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Abstract: Roll-bending technology has a high degree of flexibility and does not require special molds.
However, based on the existing plastic mechanics theory and finite element simulation, it is difficult
to accurately analyze the complex spatial relationship of profile roll forming. Therefore, a fixed-
curvature prediction model is constructed based on XGBoost (extreme gradient boosting), and the
coupling effect of the process parameters and material performance parameters on the roll-forming
process is explored. Combined with a Bayesian optimization algorithm, the hyperparameters of
the fixed-curvature prediction model are optimized. In addition, based on the prediction result
of the fixed curvature, a variable-curvature prediction model is established using the conditional
random field (CRF). To further improve the prediction accuracy, an error compensation network is
added after the result of the CRF in order to map the discrete sequence to the continuous sequence.
The experimental results show that the mean square error (MSE), mean absolute error (MAE), and
mean absolute percentage error (MAPE) predicted by the models above are much smaller than other
methods, which verifies the superiority of the prediction models.

Keywords: roll bending; springback prediction; Bayesian optimization; CRF; XGBoost

1. Introduction

There is a vast aerospace market for high-precision bending parts [1], such as rocket
booster frame rings, aircraft wind-driven structural fuselage, etc. Roll-bending technology
does not require exclusive molds, is not limited by the length of the profile, and has broad
applicability. It can well support the production needs of high-precision bending parts
in the aerospace field. However, the complex force and deformation in the roll-forming
process lead to uncontrollable springback, which has a great impact on the dimensional
accuracy of the product.

Many scholars have devoted themselves to the study of bending springback. In the
field of mathematical modeling, Desinghege et al. [2] studied the degenerative behavior of
magnesium alloys from a microscopic perspective based on mathematical theory. Based
on the experimental results, an analytic equation was established to explain the effect of
grain size on magnesium springback. Su et al. [3] proposed the five-boundary conditional
distribution function of the forming angle. The stress, strain, and springback of the sheet
during roll forming under three different angle distribution functions were studied. The
results showed that the stress, strain, and springback of each pass based on the increment of
the forming angle under the condition of five boundaries in the roll-forming process were
smaller than those of other forming angle distribution methods. To obtain a higher forming
accuracy of spatially variable-curvature bending metal tubes, Wang et al. [4] proposed
a numerical approximate springback prediction and compensation method considering
SVC MT section distortion. The experimental results showed that the position deviation of
each node was less than 1.4% and the average position deviation was less than 0.80% after
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springback compensation. In the field of finite element modeling, Fan et al. [5] studied
the springback characteristics of TRBs by the finite element code Abaqus/USDFLD and
the cylindrical bending test, providing an important opportunity to further understand
TRB springback characteristics. Chang et al. [6] studied the bending springback of medium
manganese steel under different conditions through experiments and simulations. Material
models with a constant and variable modulus of elasticity were established. The V-shaped
bending test at a constant and variable modulus of elasticity was simulated and compared
with the experimental results. The simulation results of the variable modulus of elastic-
ity were closer to the experimental results, which proves the importance of considering
the change in elastic modulus of unloading in the numerical simulation of manganese
steel. Sharma et al. [7] established a springback prediction analysis model combining
the effects of anisotropy and strain hardening, and simulated the springback behavior of
double-layer metal plates by using the Hill anisotropic yield criterion in Abaqus software.
Liu et al. [8] discussed the resilience energy of UHSS in cold forming through simulation
and experimental methods. At the same time, a three-dimensional finite element model was
established by using COPPA RF and MSC MARC to analyze the CRF process. Julsri et al. [9]
performed experimental bending tests and their corresponding finite element simulations.
The springback effect of AHS steel grade 980 during V-bending was studied.

However, in recent years, traditional mechanical analysis methods have been difficult
to further develop in the field of bending springback, and it has been difficult to make
breakthroughs [10]. Mechanical analysis methods can only be analyzed in a positive
direction. However, the development of artificial intelligence has brought a new way of
thinking, which avoids that limitation, and reverses the forming law through actual data.
Through the analysis of actual data by such methods, the change law of springback in
bending forming is learned, so as to accurately predict the final result of deformation.

