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Abstract: The silicon content of the molten iron is an important indicator of the furnace temperature
trend in blast furnace smelting. In view of the multi-scale, non-linear, large time lag and strong
coupling characteristics of the blast furnace smelting process, a dynamic prediction model for
the silicon content of molten iron is established based on the analysis of comprehensive furnace
temperature characterization data. The isolated forest algorithm is used to detect anomalies and
analyze the causes of the anomalies in conjunction with the blast furnace mechanism. The maximum
correlation-minimum redundancy mutual information feature selection method is used to reduce the
dimensionality of the furnace temperature characterization data. The grey correlation analysis with
balanced proximity is used to obtain the correlation between the furnace temperature characterization
parameters and the silicon content of the molten iron at different time lags and to integrate the furnace
temperature characterization data set. The GRA-FCM model is used to divide the parameter set of
the integrated furnace temperature characterization and construct a parameter directed network from
multiple control parameters to multiple state parameters. The GWO-SVR model is used to predict
the state parameters of each delay step by step to achieve dynamic prediction of the silicon content of
the molten iron. Finally, the control parameters are adjusted backwards according to the prediction
results of the state parameters and the silicon content of the molten iron and expert experience to
achieve accurate control of the furnace temperature. Starting from the actual production situation of
a blast furnace, the characteristic parameters are divided into control parameters and state parameters.
This model establishes a multi-step dynamic prediction and closed-loop control model of “control
parameters-state parameters-silicon content in hot metal-control parameters”.

Keywords: blast furnace temperature; silicon content of iron; big data of steel; dynamic forecasting

1. Introduction

Blast furnace ironmaking is a complex metallurgical process, combining a variety of
characteristics of a hybrid process industry. In particular, there are many uncertainties,
as weather and dust can cause inaccurate data detection. Data coupling is serious and
often a state variable is influenced by multiple control variables. The reaction process is
complex, and blast furnace iron making is a complex smelting process of solid, liquid and
gas co-existence, with non-linearity and strong time lag [1–3]. The furnace temperature is
an important indicator in blast furnace smelting. A high furnace temperature will lead to
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a decrease in iron product grade, increase energy consumption of the blast furnace and
affect the service life of the blast furnace. However, too low a furnace temperature can
also cause major accidents in the blast furnace, resulting in economic losses [4,5]. Furnace
temperature is divided into chemical temperature and physical temperature, where the
chemical temperature is often expressed in terms of the silicon content in the iron. As the
furnace temperature rises, the silicon content in the molten iron gradually increases, and the
silicon content of the molten iron is approximately linearly related to the temperature [6,7].
In practice, workers often judge the thermal operating conditions of the blast furnace by
the silicon content of the molten iron.

Ordinary mathematical models have difficulties accurately simulating the complex
operating state of blast furnaces. In recent years, with the sharp increase in blast furnace
production data, the data-driven intelligent prediction model of furnace temperature has
become the focus of many scholars’ research. Chen Jianhua et al. proposed an operational
optimisation control method for the iron quality of the blast furnace smelting process
by optimising the tonne iron production cost index, case inference techniques and the
empirical knowledge of the blast furnace manager [8]. Jiang Chaohui et al. proposed a blast
furnace iron silicon content prediction method based on the migration of optimal working
conditions to address the problem of frequent fluctuations of process variables and the
large time lag characteristics of the smelting process [9]. Yin Linzi et al. addressed the
problem of iron silicon content data records and the A k-means++ clustering algorithm-
based method for iron silicon content data optimization was proposed to address difficulties
such as unbalanced data records and difficulty in making reasonable correlations with input
variables [10]. In short, these studies are based on the historical data of the blast furnace to
improve the algorithm [11–14]. However, the blast furnace is a complex smelting system
with discrete addition, continuous smelting and discrete output, so the static prediction
model has difficulties meeting the actual production needs of the factory. If the algorithmic
process can simulate different stages of blast furnace production, dynamic prediction of the
silicon content of the hot metal will be achieved.

In this paper, a dynamic prediction model of silicon content in molten iron based on
comprehensive characterization of furnace temperature is established. Firstly, the anomalies
in the blast furnace data are removed in order to retain the anomalies caused by non-
equipment factors such as collapsed or suspended material as far as possible. Combined
with the blast furnace operation mechanism, this paper comprehensively analyzes the
furnace temperature data, and selectively eliminates the abnormal data of the blast furnace.
Secondly, the characteristic parameters of the blast furnace are coupled with time-delay. In
order to obtain the coupling relationship between the furnace temperature characterization
parameters, a method for dividing the furnace temperature characterization parameter
set is proposed in this paper. Through correlation analysis, we obtained the correlation
coefficients between the furnace temperature characterization parameters at different time
delays, and divided the furnace temperature characterization parameter set. A dynamic
prediction model is established to predict the characterization parameters on the optimal
path step by step to achieve the dynamic prediction of the silicon content of the molten iron.
We adjust the control parameters according to the predicted results, and finally control the
furnace temperature within the ideal range. The blast furnace dynamic control system is
shown in Figure 1. The feeder system, the air supply system, the blowing system, and the
gas treatment system transmit real-time data to the intelligent prediction system in turn,
wherein the real-time data includes control parameters and state parameters. Through
calculation, the intelligent prediction system predicts the value of the unknown state
parameter, and adjusts the control parameters in the air supply system and the blowing
system according to the prediction result.
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Figure 1. Blast furnace dynamic control system.

2. Mechanistic Research
2.1. Relevant Response Studies
2.1.1. Silicon Content of Iron

The silicon in the blast furnace is mainly derived from SiO2 in the coke ash, which
accounts for about 70% of the coke [15]. In addition, SiO2 in pulverized coal and gangue
in ore is also an important source of silicon in the furnace. Gangue will become molten
slag at high temperature, and SiO2 in slag, pulverized coal and coke exists in free state, so
under high temperature conditions SiO2 reacts with elemental C and element iron in coke
in a reduction reaction equation (Equations (1)–(3)) as:

SiO2 + 2C = [Si] + 2CO (1)

K =
fSiw[Si]·pCO2

aC·aSiO2

(2)

SiO2 + 2C + Fe = [FeSi] + 2CO (3)

K is the thermodynamic equilibrium constant, fSi the activity coefficient of Si in the
iron, pCO2 is the partial CO2 pressure in the furnace, Pa, aC is the activity of C in the iron,
w[Si] is the concentration of silicon content in molten iron, and aSiO2 is the activity of Si in
the slag.

