected by Z100kn electronic with three-
point bend test. The bending samples were 200 mm × 30 mm × 12 mm. In order to reduce
stress concentration, the four edges and corners of the sample were processed into rounded
corners with a radius of R1 = 1 mm. The diameter of the intermediate pressure and the
support roll were 60 mm and 30 mm, respectively. The center distance between the two
support rolls was 120 mm, and the bend angle was about 180◦. Figure 3a exhibits the
sample size of the bent specimen, Figure 3b shows the bend sample size and schematic
diagram, and Figure 3c shows the bend test set-up.
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3. Results and Discussion
3.1. Microstructure

Figure 4 shows the metallographic structure of the weld zones in ER5356 and ER5087
welded joints. There was an obvious boundary between the two weld beads. During
the three-layer welding, each layer of the weld was subjected to secondary heating when
welding the next layer. Due to the different number of welding thermal cycles, the mi-
crostructure and properties changed differently. From the cover layer to the bottom layer,
the number of heat cycles of the weld bead increased gradually, and the grain of the weld
microstructure became coarser and coarser. Figure 4e,f shows the interface between the mid-
dle and bottom layers; the microstructure of WZ in the bottom layer was coarse equiaxed
crystal, and significant dendrite segregation could be observed. The microstructure of
WZ in the middle layer was long columnar grain, distributed along the heat dissipation
direction and perpendicular to the intersection line. The existence of cover and bottom
layers led to low heat dissipation and the temperature gradient became gentle in the middle
layer. The grains grew preferentially in the opposite direction to form columnar crystal
owing to the continuous growth of grains and the rapid heat dissipation perpendicular
to the intersection line. Compared with the middle layer of the ER5356 welded joint, the
ER5087 welded joint had more columnar crystals. Due to no longer heating cycle influence,
the grain size of the cover layer decreased obviously, the microstructure was uniform, and
fine dendritic equiaxed grains as shown in Figure 4a,b. The grain size of WZ in the ER5087
welded joint was significantly smaller than that of the ER5356 welded joint.
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Figure 4. The metallographic structures of the weld zones in ER5356 and ER5087 welded joints,
(a) the cover layer of ER5356 welded joint, (b) the cover layer of the ER5087 welded joint, (c) the
interface between the cover and bottom layers of the ER5356 welded joint, (d) the interface between
the cover and middle layers of the ER5087 welded joint, (e) the interface between the middle and
bottom layers of the ER5356 welded joint, and (f) the interface between the middle and bottom layers
of the ER5087 welded joint.
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Figure 5 shows SEM image of the cover layer in two welded joints. The fusion
line was clearly visible. The lower side was the heat-affected zone (HAZ) and the base
metal zone (BZ), and the upper side was the weld zone (WZ). The chemical structure was
uneven. Serious segregation could be seen at the grain boundary. These segregations were
continuously distributed in long strips at the columnar crystal boundary. The HAZ of the
ER5087 welded joint was narrower than that of the ER5356 welded joint.

Metals 2022, 12, x FOR PEER REVIEW 5 of 12 
 

 

cover and middle layers of the ER5087 welded joint, (e) the interface between the middle and bottom 

layers of the ER5356 welded joint, and (f) the interface between the middle and bottom layers of the 

ER5087 welded joint. 

Figure 5 shows SEM image of the cover layer in two welded joints. The fusion line 

was clearly visible. The lower side was the heat-affected zone (HAZ) and the base metal 

zone (BZ), and the upper side was the weld zone (WZ). The chemical structure was une-

ven. Serious segregation could be seen at the grain boundary. These segregations were 

continuously distributed in long strips at the columnar crystal boundary. The HAZ of the 

ER5087 welded joint was narrower than that of the ER5356 welded joint. 

 

Figure 5. SEM image of the cover layer in two welded joints, (a) ER5356, (b) ER5087. 

Figure 6 shows EDS results of two kinds of weld zones. The elements distribution of 

the zone (red square in Figure 6a) in the ER5356 welded joint were Al, Mg, Fe, Zn, Ti, and 

Mn, and the elements distribution of the zone (red square in Figure 6b) in the ER5087 

welded joint were Al, Mg, Zn, Ti, Zr, Cu, and Mn. There was an extra Zr element and Ti 

element content in the WZ of the ER5087 welded joint was slightly higher than that of the 

ER5356 welded joint (Figure 6c,d). 