For shaft tube parts, Choi et al. [11] studied the continuous bending forming of hairpins
in drive motors, extracted training data from finite elements, and used artificial intelligence
algorithms to compensate for the springback of the forming process. Sun et al. [12] con-
structed an optimization framework containing a GRU-based deep-learning network as
a prediction module, and proposed the Pb-NSGA-III algorithm to achieve the accurate
prediction of the bending and springback of tube shaft parts. Lu et al. [13] established
a machine-learning model based on finite element simulation data and optimized form-
ing paths for the stretch-and-bend process. For sheet metal parts, Cruz et al. [14] used a
shallow artificial neural network to identify constitutive model parameters by using the
force–displacement curve obtained by the bending experiment. Based on the learning
ability of shallow artificial neural networks, the bending springback was predicted by
the dataset extracted from finite elements. Liu et al. [15] used a deep neural network
training method based on theoretical guidance to predict sheet metal bending springback.
Compared with conventional springback compensation methods, the development cycle
was shortened, and the cost and calculation requirements were reduced. Xu et al. [16] and
Li et al. [17] proposed to use the genetic algorithm (GA) and sparrow search algorithm
(SSA) to predict the cold bending springback of the hull based on the backpropagation
neural network (BPNN), which greatly improved the prediction accuracy and prediction
speed. Wasif et al. [18] analyzed the influence of various parameters on the bending spring-
back of JSH590 steel by the V-shaped bending test, and applied the genetic algorithm to
optimize the process parameters of minimum springback. Serban et al. [19] developed
an artificial neural network model with sheet thickness, punch radius and friction coef-
ficient as the input parameters to predict the bending springback of cylindrical plates.
Trzepiecinski et al. [20] further considered anisotropy, taking an anisotropic cold-rolled
steel plate as the research object, and used an artificial neural network based on multilayer
perceptron combined with the genetic algorithm to predict bending springback. In addition
to the conventional bending process, Liang et al. [21] proposed a chain die design method
using a multi-section compensation strategy in the field of chain die forming, and used the
nondominated ranking genetic algorithm II to minimize the deviation of the calculated
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cross-sectional springback profile from the required geometry. The results showed that
the springback and longitudinal arch were reduced by using the proposed mold design
method. El et al. [22] took the deep drawing process as the research object, and proposed an
optimization method combining finite element, experimental, artificial neural network and
particle swarm optimization to optimize the quality of stamped parts, especially to solve
the springback problem. In order to optimize the stamping forming quality of high-strength
steel, Jia et al. [23] used the B-Benhnken test to construct a multi-objective optimization
function of the response surface between the maximum springback displacement and
the maximum thinning ratio process parameters. The objective function was solved by
using the NSGA-II algorithm to obtain the optimal solution. Akrichi et al. [24] introduced
the neural network method into the quality prediction of the single-point incremental
forming process, so as to formulate the optimal toolpath, incremental step size, spindle
speed and other parameters. Ciubotariu et al. [25] introduced artificial intelligence methods
into the welding springback problem, and applied genetic algorithms to optimize weld
line positioning, combining multiple software platforms to evaluate the data and perform
experimental verification. In addition to the springback that appears immediately after
processing, Kong et al. [26] also took time-dependent springback as the research object
and proposed a straightness dynamic evaluation method considering time-dependent
springback in the bending–straightening process with the GA-BP neural network as the
main part, and established a rapid prediction model of time-dependent springback.

Artificial intelligence research studies the inherent laws of complex forming relation-
ships in roll bending through the intelligent analysis model and machine-learning method.
The current artificial intelligence methods and forming mechanisms have not achieved
deep integration. There are certain limitations in the precise characterization and analysis
of the coupling effect of complex factors. The theoretical research foundation is relatively
weak, and the spatial parameter correlation constraints and conditional criteria are insuffi-
cient. The analysis system of profile roll bending under complex influence conditions has
not been scientifically established, which affects the effectiveness of the analysis. There-
fore, the artificial intelligence research of complex forming of profile rolling is still in the
exploratory stage.

Given the background that the basic theory and standard technology of roll-bending
springback deformation of profiles are difficult to further develop, the influence of spring-
back deformation of profile roll bending is analyzed, and the characterization and mea-
surement methods of the roll-bending feature space are studied. Using the idea of a deep
integration of mechanism research and artificial intelligence, a theoretical model for the
intelligent analysis of roll-bending forming is established. A smart analysis method for
springback deformation of roll-bending forming is designed to reveal the complex forming
laws of the profile rolling.