SiO2 can also be reduced by iron carbide (Fe3C) (Formula (4)):

SiO2 + 2[Fe3C] = [FeSi] + 5Fe + 2CO (4)

When the temperature increases, the K value increases, and w[Si] also increases. It
can be seen that the increase in furnace temperature facilitates the reduction in SiO2
in coke ash. The silicon content of the molten iron is positively correlated with the
furnace temperature [16].
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2.1.2. Theoretical Combustion Temperature

The theoretical combustion temperature is mainly related to the coke, the humidity of
the blast, and the temperature of the blast [17]. It is generally estimated using Equation (5):

T =
Q1 + Q2 + Q3 −Q4

V × cpg
(5)

Q1 is the heat absorbed by the decomposition of the blown material and the moisture
in the furnace, Q2 is the heat released by the burning of the coke at the air outlet, Q3 is the
heat released by the generation of CO from the C in the furnace, Q4 is the blast temperature,
V is the amount of gas in the furnace cylinder, and cpg is the specific heat capacity of the gas.

2.1.3. Breathability Index

The permeability index is used to measure the permeability of the charge, the higher
the index, the lower the resistance to the passage of gas through the charge [18–20]. The
permeability index is often used to detect blast furnace conditions such as overhanging to
charge, crumbling charge and gas loss and is calculated using the Formula (6) as:

T =
Q

P1 − P2
=

Q
∆P

(6)

Q represents the blast flow rate, ∆P represents the full differential pressure of the air
volume, and P1, P2 represents the hot air pressure and top air pressure, respectively.

2.1.4. The Reduction Behavior of H2

H2 plays an important role in blast furnace smelting as a reducing agent. Taking 570 ◦C
as the boundary, the reduction reaction formula of H2 to iron oxide is (Equations (7)–(11)):

Above 570 ◦C:
3Fe2O3 + H2 = 2Fe3O4 + H2O (7)

Fe3O4 + H2 = 3FeO + H2O (8)

FeO + H2 = Fe + H2O (9)

Below 570 ◦C:
Fe3O4 + 4H2 = 3Fe + 4H2O (10)

3Fe2O3 + H2 = 2Fe3O4 + H2O (11)

The study found that with the increase in the H2 ratio in the furnace, the silicon content
in the molten iron showed a downward trend [21].

2.2. Classification of the Furnace Parameters

Blast furnace parameters are divided into status parameters and control parameters.
The status parameters reflect the operating condition of the blast furnace, mainly including
the amount of gas in the belly of the furnace, permeability index, oxygen enrichment rate,
top pressure, etc. The control parameters are the parameters needed to regulate the status
of the blast furnace, mainly including hot air pressure, cold air flow, blast humidity and
oxygen enrichment flow, etc. [22–25]. In the blast furnace smelting process, workers observe
the changes of state parameters to judge the operation state of the blast furnace. Then,
workers adjust corresponding control parameters to realize real-time control of the blast
furnace temperature.

The blast furnace consists of five major operating systems: the fabric system; the pul-
verized coal blowing system; the hot air system; the blast furnace gas handling system; and
the iron discharge system [26–29]. The control parameters are mainly distributed in the
pulverized coal blowing system, the air supply system, and the operation of the blast furnace
is often controlled in real time by adjusting the pulverized coal blowing system and the air
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supply system. In the event of serious deviations in furnace temperature, a combination of
fabric systems is used for comprehensive control. For example, by changing the speed and
distribution of the ore and coke charge, the coke ratio and the permeability of the charge
column in the furnace are controlled, thus achieving a rise or fall in furnace temperature.

2.3. Coupling of Furnace Temperature Parameters

Furnace temperature is influenced by several control parameters of the blast furnace
and there is a certain coupling with these control parameters. The main control parameters
include: coal injection; hot air flow; oxygen enrichment flow; roof pressure; blast air
humidity; blast air temperature; CO2 content of the roof gas as well as coke ash and Sulphur
content [30–33]. When increasing the blast air humidity, the water blown into the blast
furnace will undergo a heat absorption reaction to produce hydrogen and oxygen, lowering
the furnace temperature. When increasing the amount of coal blast, the pulverized coal will
first undergo a heat absorption reaction to lower the theoretical combustion temperature in
the furnace. However, as the charge drops, the pulverized coal sprayed into the furnace
at high temperatures will burn and exothermically increase the furnace temperature, so
the effect of coal spraying on the furnace temperature has a large time lag. Increasing the
blast temperature can increase the furnace temperature by blowing heat directly into the
furnace cylinder, so the time lag of the blast temperature on the furnace temperature is less.
The blast temperature control parameter allows for faster real time control of the furnace
temperature than the coal injection control parameter. Increasing the oxygen enrichment
flow rate increases the burn rate of the blown fuel, reduces the N2 content of the gas and
increases the concentration of CO gas in the furnace, promoting indirect reactions and thus
increasing the furnace temperature.

2.4. Parameter Regulation

From the economic efficiency of smelting and the effectiveness of regulation, the order
of the control parameters chosen to regulate the furnace temperature is: coal injection;
oxygen-rich flow; blast temperature; blast humidity; coke load; coke ash, etc. [34,35].
Among them, the coal injection volume, oxygen enrichment flow and blast temperature are
often carried out simultaneously, and this is due to the fact that increasing the coal injection
volume leads to a lower replacement ratio in the furnace, which can significantly affect the
smelting efficiency of the blast furnace [36]. By increasing the oxygen enrichment flow rate
and the blast temperature the initial heat loss from the coal injection in the furnace can be
supplemented and the gas burns rate increased, thus improving the effect of the initial coal
injection operation on the theoretical combustion temperature.

The operating status of the blast furnace is judged by observing the changes in the
status parameters and the corresponding control parameters are regulated in real time.
For example, when the furnace temperature tends to heat up, the permeability index and
oxygen enrichment rate in the status parameters will drop, and the charging speed of the
charge will decrease while the air pressure will gradually increase. In this case, the coal
injection quantity of the control parameters can be reduced first, and at the same time,
the oxygen enrichment flow rate and the blast temperature can be adjusted according to
the different furnace temperature to the hot condition in combination with several control
parameters. Such is the existence of the phenomenon of slow decline in the furnace charge,
you can reduce the amount of coal injection and, at the same time, the oxygen flow increases.
When the material speed is normal and the furnace temperature is high, you can properly
adjust the coke load. In addition, if some of the control parameters are adjusted out of their
normal setting range, the same must be combined with other multiple control parameters
for comprehensive adjustment, so that the status parameters and furnace temperature
return back to the normal level.
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3. Model Building
3.1. Data Pre-Processing
3.1.1. Data Deletion

There are two types of anomalies in the blast furnace characterization parameters: one is
caused by a fault in the blast furnace testing instrument and the other by an abnormal blast
furnace operation. For this reason, the blast furnace data outliers are handled as follows.