 

Figure 6. EDS results of the two weld zones, (a,c) ER5356; (b,d) ER5087. 

Figure 5. SEM image of the cover layer in two welded joints, (a) ER5356, (b) ER5087.

Figure 6 shows EDS results of two kinds of weld zones. The elements distribution
of the zone (red square in Figure 6a) in the ER5356 welded joint were Al, Mg, Fe, Zn, Ti,
and Mn, and the elements distribution of the zone (red square in Figure 6b) in the ER5087
welded joint were Al, Mg, Zn, Ti, Zr, Cu, and Mn. There was an extra Zr element and Ti
element content in the WZ of the ER5087 welded joint was slightly higher than that of the
ER5356 welded joint (Figure 6c,d).
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ER5087 welding wire contains trace Zr which was easy to combine with Al to form
nano-sized Al3Zr particles. The primary Al3Zr phases had an obvious dispersion strength-
ening effect [20,21]. These Al3Zr phases which had a DO23 tetragonal structure (a = 0.4013 nm,
c = 1.732 nm) acted as ideal heterogeneous nuclei during the solidification of Al matrix
and increased the nucleation rate because they had a high degree of similarity to the
Al crystalline structure [22], so they could achieve the best grain refinement of the WZ.
Meanwhile, the content of trace Ti in ER5087 welding wire was more than that of ER5356
(Table 1). When the temperature was higher than 550 ◦C, Ti–Al intermetallic compounds
formed Gibbs free radicals ∆G < 0, intermetallic compounds such as Al3Ti could be formed
spontaneously [23]. Al3Ti could be used as an effective heterogeneous nucleation core of
Al to promote heterogeneous nucleation [24]. Hence, the grain size of the ER5087 welded
joint with was smaller than that of the ER5356 welded joint.

3.2. Microhardness

Figure 7 shows the microhardness distribution of the cover layer of ER5356 and
ER5087 welded joints. The microhardness distribution of welded joints was not uniform.
The microhardness rose sharply from about 75 hv to about 115 hv from WZ to HAZ.
ER5356 and ER5087 welding wires were both Al–Mg alloys, which could improve the crack
resistance of 7N01 aluminum welded joint. However, due to less Zn alloy element in the
welding wire, it was difficult to generate MgZn2 as the main strengthening phase of the
WZ in 7N01 aluminum welded joint, and the weld was mainly composed of solid solution
α-Al which had low microhardness [25]. 7N01-T4 aluminum alloy has strong natural age
hardening effect. The HAZ and softening zone had been well restored. Therefore, the
microhardness of the HAZ was close to that of BM, and the softening phenomenon was
not obvious. The minimum microhardness values obtained by ER5356 and ER5087 welded
joints were in the WZ, 70.37 hv and 72.9 hv, respectively, and the width of HAZ of the
ER5087 welded joint was smaller than that of the ER5356 welded joint, which is consistent
with Figure 5. The microhardness of the ER5087 welded joint was slightly higher than
that of the ER5356 welded joint. That was because the content of alloy elements in ER5087
welding wire was higher than that of ER5356 welding wire (see Table 1), which increased
the number of internal precipitation strengthening phases. In addition, the WZ of the
cover layer in the ER5087 welded joint had a smaller grain size than that in the ER5356
welded joint (Figure 3). The smaller grain size can improve microhardness due to the fine
grain strengthening. Therefore, the cover layer of the ER5087 welded joint exhibited higher
microhardness than that of the ER5356 welded joint.
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3.3. Face Bend Property

Face bend cross-sectional stress diagram is shown in Figure 8. During the face bend
process of the sample, the bottom layer was mainly subjected to the compressive stress,
and the cover layer was mainly subjected to the tensile stress. Figure 9 shows macro
characterization of the bend specimens. The two welded joints were not broken, and
showed good plastic shape at the bend angle about 180◦ in Figure 9a,b, which may be
related to the fact that the grain morphology of the WZ in the cover layer was a fine and
uniform equiaxed crystal structure (Figure 4a,b). The bonding force between atoms was
strong. It was beneficial to inhibit the formation and propagation of cracks under the
tensile stress. In Figure 9c, there were some small holes and microcracks on the surface of
the ER5356 welded joint, but there were no obvious defects on the surface of the ER5087
welded joint in Figure 9d.
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Figure 9. Macro characterization of the bend specimens, (a,c) ER5356 weld joint, (b,d) ER5087
welded joint.