2. Prediction Model for Springback of Fixed Curvature Based on XGBoost
2.1. Analysis of Influencing Factors of Springback and Data Preprocessing

The springback is the main factor affecting the forming accuracy of the roll bending,
and the main influencing factors of springback are the material properties, geometric
parameters, and forming process parameters of the profile. Under the condition that the
material and shape of the profile remain unchanged, the external factors that affect the
springback of roll forming (the process parameters) are studied. The process parameters
selected are roll spacing, feed rate, reduction, and the radius of curvature before springback.
Part of the data is shown in Table 1.
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Table 1. Part of the dataset.

Roll Spacing
(mm)

Feed Rate
(mm/s)

Reduction
(mm)

Radius of Curvature
before Springback (mm)

465 14.65

3 166,111
6 24,901
9 8098

12 4426
15 3207
18 2385
21 1837
24 1591

Construction of Density Clustering Features

The springback amount of the profile is Rs (the mechanical bending radius of the
profile before springback) minus Re (the measured bending radius of the profile after
springback). Rs is shown in Equation (1). In Equation (1), Rr is the radius of the lower
roller, m is the reduction amount, h is the thickness of the profile, and L0 is the distance
from the lower roller to the upper roller.

Rs = −
2Rrm + 2hm + L2

0 + m2

2m
(1)

The springback amount ∆R is shown in Equation (2).

∆R = Rs − Re (2)

It can be seen from Equation (1) that when the roller parameters of the roll brake are
unchanged, Rs is only related to m and L0. Therefore, Rs and L0 are repeated features, and
the L0 is removed from the parameter features to reduce the learning pressure of the model.

The elastoplastic performance of the profile affects the degree of springback, so this
factor must be taken into account to improve the effect of model learning. The clustering
method is used to divide the data into k different categories, arrange them based on the
degree of springback, and assign them as 1 to k. The more significant the value, the greater
the degree of springback, providing a valuable reference for the training of the model
feature. The new features are constructed using the clustering algorithm proposed by Ji
and Lei [27], which is called density clustering.

Suppose there is a dataset S = {Xi}. For any data point Xi in S, the local density ρi
and the distance σi can be defined. ρi is the sum of the number of data points in the dataset
whose distance from the i point is less than a specific value. σi describes how close point i
is to other points whose local density is more significant than point i. It can be concluded
that for a point i, if its local density ρi is larger than other points, and the distance σi from
other points with higher local density is also larger, then point i is a possible center point of
a class. To select the cluster center, the quantity γ is introduced, and the definition of γ is
shown in Equation (3).

γi = ρiσi (3)

The size of the value γ can be a criterion for measuring whether it is possible to become
a cluster center, so it is necessary to screen based on the γ value of the data points, and find
the points with the largest γ, which are the cluster centers.

For data with known features, the first step in clustering is to have a clear definition
of similarity, and only with similarity can the relationship between samples be accurately
defined. Then, with the process parameter x and the profile parameter y, sample data can
be obtained as Di = (xi, yi, ∆Ri), assuming that D1 = (x1, y1, ∆R1) and D2 = (x1, y1, ∆R1)
are two different samples in the data set. Its similarity is defined as Equation (4).

dist = αd(x1, x2) + βd(y1, y2) + γd(∆R1, ∆R2) (4)
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In Equation (4), d(x, y) represents the Euclidean distance between x and y, and α, β,
and γ are weight coefficients. The distribution of data points in the coordinate system after
clustering is shown in Figure 1. The horizontal axis represents the reduction amount m,
and the vertical axis represents the ∆R.
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Figure 1. Schematic diagram of data distribution after clustering.

Based on the definition of similarity, the samples are clustered. The springback
of profiles can be roughly divided into three regions: elastic region, plastic dominant
region, and elastoplastic region. Therefore, in Figure 1, the data points are divided into
three clusters.

Profiles show different springback in different regions. Usually, the springback is larger
in small-curvature forming, more minor in large-curvature forming, and the springback
in the middle area is more complicated. Clustering is used to find three cluster centers
in order to divide the data into three clusters, and each cluster corresponds to a different
degree of springback of the profile. The construction of new features is completed based on
clustering, and part of the data is shown in Table 2.

Table 2. Dataset after adding new features.