Step 1: Outlier detection. The isolation forest algorithm was used to detect outliers
in the blast furnace sample set. A binary tree is constructed by randomly partitioning the
blast furnace data interval, with each leaf node being a data node and the path length of
the leaf node to the root node reflecting the degree of outlier of that node [37]. A forest is
assembled and the outlier scores in the characterization parameters are calculated, which
are given by (Formulas (12)–(14)).

s(x, n) = 2−
E(h(x))

c(n) (12)

c(n) =


2H(n− 1)− 2(n−1)

n , n > 2
1, n = 2
0, n < 2

(13)

H(k) = ln(k) + 0.5772 (14)

where: s(x, n) is the outlier score of node x, c(n) is the average path length of the tree,
E(h(x)) is the average number of steps required to separate data points, H(k) is the value
of the reconciliation function and 0.5772 is the Euler constant.

The value range of s(x, n) is between 0 and 1, and the higher the value, the more likely
it is to be an anomaly. The abnormal data is judged by setting the threshold value.

Step 2: Classification of anomalies. The characterization parameters of the blast
furnace are analyzed comprehensively and the anomalies are discerned in conjunction with
the blast furnace operating mechanism.

Step 3: Outlier retention and rejection. Outliers caused by faults in the blast furnace testing
instrument are rejected and outliers caused by abnormal blast furnace operation are retained.

3.1.2. Data Addition

In blast furnace production, slag shedding occurs from time to time. If the slag
shedding is not detected early and the heat is replenished in time, it can easily result in
a cooler furnace condition. For this reason, the detection of the point at which the slag peel
comes off is essential for furnace temperature prediction. When the temperature of the
cooling wall rises, the temperature of the corresponding electric couples also rises, and
once the temperature exceeds the set threshold, the system assumes that a “slag skin” has
fallen off.

3.2. Data Reduction and Restructuring

The model prediction error is large due to the large number of blast furnace parameters
and their large time lag. The correlation analysis algorithm can obtain the correlation
coefficients between the characterization parameters and the time series of silicon content
of iron at different time delays, and restructure the data according to the correlation
coefficients, thus reducing the impact of time lag on the prediction accuracy of the model.

3.2.1. Mutual Information Feature Selection Based on Maximum Correlation-Minimum
Redundancy

Common data dimensionality reduction algorithms such as principal component anal-
ysis can re-fit the data, resulting in the loss of parameter labels. In order to retain important
features and eliminate redundant features, a mutual information algorithm is used to select
important features of the furnace temperature characterization data. By calculating the
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common information between two parameters, the correlation on each characterization
parameter and the furnace temperature is mined. Depending on the input data, the mutual
information calculation is divided into two types of Equations (15) and (16).

I(X, Y) =
n

∑
x=1

n

∑
y=1

PXY(x, y)log
PXY(x, y)

PX(x)PY(y)
(15)

where: PXY(x, y) is the joint probability value at X = x and Y = y.

I(X, Y) =
∫ n

x=1

∫ n

y=1
PXY(x, y)log

PXY(x, y)
PX(x)PY(y)

dxdy (16)

where: PX(x) and PY(y) are the probability density functions of X and Y, respectively,
PXY(x, y) is the joint probability density function of X and Y, and n is the number of samples.

Equations (15) and (16) are applicable to discrete and continuous data, respectively,
and the furnace temperature characterisation is continuous and should use Equation (16).
However, in practice, it has been found that it takes longer and is less effective than
calculating the mutual information in integral form. For this reason, this paper uses
Equation (15) for the selection of the mutual information characteristics of the furnace
temperature characterisation data by setting different ranges for the interval division of the
individual characterisation parameters and discretising the continuous values.

The conventional way of selecting mutually informative features is to rank the cal-
culation results and to select the T features with large mutual information as the main
influencing parameters. However, in order to achieve subsequent dynamic prediction of
furnace temperature, the strong coupling between the state and control parameters needs to
be preserved while eliminating redundant data. To this end, this paper proposes a feature
selection method based on parameter set partitioning. First, T features are selected from
M characterization parameters to establish a subset of characterization parameters, and
then CT

M subsets are calculated by Equations (17)–(19) to select the subset of characteri-
zation parameters with the smallest redundancy between state parameters and control
parameters and the largest coupling between state parameters and control parameter data,
i.e., maximum correlation–minimum redundancy (mRMR) selection [38].

Q =
1

C2
W

W−1

∑
i=1

W

∑
j=1

I
(

xi, xj
)
+

1
C2

Z

Z−1

∑
i=1

Z

∑
j=1

I
(

xi, xj
)

(17)

T = w + z (18)

P =
1
T

T

∑
i=1

I(xi, y) (19)

where: T is the number of features selected, w and z are the number of control parame-
ters and the number of state parameters in the selected features, xi and xj represent the
two selected features, respectively, y represents the silicon content of molten iron, C2

W and
C2

Z represent the number of subsets of two features selected from W control parameters
and Z state parameters, respectively, Q is the average value of the mutual information
between the state parameters and the control parameters, p is the average value of the
mutual information between the selected features and the silicon content of the iron.

By this method, the subset of CT
M features with the largest p value and the smallest Q

value is selected as the best feature selection result.

3.2.2. Data Restructuring for Grey Correlation Analysis Based on Equilibrium Proximity

Blast furnace ironmaking has a large time lag, as exemplified by the melt loss reaction.
The melt loss reaction index SLC represents the amount of carbon consumed by the melt



Metals 2022, 12, 1403 8 of 18

loss reaction in the lower part of the blast furnace and the conventional melt loss reaction
index is calculated by Formulas (20) and (21).

SLC = RP ×DRR× CFe (20)

where RP is the O/Fe ratio in the loading batch, CFe is the Fe content of the iron, and SLC is
the amount of carbon consumed by the melting reaction in the lower part of the blast furnace.