Figures 10 and 11 show the face bending specimen metallography of the ER5356 and
ER5087 welded joints after face bend at the angle about 180◦, respectively. As shown in
Figure 10a,b, the dense and large holes generated in the cover layer of the ER5356 welded
joint, and the holes in FZ of the cover layer were particularly dense and distributed in a
chain. While the holes in the cover layer of the ER5087 welded joint were scattered, as
shown in Figure 11a,b. The surface grain of the two welded joints were elongated along
the tensile direction. As shown in Figure 10d, the grains of the ER5356 welded joint in the
middle layer were mainly columnar crystals vertically distributed along the fusion line.
Figure 11d shows that the FZ in the middle layer of ER5087 was mainly equiaxed crystal
with uniform grain size. As shown in Figures 10e and 11e, the grains of the bottom layers
of the two kinds of welding wires were extruded, and some microcracks appeared. The
holes and microcracks of the ER5356 weld joint were more obvious. Figures 10c and 11c
show the macromorphology of cross-sections of the ER5356 and ER5087 welded joints,
respectively. It could be seen that the bottom layer became narrower and the cover layer
became wider compared with welded joints before bending.
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Figure 10. Face bending specimen metallography of the ER5356 welded joint, (a) the interface
between the cover and middle layers, (b) the FZ of the cover layer, (c) the macromorphology of
cross-section of the weld joint, (d) the FZ of the middle layer, (e) the weld center of the bottom layer,
and (f) the interface between the middle and bottom layers.
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Figure 11. Face bending specimen metallography of the ER5087 welded joint, (a) the weld center of
the cover layer, (b) the interface between the cover and middle layers, (c) the macromorphology of
cross-section of the weld joint, (d) the FZ of the middle layer, (e) the weld center of the bottom layer,
and (f) the interface between the middle bottom layers.

Figure 12 shows the schematic drawing of bending fracture mechanism of the welded
joint. As shown in Figure 12a, the tensile stress was on the cover layer, while the compres-
sive stress was on the bottom layer. As shown in Figure 12b, the transverse grain in the
cover layer and the vertical grain in the bottom layer were elongated during the bending
process of the two welded joints. Under the action of the sheet stress, twin crystals and the
dislocation sliding were generated [26,27]. When dislocations encountered welding defects,
such as pores and cracks, stress concentration occurred, resulting in grain deformation and
holes. When the bending angle became larger, the grains were crushed in Figure 12c. When
the bending angle was further increased, the crack propagation resistance was reduced.
The hole further expanded, resulting in microcracks in welded joints. The grain in the
bottom layer was extruded and microcracks were generated as shown in Figure 12d.

The grain size of the ER5087 welded joint was smaller than that of the ER5356 welded
joint (see Figure 4). According to Hall–Petch formula:

σy = σ0 + kyd−1/2

where σ0 and ky are constants related to the material; d is the grain size. The grain size was
smaller, the blocking effect of grain boundary on dislocation slip was more obvious, so the
fine equiaxed crystal increased the distance and resistance of dislocation movement, and it
was difficult to form dislocation plug and produce stress concentration [28]. Therefore, the
ER5087 welded joint had a better bending performance than the ER5356 welded joint.
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Figure 12. Schematic drawing of bending fracture mechanism of welded joint. (a) The microstructure
of the welded joint at the bending start stage, (b–d) the microstructure of the welded joint during the
bending test.

4. Conclusions

In this study, 7N01-T4 aluminum alloy was welded into three layers by MIG with
ER5087 and ER5356 welding wire, respectively. The face bend properties of the two
welded joints were investigated. The following conclusions could be drawn from the
experimental results.

(1) For the two kinds of welded joints, the grain of the weld structure became coarser
from the cover layer to the bottom layer since the number of heating cycles increased
gradually. The WZ of the ER5087 welded joint had a smaller grain size than the
ER5356 welded joint.

(2) The minimum microhardness values of ER5356 and ER5087 welded joints were in the
WZ, 70.37 hv and 72.9 hv, respectively. The microhardness of the ER5087 welded joint
was slightly higher than that of the ER5356 welded joint.

(3) Two kinds of welded joints were not broken via the face-bend test. However, there
were some small holes and microcracks on the surface of the ER5356 welded joint,
and there were no obvious defects on the surface of the ER5087 welded joint. The
ER5087 welded joint had a better bending performance than the ER5356 welded joint.
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