Roller Spacing
(mm)

Feed Rate
(mm/s)

Reduction
(mm) Degree of Springback Radius of Curvature

(mm)

465 14.65

3 3 166,111
6 3 24,901
9 2 8098

12 2 4426
15 2 3207
18 1 2385
21 1 1837
24 1 1591

2.2. Comparison and Analysis of Machine-Learning Methods

In fixed-curvature roll bending, the final output result is the average bending radius of
the entire profile measured. The factors that affect the bending radius include the reduction,
distance between lower rollers, and properties of the profile itself. That is, the independent
variable is a multi-dimensional feature vector, and the dependent variable is the curva-
ture radius. Regression algorithms in machine learning fit this process. Support vector
machine regression (SVR), ridge regression, linear regression, decision tree regression, and
XGBoost [28] are all regression algorithm models widely used for various problems in
current machine learning. By comparison, XGBoost has higher accuracy, and it can also
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perform a second-order Taylor expansion on the loss function to facilitate the application of
a suitable loss function. XGBoost also adds a regular term to the objective function, which
can effectively control the complexity of the model, control the size of the model parameters,
and effectively solve the problem of model overfitting. For the problem of small samples,
the learned model has better generalization and cannot easily fall into optimal local results.
The XGBoost algorithm is selected.

2.3. Construction of Springback Prediction Model with Fixed Curvature Based on XGBoost

Based on the above analysis of the advantages of XGBoost, an intelligent coupling
influence analysis model of fixed curvature based on XGBoost is proposed. Based on
the complex nonlinear mechanical properties of the elastic, plastic and elastoplastic
state distribution of materials, the coupling influence analysis studies the basic law
of springback deformation under the coupling of material parameters and forming
mechanical parameters.

Therefore, the coupled effects analysis is a classification regression problem based
on the elastoplastic forming relationship. The objective function of multi-factor coupling
affects is established: Re = SC

(
Mp, MG, F

)
; Re is the radius of curvature after forming, Mp

is the performance parameter of the material, MG is the geometric parameter of the material,
F is the forming process parameter, and SC is the forming relationship function under the
coupling action. Based on XGBoost, with the regression tree as the base model, the coupling
analyzer (SC) of complex effects is constructed by using the gradient boosting method
through the associated regression tree joint decision. Additionally, Bayesian optimization
is used to adjust the hyperparameters of the model to optimize the performance ability of
the model. As shown in Figure 2.
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In the process of fixed-curvature roll bending, each data record corresponds to one
experiment (one profile). The reduction amount, the feed rate, the curvature radius before
springback, and the new features constructed above are selected to form the characteristics
of the data set. Since the chosen model belongs to the tree model, the data features
of different orders of magnitude do not affect the model results, so there is no need to
normalize the features. Assuming that the data sample size is n, the final data format
is shown in Equation (5). P represents the reduction amount, V represents the feed rate,
E represents the constructed new feature, Rs represents the radius of curvature before
springback, and Re represents the radius of curvature measured after springback.

P1 V1 E1 Rs1 Re1

P2 V2 E2 Rs2 Re2

. . . . . . . . . . . . . . .
Pn Vn En Rsn Ren

 (5)

The primary process of the springback prediction model with fixed curvature based
on XGBoost includes current tree node splitting, tree structure scoring, updating the strong
classifier model, and Bayesian optimization hyperparameters. The key to the algorithm is
how to divide the current node. The gain after a split is shown in Equation (6):

Gain =
1
2

(
G2

L
HL + λ

+
G2

R
HR + λ

− (G L + GR)
2

HL + HR + λ

)
− γ (6)

where GL and GR, respectively, represent the accumulated sum of the first-order partial
derivatives of the left and right subtrees containing the samples, HL and HR, respectively,
represent the accumulated sum of the second-order partial derivatives of the left and right
subtrees containing the samples, λ represents the control parameters before the regular
term, γ represents the complexity of the tree structure, and the more leaf nodes, the greater
the value of γ. Calculate P, V, E, Rs and Re when splitting, select the splitting feature with
the highest gain and its splitting position, and perform the splitting operation on this node
to split two new left and right leaf nodes. The above steps are performed recursively until
the score of this tree meets the requirements, at which time the weak learner training of
the current round is completed. Finally, the strong learner is updated using the current
weak learner.