DRR = (Cout −Cot)× Roc× 1/(Oout −Oin) (21)

where Roc is the ratio of the molarity of oxygen to carbon, Cout is the carbon content in the
roof gas, Cot is the vaporized carbon before the air outlet, Oout is the oxygen content in the
roof gas, Oin is the oxygen content entering the blast furnace from the air outlet, and DRR
is the direct reduction degree.

However, it is not very meaningful to use the carbon content of the gas at the top of the
furnace at the same time minus the carbon content of the vapor before the air outlet. Only
by obtaining the time interval between the arrival of the same batch of pre-vented carbon
at the top of the furnace can the melt loss reaction index be calculated more accurately, as
can the calculation of Oout and Oin.

The grey relational analysis (GRA) is used to analyze the time series of the characteri-
zation parameters and the silicon content of the iron at different time delays, to quantify
the lag time between each characterization parameter and the silicon content of the iron,
to deal with the problem of inaccurate prediction of the silicon content of the iron due
to the time lag of the furnace temperature data by comparing the correlation between
each characterization parameter and the silicon content of the iron at different time delays,
and to re-arrange the furnace temperature data according to the principle of maximum
correlation. Let Xi = {xi(k)|k ∈ K}. Formulas (22) and (23) for calculating grey correlation
degree is:

γ(xl(k), xi(k)) =
min

i
min

k
(|xl(k)− xi(k)|) + δmax

i
max

k
(|xl(k)− xi(k)|)

|xl(k)− xi(k)|+ δ max
i

max
k

(|xl(k)− xi(k)|)
(22)

γ(Xl , Xi) =
1
n

n

∑
k=1

γ(xl(k), xi(k)) (23)

where: γ(x0(k), xi(k)) is the number of grey correlation coefficients and γ(X0, Xi) is the
correlation between the l-th parameter series and the i-th parameter series.

As traditional grey correlation analysis has a tendency to localize point correlations
when performing overall proximity detection, this paper introduces grey correlation en-
tropy to improve grey correlation analysis using equilibrium proximity as a measure of
similarity between vectors [39,40]. Equations (24)–(27) for equilibrium proximity is.

B(Xl , Xi) = γ(Xl , Xi)·B(Ri) (24)

B(Ri) =
H(xi)

Hm
(25)

H(xi) = −
n

∑
k=1

pi(k)· ln pi(k) (26)

pi(k) =
γ(xl(k), xi(k))

∑n
k=1 γ(xl(k), xi(k))

(27)

where: pi(k)is the grey correlation density of the i-th parameter sequence at the kth, H(xi) is
the grey correlation entropy of the i-th parameter sequence, B(Ri) is the entropy correlation
of the i-th parameter sequence, and B(Xl , Xi) the equilibrium proximity of the reference
sequence Xl and the comparison sequence Xi.
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3.3. Representation Parameter Network Construction

In the complex smelting process of a blast furnace, a change in one control parameter
often leads to a change in several state parameters. At the same time one state parameter
is influenced by several control parameters. The traditional hard clustering algorithm has
only two subordinate degrees of zero and one, which means it is difficult to describe the
complex coupling relationship between blast furnace parameters. We propose a fuzzy c-means
clustering parameter dataset partition method based on balanced proximity grey relational
analysis (GRA-FCM). The grey correlation analysis is used to obtain the correlation between
each control parameter and different state parameters, combined with part of the idea of fuzzy
c-mean clustering, i.e., fixing the state parameters as class centroids and dividing the set of
control parameters. This model preserves the affiliation with each control parameter reaching
different clustering centers while obtaining the set of control parameters with greater influence
on different state parameters. The model is then combined with the ironmaking mechanism
to set reasonable thresholds to achieve the model partitioning of multiple control parameters
to multiple state parameters. This classification is more in line with the actual operation of the
blast furnace. For example, the study of the ironmaking mechanism shows that increasing the
coal injection quantity in the control parameters has a greater influence on the gas quantity
and permeability index of the furnace belly in the state parameters. Therefore, the threshold
value needs to be set smaller than the subordination of the coal injection volume-furnace gas
volume and the coal injection volume-permeability index.

The set of control parameters that are in the same class as or close to the state parame-
ters are identified and a multi-control parameter-multi-state parameter directional network
of characterization parameters is constructed. The network reflects the strong coupling of
the furnace temperature characterization parameters. When a control parameter changes,
one or more of the state parameters connected to it in the directed network also change.

3.4. Dynamic Furnace Temperature Prediction

In production, workers adjust the control parameters by means of charge addition,
pulverized coal blowing and hot air blasting, and in turn judge the furnace operating
conditions based on the blast furnace status parameters. However, the combustion of
fuels such as coke and pulverized coal takes time, which means that the blast furnace
status parameters do not reflect the influence of the control parameters on the furnace
conditions in a timely manner. If the condition parameters could be predicted earlier, this
would greatly alleviate the time lag in the data. Based on this, this paper uses the Support
Vector Regression (SVR) regression prediction model to obtain the predicted values of each
state variable based on a directed network of characterization parameters, with the control
parameters as the sample set input and the state parameters as the output. The prediction
performance of the SVR model is greatly influenced by the penalty factor C, the kernel
parameter g and the insensitivity loss factor ε. The global optimization capability of the
traditional parameter optimization method is poor. For this reason, we establish an SVR
prediction model, optimized based on the gray wolf optimization algorithm(GWO-SVR).
The flow chart of GWO-SVR prediction model is shown in Figure 2.

Compared to the traditional furnace temperature prediction model based on historical
data, this dynamic furnace temperature prediction model is highly feasible and in line
with the actual blast furnace production situation. When applying the furnace temperature
prediction model to production, blast furnace condition parameters are not available in
time as control parameters such as charge and pulverized coal are added. If the prediction
is made using the state parameter data onto the previous batch, it will lead to a decrease
in the accuracy of the furnace temperature prediction. This model can simulate the oper-
ating conditions of the furnace in a more scientific way by making step-by-step dynamic
predictions of the condition parameters, thus achieving dynamic and accurate furnace
temperature prediction.
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Figure 2. GWO-SVR prediction model.

3.5. Real-Time Regulation of Control Parameters

The ultimate goal of dynamic furnace temperature prediction is to use the prediction
results to make early corrections to furnace temperature control parameters such as air
pressure, charge and coal injection to ensure stable and abundant furnace temperature
and efficient production of the blast furnace. The expert system is combined with a big
data-driven dynamic furnace temperature prediction to establish a recommended model of
furnace temperature control parameters. The specific steps are to set the furnace tempera-
ture control sequence according to the expert experience: coal injection-oxygen enrichment
flow-blast temperature-blast humidity-coke load-coke ash. With the dynamic prediction of
the furnace temperature as a reference, the state parameters are controlled within a reason-
able range in line with the experience of the experts, and the most economical and effective
parameter regulation is obtained by changing different control parameters to simulate the
influence on the state parameters and the furnace temperature trend.

The data analysis and control model for the integrated furnace temperature characteri-
zation is shown in Figure 3.
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Figure 3. Data analysis and control model for comprehensive characterization of furnace temperature.

4. Analysis of Results
4.1. Data Processing

The data in this study come from the actual production of a blast furnace in an iron
factory. The blast furnace has a volume of 580 m3, 18 hot blast nozzles, and a daily output of
molten iron of about 1400 tons. The time period of blast furnace pig iron smelting is 1.33 h,
and the ratio of sinter to pellet into the furnace is 5:3. Raw material chemical composition,
and Table 1 shows the coke ash content, and Table 2 shows the Coke ash analysis:

Table 1. Chemical composition of raw materials.

Ingredient FeO MgO CaO SiO2 TFe

Sinter 9.65 4.21 5.78 4.96 56.23
pellets 2.33 1.35 2.45 9.65 57.26

Table 2. Coke ash analysis.

Ingredient MgO CaO SiO2 AL2O3

coke 0.41 5.36 29.15 39.62

Outlier handling is implemented by the Python programming language. We use
the IsolationForest algorithm library in the sklearn.ensemble package to detect outliers in
a steel furnace temperature data set. By adjusting multiple parameters such as behavior,
max_samples, contamination, etc., the data set is divided, the binary tree is built, and the
score of outliers is calculated. Finally, we combined the blast furnace operation mechanism
to identify the abnormal situation. Take coal injection volume, hot blast temperature and
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permeability index as examples. The time delay analysis shows that the time delay between
the hot blast temperature and the permeability index is about three, and the time delay
between the coal injection volume and the permeability index is about four. We analyze the
operation mechanism of the blast furnace. When the coal injection volume decreases, the
blast furnace permeability index increases, and when the hot blast temperature increases,
the blast furnace permeability index decreases. In order to facilitate readers to have a clearer
understanding of the changing trends of coal injection volume, hot blast temperature,
and air permeability index, only the data from 1 to 40 heats are selected for display in
Figure 4. (The hot blast temperature in this paper refers to the average value of the hot
blast temperature blown in from the hot-blast stove.) As can be seen from Figure 4, the
permeability index has four anomalies in the 8th, 14th, 23th, and 33rd furnace times. Starting
from the third furnace times, the amount of coal injection and the temperature of the hot air
in the blast furnace began to decrease, which led to an increase in the permeability index.
Therefore, we keep two outliers in the eight furnace times and 14th furnace times. However,
the decrease in the air permeability index of the 33rd furnace times was not caused by the
increase in the coal injection amount and the hot blast temperature, so we eliminated the
abnormal points of the air permeability index of the 33rd furnace times.
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Figure 4. Outlier judgment.

The isolated forest algorithm was used to determine the normal value range of each
characterization parameter. Figure 5 shows that the data had better applicability when the
coal injection rate was controlled between 15.6 and 19.0, the hot air pressure was controlled
between 226 and 349, and the oxygen enrichment flow was controlled between 5068 and
7459. The anomalous data in each characterization parameter were classified in conjunction
with the furnace temperature to cool to hot phenomenon, and finally the data due to
anomalies in blast furnace operation (about 3/7 of the anomalous data) were retained.
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Figure 6 shows the time point analysis of the “slag skin” shedding based on the cooling
wall temperature. The furnace wall temperature data detection points are divided into
10 areas, and most of them are concentrated in the hearth. Each area is further divided
into four directions: east, west, northwest. It can be seen that the cooling wall temperature
fluctuates eight times within 400 furnace cycles. Among them, in the eight, 196th, 275th, and
376th furnace times, the furnace wall temperature fluctuated briefly and greatly. Analysis
of the reasons, in the “slag skin” off, the furnace wall temperature fluctuations occur for
the first time, the furnace charge increases, the furnace temperature and the furnace wall
temperature decreases. After that, the timely replenishment of fuel to the furnace is made
to make the furnace temperature increase, so that the furnace wall temperature increases.
When the furnace temperature is higher than the set value, we reduce the fuel added and
the furnace wall temperature fluctuations return to normal state. Therefore, it is believed
that in these four fluctuations “slag skin” is more likely to fall off, and we will record it. In
the 50th, 91th, 234th, 310th furnace times in the furnace wall temperature fluctuations are
smaller and analysis shows that this may be caused by instrument detection failure, and is
therefore not worthy of consideration.

The maximum correlation-minimum redundancy mutual information method is used
to select the characteristics of the furnace temperature characterization parameters. By
ranking the correlation between the parameters and the furnace temperature, 17 parameters
are selected from 39 characterization parameters such as blast humidity, furnace belly gas
volume, oxygen enrichment rate, coal injection volume, hot air pressure and blast temper-
ature, including 12 control parameters such as hot air pressure, cold air flow rate, blast
humidity and oxygen enrichment flow rate, as well as the furnace belly gas volume, and
the five state parameters such as gas volume, gas permeability index, oxygen enrichment
rate, etc. The grey correlation analysis algorithm with balanced proximity was used to
analyze the correlation between the characterization parameters and the silicon content of
the molten iron at different time delays, and Figure 7 shows that the cold air pressure and
hot blast temperature have the highest correlation with the silicon content of the molten
iron at time delay 1. The coke ash and top air temperature have the highest correlation
with the silicon content of the molten iron at time delay 2, and the blast humidity has the
highest correlation with the silicon content of the molten iron at time delay 3. In this way,
the correlation coefficients of all control parameters with the silicon content of the molten
iron are obtained.



Metals 2022, 12, 1403 14 of 18Metals 2022, 12, 1403 14 of 19 
 

 

 

Figure 6. Analysis of slagging time point based on cooling wall temperature. 

The maximum correlation-minimum redundancy mutual information method is 

used to select the characteristics of the furnace temperature characterization parameters. 