To make the XGBoost model perform better, in addition to the parameter learning
during the training process, the adjustment of hyperparameters is also essential. The
hyperparameters that XGBoost can adjust include the depth of the tree, the maximum
number of leaf nodes, the learning rate, and the regularity. Bayesian optimization is
used to adjust the hyperparameters. The algorithm will eventually generate multiple
strong classifiers with different hyperparameters in the Bayesian optimization, and a better
prediction model can be obtained by screening them.

2.4. Realization of Springback Prediction Model with Fixed Curvature Based on XGBoost

First, the roll-bending experiment is performed to obtain the data set shown in
Equation (5). Separate 70% of the dataset as the training set and the other 30% as the
test set. Build the XGBoost springback prediction training model and input the training set
into the model for training. The model structure of XGBoost plus Bayesian optimization is
shown in Figure 3.
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The final evaluation index of the model is the mean square error of the radius of
curvature after springback. Since it is training with small sample data, to prevent overfitting,
an L2 regular term is added, and the weight can be adjusted as a hyperparameter. In
addition, limiting the height of the tree to a relatively low range can also prevent overfitting
to a certain extent. After model training is complete, the test set is used to evaluate
the current model and record the results. Different models are obtained by adjusting
hyperparameters through Bayesian optimization, and the hyperparameters are optimized
based on the results until the set upper limit of the number of times is reached.

The algorithm steps are shown in Algorithm 1:

Algorithm 1: Fixed-curvature springback prediction algorithm based on XGBoost

Input: training set dataset_train and test set dataset_test
Output: Springback prediction model f
Step 1: Initialize the parametric model f̂ .
Step 2: Iteratively generate M weak learners and update the strong learner f̂ as follows:

(1) Find the splitting location with the greatest gain from the current node splitting
(2) Split to get new left and right leaf nodes
(3) Repeat the above two steps until the current tree structure score meets the re-quirements

or reaches the upper limit of splitting
(4) Update the strong learner f̂ , jump out if the number of weak learners reaches M;

otherwise, find the residual of the current weak learner, and go to step 1)

Step 3: If the prediction result of the model f̂ reaches the set standard or the update times reaches
the set upper limit, go to Step 4; otherwise, go to Step 2.
Step 4: Use the test set to evaluate the model and store the current hyperparameter combination
and model evaluation score.
Step 5: If the set upper limit of Bayesian optimization times is reached or the result meets the
expected standard, go to Step 6; otherwise, go to Step 1.
Step 6: Select the optimal hyperparameter combination from the searched
hyperparameter combinations.
Step 7: Use the optimal hyperparameter combination selected in Step 6 to construct a prediction
model f, f (P,V,E,RS) = RE.
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Algorithmic step 1 randomly initialized a set of model hyperparameters, including the
maximum depth of the tree, learning rate, and regularization weights. Steps 2 to 4 are the
learning process of the current hyperparameter combination model, evaluate the current
model, and store the evaluation result and the hyperparameter combination. Steps 5 to 7 are
the Bayesian optimization process, exploring the optimal hyperparameter combination,
and using the optimal hyperparameter combination to build the final prediction model.

3. Variable-Curvature Springback Prediction Model Based on Conditional
Random Field
3.1. Comparison and Analysis of Machine-Learning Methods

In the process of roll bending, there are big differences between variable-curvature
forming and fixed-curvature forming process. The factors affecting the forming process
in variable-curvature forming are not only the parameters of the material itself at each
stage and the process parameters in the forming process, but also affected by the previous
stage and the next stage of forming, and the various influencing factors are also changing
irregularly. Therefore, using fixed-curvature prediction model to predict variable-curvature
roll springback produces a large error, as shown in Figure 4. Si represents the state of the
i-th position of the profile, including the shape parameters, performance parameters, and
process parameters of the material at the current position.
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By using the fixed-curvature prediction model, the springback value can be known
when the influences before and after a certain stage of the profile are the same, and the
actual value of the profile springback can be obtained by experimental measurement.
Then for a variable-curvature profile, an inaccurate variable-curvature radius sequence
can be predicted by the fixed-curvature model, and an accurate variable-curvature radius
sequence can be obtained by actual measurement. The task of variable-curvature forming
prediction is to predict this exact sequence base on this inaccurate sequence. That is, a
sequence-to-sequence prediction problem.