By ranking the correlation between the parameters and the furnace temperature, 17 pa-

rameters are selected from 39 characterization parameters such as blast humidity, furnace 

belly gas volume, oxygen enrichment rate, coal injection volume, hot air pressure and 

blast temperature, including 12 control parameters such as hot air pressure, cold air flow 

rate, blast humidity and oxygen enrichment flow rate, as well as the furnace belly gas 

volume, and the five state parameters such as gas volume, gas permeability index, oxygen 

enrichment rate, etc. The grey correlation analysis algorithm with balanced proximity was 

used to analyze the correlation between the characterization parameters and the silicon 

content of the molten iron at different time delays, and Figure 7 shows that the cold air 

pressure and hot blast temperature have the highest correlation with the silicon content 

of the molten iron at time delay 1. The coke ash and top air temperature have the highest 

correlation with the silicon content of the molten iron at time delay 2, and the blast hu-

midity has the highest correlation with the silicon content of the molten iron at time delay 

3. In this way, the correlation coefficients of all control parameters with the silicon content 

of the molten iron are obtained. 

0 50 100 150 200 250 300 350 400
0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
d

d
ed

 d
at

a

Time/h

 B0 50 100 150 200 250 300 350 400

368.5

369.0

369.5

370.0

370.5

371.0

371.5

F
u

rn
ac

e 
w

al
l 

te
m

p
er

at
u

re

/℃

行号

 Furnace wall temperature

Figure 6. Analysis of slagging time point based on cooling wall temperature.
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Figure 7. Correlation analysis of partial control parameters and silicon content in molten iron at
different time delays.

4.2. Parameter Set Division

Matlab was used to divide the 12 control parameters and the five state parameters
into GRA-FCM. Table 3 shows the results of the GRA analysis of the state parameters
and the control parameters. It can be seen that the analysis results are basically in line
with the influence of each control parameter on the state parameters in blast furnace
production. The time-delayed order of the characterization parameters in relation to the
silicon content of the molten iron is combined to construct a directed diagram of the furnace
temperature characterization parameters. Among them, the oxygen enrichment flow rate,
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hot blast temperature, coal injection volume and blast air humidity have a large influence
on the furnace belly gas index, so these four control parameters are used as input data
for predicting the furnace belly gas index. In addition, the oxygen-enriched flow control
parameter is also used as data input for the prediction of the oxygen-enriched rate state
parameter, indicating that a change in one control parameter can affect the direction of
several state parameters.

Table 3. Correlation coefficient between state parameters and control parameters.

Parameters Furnace Belly
Gas Volume

Breathability
Index

Furnace Top
Pressure

Theoretical Combustion
Temperature

Oxygen Enrichment
Rate

Coal injection volume 0.6432 0.3687 0.2659 0.4215 0.4184
Hot blast temperature 0.5370 0.2875 0.1040 0.6321 0.2521
Oxygen-enriched flow 0.4248 0.4769 0.2350 0.2742 0.5387

Clinker ratio 0.1753 0.1855 0.1258 0.0952 0.0561
Coke sulphur content 0.0470 0.1332 0.1270 0.2064 0.2107

Coke ash 0.4985 0.2623 0.0421 0.3168 0.3270
Nitrogen flow 0.2158 0.2954 0.2693 0.1683 0.1646
Cold air flow 0.3965 0.4637 0.3216 0.0264 0.1196
Hot air flow 0.4125 0.5367 0.4270 0.4321 0.2942

Blast humidity 0.4727 0.2689 0.1695 0.5637 0.1855
Blast temperature 0.3352 0.2262 0.2064 0.6341 0.2320

Coke load 0.3277 0.1373 0.1242 0.4074 0.3211

4.3. Dynamic Prediction of Silicon Content in Iron

The GWO-SVR model is used to predict each state variable in turn, and the prediction
results are substituted into the input data of the iron silicon content prediction, and finally
the dynamic prediction of iron silicon content is achieved. Figure 8 illustrates the iterative
process of the GWO algorithm, where the model leveled off in fitness after 24 iterations.
As can be seen in Figure 9, the GWO-SVR model predicts the silicon content of the iron
closer to the real value than the SVR model. Furthermore, the advantage of this dynamic
prediction of molten iron silicon content is that early prediction and control of molten iron
silicon content can be achieved by state parameter prediction when only control parameters
and partial state parameters are available. This operation is more in line with the actual
production situation of the blast furnace, that is, the workers adjust the control parameters
through the change of state parameters, which helps the blast furnace conditions to be
stable and forward.
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Figure 8. Iterative process of GWO algorithm.
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Figure 9. Comparison of GWO-SVR and SVR forecasts.

Three evaluation metrics, root mean square error (RMSE), mean absolute error (MAE)
and mean absolute percentage error (MAPE), were introduced to analyze the prediction
results of Figure 9, as shown in Table 4, based on the GWO-SVR in all three error evaluation
results and are smaller than the traditional SVR model.

Table 4. Error comparison analysis.

RMSE MAE MAPE

SVR model 0.1859 0.1473 0.2636
GWO-SVR model 0.0994 0.0747 0.1252

4.4. Real-Time Regulation of Control Parameters

The furnace temperature control parameters are regulated in real time according to the
predicted silicon content of the molten iron. Table 5 shows that for every 1% increase in
coal injection, the silicon content of the molten iron increases by approximately 2.8%. For
every 50 increase in hot blast temperature, the silicon content of the molten iron increases by
approximately 2.1%; for every 1% increase in coke ash, the silicon content of the molten iron
increases by approximately 1.6%, and for every 1% increase in oxygen enrichment flow, the
silicon content of the molten iron increases by approximately 1.2%. The degree of influence
of different control parameters on the silicon of the iron is measured by the control variable
method and the furnace temperature control sequence is set according to the expert experience.
Using the furnace temperature dynamics prediction as a reference, the state parameters are
controlled within a reasonable range in accordance with the expert experience.

Table 5. Influence of control parameters on silicon content in hot metal.

Control Parameters Parameter Variations Molten Iron [Si] Control Parameters Parameter Variations Molten Iron [Si]

Coal injection volume ±1% ±2.8% Nitrogen flow ±1% ±0.6%
Hot blast temperature ±50 ◦C ±2.1% Cold air flow ±1% ±0.9%
Oxygen-enriched flow ±1% ±1.2% Hot air flow ±1% ±1.3%

Clinker ratio ±1% ±1.3% Blast humidity ±1% ±1.9%
Coke sulphur content ±1% ±1.0% Blast temperature ±50 ◦C ±1.5%

Coke ash ±1% ±1.6% Coke load ±1% ±1.1%

5. Conclusions

(1) The model selects 17 main characterization parameters affecting furnace tempera-
ture from 39 parameters through the maximum correlation–minimum redundancy mutual
information feature selection method. The gray correlation analysis of equilibrium prox-
imity was used to quantify the correlation between the characterization parameters and
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the silicon content of the molten iron under different time delays, and the main furnace
temperature characterization parameter set with the best influence time was established.