Neural networks are widely used in dealing with sequence-to-sequence problems, in-
cluding recurrent neural network [29] and its variant long-short-term memory network [30],
bidirectional long-short-term memory neural network, GRU (Gate Recurrent Unit), and con-
ditional random field (CRF) [31] and so on. By comparison, in the task of variable-curvature
springback prediction, the output and output are both sequences, and the sequence is a
chain structure, which has a specific correlation before and after, which meets the modeling
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requirements of CRF. The training of the undirected graph model does not depend on a
large amount of data, and small-scale data can also obtain better results, which meets the
requirements to the problems. Therefore, the CRF is used to establish a springback model
of variable-curvature forming.

3.2. Construction of Variable-Curvature Springback Prediction Model Based on Conditional
Random Field

The task of the variable-curvature springback prediction model is to correct the error
of the sequence predicted by the fixed-curvature springback model to obtain the actual
curvature radius sequence of the profile.

A variable-curvature springback prediction model based on conditional random fields
is proposed. The model is based on the prediction of the fixed-curvature model. The input
is the prediction result of the fixed-curvature model to the variable-curvature experiment,
and the output is the actual measurement value of the variable-curvature experiment. Since
the conditional random field prediction is a sequence of a series of discrete values, to further
reduce the error, an error network needs to be added to map discrete values to continuous
values, making the sequence of prediction results smoother and more accurate. A fully
connected neural network is used to correct the error.

The structure of the springback prediction model based on the conditional random
field variable curvature is shown in Figure 5.
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Figure 5. Conditional random field undirected graph model.

In the process of variable-curvature roll bending, the data corresponding to each
profile is a sequence, which is composed of the process parameters corresponding to each
position of the profile, including the reduction amount, the speed of reduction, the feed rate,
and the average radius of curvature after springback. For each position of the profile, the
input required by the fixed-curvature model is included, so the curvature radius Rp can be
predicted for each position of the profile using the fixed-curvature model, which means the
radius of curvature of the profile when the front and back stages have the same effect on the
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current position. The actual measured radius of curvature is R f . The conditional random
field is a classification model, so the original output needs to be discretized. Using each
centimeter of profile length as a data point of the sequence, the sum of the raw point data
in this interval is summed and averaged as the value of the current data point. Assuming
that the length of a data sequence after discretization is n, the format of the final data is
shown in Equation (7): 

P1 V1 Rp1 R f1

P2 V2 Rp2 R f2

. . . . . . . . . . . .
Pn Vn Rpn R fn

 (7)

where Pi represents the reduction amount corresponding to position i, and Vi represents the
speed of reduction corresponding to position i. Rp sequence is the observation sequence,
and R f is the actual springback radius value sequence. The algorithm predicts the most
probable output sequence R f by observing the correlation between the Rp values and
taking the reduction amount P and the reduction speed V as a reference. Assuming that
the data sample is m, the final data format is shown in Equation (8):

s11 s12 . . . s1n
s21 s22 . . . s2n
. . . . . . . . . . . .
sm1 sm2 . . . smn

 (8)

where sij represents the state information of the j-th position in the i-th data. For example,

s11 =
{

P1, V1, Rp1, R f 1

}
includes the relevant information of the first position of the data

sequence corresponding to the first profile.
The main processes of the variable-curvature springback prediction model based

on CRF include calculating the empirical distribution of data, training model parame-
ters by the quasi-Newton method, finding the optimal path, and discrete to continuous
error compensation.

After the data set is constructed, the critical step of the algorithm is the training process.
The learning methods of CRF include maximum likelihood estimation and regularized
maximum likelihood estimation. The specific implementation algorithms include gradient
descent and the quasi-Newton method (L-BFGS). The L-BFGS algorithm is used to train
the conditional random field model in the study.

First, the empirical probability distribution
∼
P(X, Y) is obtained using the known

training data set, and the model parameters can be obtained by maximizing the log-
likelihood function of the training data.

After the training of the CRF model is completed, the given input sequence is predicted
to obtain the maximum possible label sequence, that is, the prediction process of the CRF.
The prediction algorithm of the conditional random field is to find the output Y that
maximizes P(Y|X) for a given X and parameter W, which is a solution process of the
optimal path of an undirected graph. To find the optimal solution, the most commonly
used method is dynamic programming. The more typical Viterbi algorithm is used in
the study.