(2) The GRA-FCM model is used to establish a blast furnace data dynamic network
from 12 control parameters to five state parameters. The GWO-SVR model was used
to predict the control parameters in different clusters, step by step, to achieve dynamic
prediction of the silicon content of the iron water. The results show that the RMSE, MAE and
MAPE prediction errors of the GWO-SVR model are 0.0994, 0.0747 and 0.1252, respectively,
and are all smaller than those of the conventional SVR model. Combining the dynamic
prediction model with expert experience, the influence of control parameters on the silicon
content of molten iron was further studied. For every 1% increase in coke ash content, the
silicon content in molten iron increases by 1.6% on average.

(3) A multi-step dynamic prediction and closed-loop control model of “control parameters-
state parameters-silicon content in molten iron-control parameters” has been established
from the actual production situation of the blast furnace. In future studies, the cost of regu-
lation of each control parameter will be combined with intelligent algorithms to establish
a recommended model for control parameters.

Author Contributions: Conceptualization, Z.C. and A.Y.; methodology, Z.C.; software, Z.C. and L.W.;
validation, Z.C., A.Y. and Y.H.; formal analysis, Z.C.; investigation, Z.C.; resources, Z.C.; data curation,
Z.C.; writing—original draft preparation, Z.C.; writing—review and editing, Z.C.; visualization, Z.C.;
supervision, A.Y. and Y.H.; project administration, Z.C.; funding acquisition, Z.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (NO.52074126).

Data Availability Statement: Not applicable.

Acknowledgments: Thanks to the Hebei Engineering Research Center for the Intelligentization
of Iron Ore Optimization and Ironmaking Raw Materials Preparation Processes for training and
educating, Thanks to my teacher Yang Aimin for his careful guidance, and thanks to classmates in
my team for their companionship.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dai, Y.; Li, J.; Shi, C.; Yan, W. Dephosphorization of high silicon hot metal based on double slag converter steelmaking technology.

Ironmak. Steelmak. 2021, 48, 447–456. [CrossRef]
2. Liu, J.Y.; Zhang, W. Blast furnace temperature prediction based on RBF neural network and genetic algorithm. Electron. Meas.

Technol. 2018, 41, 42–45.
3. Zhu, X.Z.; Zhang, H.W.; Yang, C.J. MWPCA blast furnace anomaly monitoring algorithm based on Gaussian mixture model.

CIESC J. 2021, 72, 1539–1548.
4. Li, J.; Wei, X.; Hua, C.; Yang, Y.; Zhang, L. Double-hyperplane fuzzy classifier design for tendency prediction of silicon content in

molten iron. Fuzzy Sets Syst. 2022, 426, 163–175. [CrossRef]
5. Song, J.H.; Yang, C.J.; Zhou, Z. Application of improved EMD-EIman neural network to predict silicon content in hot metal.

CIESC J. 2016, 67, 729–735.
6. Chen, W.; Kong, F.; Wang, B.; Li, Y. Application of grey relational analysis and extreme learning machine method for predicting

silicon content of molten iron in blast furnace. Ironmak. Steelmak. 2019, 46, 974–979. [CrossRef]
7. Su, X.; Sun, S.; Zhang, S.; Yin, Y.; Xiao, W. Improved multi-layer online sequential extreme learning machine and its application

for hot metal silicon content. J. Frankl. Inst. 2020, 357, 12588–12608. [CrossRef]
8. Chen, J.H.; Zhou, P. Operational Optimization Control of Molten lron Quality in Blast Furnace lronmaking Process. Control. Eng.

China 2020, 27, 1136–1141.
9. Jiang, Z.H.; Xu, C.; Gui, W.H.; Jiang, K. Prediction Method of Hot Metal Silicon Content in Blast Furnace Based on Optimal

Smelting Condition Migration. Acta Autom. Sin. 2022, 48, 194–206.
10. Yin, L.Z.; Guan, Y.Y.; Jiang, Z.H.; Xu, X.M. Optimal method of selecting silicon content data in blast furnace hot metal based on

k-meanS++. CIESC J. 2020, 71, 3661–3670.
11. Sun, J.; Cui, T.T.; Liu, X.Y.; Xu, B. Prediction of Silicon Content in Blast Furnace Hot Metal by PSO-GA Optimized ELM. Mach.

Des. Manuf. 2022, 03, 228–232.
12. Cui, B.; Chen, W.; Wang, B.X.; Wu, P.F.; Chen, Y. Prediction of silicon content in hot metal of blast furnace based on grey correlation

analysis and extreme learning machine. Metall. Ind. Autom. 2022, 46, 54–62.

http://doi.org/10.1080/03019233.2020.1807288
http://doi.org/10.1016/j.fss.2021.05.002
http://doi.org/10.1080/03019233.2018.1470146
http://doi.org/10.1016/j.jfranklin.2020.05.031


Metals 2022, 12, 1403 18 of 18

13. Zhang, X.S.; Xu, X.Y.; Pan, F. Application of ET-BAS algorithm in furnace temperature predictive control. Transducer Microsyst.
Technol. 2021, 40, 157–160.

14. Zhai, N.J.; Zhou, X.F.; Li, S.; Shi, H.B. Prediction method of furnace temperature based on transfer learning and knowledge
distillation. Comput. Integr. Manuf. Syst. 2022, 28, 1860–1869.

15. Huang, C.L.; Tang, Y.L.; Zhang, X.F.; Chu, Y.Z. Prediction and Simulation of Silicon Content in Blast Furnace for PCA and
PSO-ELM. Comput. Simul. 2020, 37, 398–402.

16. Cui, T.T. Research on Prediction Model of Silicon Content in Blast Frnace Hot Metal; North China University of Science and Technology:
Qinhuangdao, China, 2020.

17. Han, Y.; Li, J.; Yang, X.L.; Liu, W.X.; Zhang, Y.Z. Dynamic Prediction Research of Silicon Content in Hot Metal Driven by Big Data
in Blast Furnace Smelting Process under Hadoop Cloud Platform. Complexity 2018, 2018, 8079697. [CrossRef]

18. Wang, X.D.; Hao, L.Y. Analysis of modern ironmaking technology and low-carbon development direction. China Metall. 2021, 31, 1–5.
19. Zhou, P.; Liu, J.J. Prediction of blast furnace hot metal quality interval based on stacking. Control. Decis. 2021, 36, 335–344.
20. Yin, L.Z.; Li, L.; Jiang, Z.H. Prediction of silicon content in hot metal using neural network and rough set theory. J. Iron Steel Res.

2019, 31, 689–695.
21. Li, L.Y. Research on Hydrogen Utilization in Dr Shaft Furnace and Temperature Field; Yanshan University: Qinhuangdao, China, 2016.
22. Jiang, Z.H.; Dong, M.L.; Gui, W.H.; Yang, C.H.; Xie, Y.F. Two-dimensional Prediction for Silicon Content of Hot Metal of Blast

Furnace Based on Bootstrap. Acta Autom. Sin. 2016, 42, 715–723.
23. Fang, Y.; Zhao, X.; Zhang, P.; Liu, L.; Wang, S.Y. Prediction modeling of silicon content in liquid iron based on multiple kernel

extreme learning machineand improved grey wolf optimizer. Control. Theory Appl. 2020, 37, 1644–1654.
24. Zhou, P.; Liu, J.P.; Liang, M.Y.; Zhang, R.Y. KPLS Robust Reconstruction Error Based Monitoring and Anomaly Identification of

Fuel Ratio in Blast Furnace Ironmaking. Acta Autom. Sin. 2021, 47, 1661–1671.
25. Zhao, N.; Wang, Y.Y.; Yang, F.; Yang, W.X. Application of principal component analysis and least squares support vector machine

model inprediction of sulfur and silicon content in molten iron. Metall. Anal. 2020, 40, 1–6.
26. Liu, X.; Zhang, W.J.; Shi, Q.; Zhou, L. Operation Parameters Optimization of Blast Furnaces Based on Data Mining and Cleaning.

J. Northeast. Univ. (Nat. Sci.) 2020, 41, 1153–1160.
27. Liu, S.; Liu, F.L.; Liu, E.H.; Lv, Q.; Shi, Q. Optimization of blast furnace parameters based on big data technology and process

experience. Iron Steel 2019, 54, 16–26.
28. Li, Z.N.; Chu, M.S.; Liu, Z.G.; Ruan, G.J.; Li, B.F. Effect of the large blast furnace charging parameters on gas flow. J. Mater. Metall.

2019, 18, 7–13.
29. Liu, J.J.; Zhou, P.; Wen, L. Root mean square error probability weighted integrated learning based modeling for molten ironquality

in blast furnace ironmaking. Control. Theory Appl. 2020, 37, 987–998.
30. Wen, B.; Wu, S.; Zhou, H.; Gu, K. A BP neural network based mathematical model for predicting Si content in hot metal from

COREXprocess. J. Iron Steel Res. 2018, 30, 776–781.
31. Zhuang, T.; Yang, C.J. Silicon content forecasting method for hot metal based on Elman-Adaboost strong predictor. Metall. Ind.

Autom. 2017, 41, 1–6.
32. Yang, K. Modeling Silicon Content Inmolten Iron of Blast Furnace Based on Neural Network; Yanshan University: Qinhuangdao, China, 2016.
33. Diniz, A.P.M.; Côco, K.F.; Gomes, F.S.V.; Salles, J.L.F. Forecasting Model of Silicon Content in Molten Iron Using Wavelet

Decomposition and Artificial Neural Networks. Metals 2021, 11, 1001. [CrossRef]
34. Roe, D.R.; Brooks, B.R. Improving the speed of volumetric density map generation via cubic spline interpolation. J. Mol. Graph.

Model. 2021, 104, 107832. [CrossRef] [PubMed]
35. Jiang, Y.; Zhou, P.; Yu, G. Multivariate Molten Iron Quality Modeling Based on Improved Incremental Random Vector Functional-

link Networks. IFAC Pap. 2018, 51, 290–294. [CrossRef]
36. Guan, X. Prediction of hot metal silicon content in blast furnace based on extreme learning machine andflower pollinate algorithm.

Electron. Meas. Technol. 2020, 43, 77–80.
37. Xu, D.; Lu, Y.X.; Xiao, Y.; Zhao, Y.; Cai, X.W.; Ding, L. Identification of abnormal line loss for a distribution power network based

on an isolation forest algorithm. Power Syst. Prot. Control. 2021, 49, 12–18.
38. Zhao, Y.N.; Ye, L. A Numerical Weather Prediction Feature Selection Approach Based on Minimal-redundancy-maximal-relevance

Strategy for Short-term Regional Wind Power Prediction. Proc. CSEE 2015, 35, 5985–5994.
39. Chen, M.J.; Zhang, W.D. Point-of-interest recommendation algorithm based on grey relational analysis and temporalspatial

preference feature. Syst. Eng. Electron. 2022, 44, 1934–1941.
40. Pan, Y.H.; Zhou, P.; Yan, Y.; Agrawal, A.; Wang, Y.H. New insights into the methods for predicting ground surface roughness in

the age of digitalisation. Precis. Eng. 2021, 67, 393–418. [CrossRef]

http://doi.org/10.1155/2018/8079697
http://doi.org/10.3390/met11071001
http://doi.org/10.1016/j.jmgm.2021.107832
http://www.ncbi.nlm.nih.gov/pubmed/33444979
http://doi.org/10.1016/j.ifacol.2018.09.434
http://doi.org/10.1016/j.precisioneng.2020.11.001

	Introduction 
	Mechanistic Research 
	Relevant Response Studies 
	Silicon Content of Iron 
	Theoretical Combustion Temperature 
	Breathability Index 
	The Reduction Behavior of H2 

	Classification of the Furnace Parameters 
	Coupling of Furnace Temperature Parameters 
	Parameter Regulation 

	Model Building 
	Data Pre-Processing 
	Data Deletion 
	Data Addition 

	Data Reduction and Restructuring 
	Mutual Information Feature Selection Based on Maximum Correlation-Minimum Redundancy 
	Data Restructuring for Grey Correlation Analysis Based on Equilibrium Proximity 

	Representation Parameter Network Construction 
	Dynamic Furnace Temperature Prediction 
	Real-Time Regulation of Control Parameters 

	Analysis of Results 
	Data Processing 
	Parameter Set Division 
	Dynamic Prediction of Silicon Content in Iron 
	Real-Time Regulation of Control Parameters 

	Conclusions 
	References