3.3. Realization of Springback Prediction Model with Variable-Curvature Based on Conditional
Random Field

The curvature radius sequence of each profile is obtained by using the fixed-curvature
model, and this sequence will be used as the input of the CRF. The original data is dis-
cretized in segments, and a discrete sequence is obtained. The content of the feature
sequence includes the reduction amount, speed of reduction, etc., and the actually mea-
sured curvature radius sequence is used as a label. Divide 70% of the dataset as the training
set and the other 30% as the test set to construct a CRF model.
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The length of the profile used in the variable-curvature experiment is 3 m, and the
actual measured length is 2.6 m in the middle. From the position of 0.4 m in the data, set
every 0.01 m as a stage, calculate the average value of the data between 0.01 m, and round
it as characteristics of the current location. The discretized profiles are shown in Figure 6.
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Before using the CRF model to predict the sequence, use the fixed-curvature model
trained in Section 2 to predict the curvature radius sequence of the profile using the process
parameters and profile parameters contained in each forming section. Figure 7 shows
the input and output structure of the radius prediction model after variable-curvature
springback based on CRF.
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The SC is the fixed-curvature prediction model trained in Chapter 2, and the output
result becomes the reference feature of the variable-curvature model, the data of different
forming sections are input into the model as a whole, and the transition probability between
each node in the undirected graph is obtained by the quasi-Newton method. After obtaining
the conditional random field probability undirected graph model, the output sequence
most likely corresponding to the input sequence is finally calculated by Viterbi. To make
the predicted curvature radius curve smoother and more accurate, an error compensation
network is added after the output sequence. The error compensation network uses a fully
connected neural network to map discrete values to continuous values.

The algorithm steps are shown in Algorithm 2.
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Algorithm 2: Curvature prediction after springback for variable-curvature roll bending based on
conditional random fields

Input: training set dataset_train and test set dataset_test
Output: Actual curvature radius sequence R after variable-curvature forming springback
Step 1: Define and determine the model hyperparameters.

Step 2: Calculate the empirical distribution
∼
P(X, Y).

Step 3: Use the quasi-Newton method to learn the optimal parameter value ŵ and obtain the
optimal model Pŵ(y|x). The steps are as follows:

(1) Select the initial point w(k), k = 0

(2) Calculate gk = g
(

w(k)
)

, if gk = 0, stop the calculation; otherwise, go to step 3)

(3) Find pk from Bk pk = −gk, and find λk

(4) Let w(k+1) = w(k) + λk pk

(5) Calculate gk+1 = g
(

w(k)
)

, if gk = 0, stop the calculation; otherwise, calculate Bk+1.

(6) Let k increase by one, go to step 3)

Step 4: Use the Viterbi algorithm to predict the observation sequence
→
x to obtain the optimal path

sequence
→
y .

Step 5: Use an error network for error compensation on the optimal path
→
y in discrete form, and

map to continuous values.

Algorithmic step 1 randomly initializes a set of model hyperparameters. Step 2 cal-
culates its empirical distribution based on the current dataset and uses it for parameter
learning in Step 3. Step 3 is the parameter learning process of the conditional random field.
The quasi-Newton method is used to learn and update the parameters. Step 4 predicts the
new data input after the model training is completed and outputs the most likely curvature
radius sequence. Step 5 takes the result of the conditional random field as the input and
uses the artificial neural network to perform error compensation on it, so that the result is
closer to the true radius of curvature.

4. Experimental Results and Analysis
4.1. Experimental Conditions

The roll brake used in the experiment is a horizontal three-roll brake, as shown in
Figure 8. The specific parameters are shown in Table 3. The lower roller spacing can be
adjusted manually.

Table 3. Detailed parameters of the experimental machine.

Device Parameters Value (mm)

Lower roller spacing 465
Lower roller diameter 120
Upper roller diameter 120

The profile measuring equipment used is an articulated arm three-coordinate mea-
suring instrument equipped with CimCore 3000iTM series flexible coordinate measuring
system. The measurement error is less than 0.01 mm. During the experiment, the IGS
file containing all the spatial point information on the profile is obtained through three
coordinates, and then the file is parsed and processed to obtain the curvature radius of the
corresponding position.
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4.2. Experimental Profile Specifications

The main alloying elements of 6063 aluminum alloy are silicon and magnesium. It has
excellent processing performance and is widely used in construction profiles and vehicles.
Therefore, the 6063 aluminum alloy material is selected as the experimental standard profile,
and its parameters are shown in Table 4.

Table 4. 6063 aluminum alloy performance parameter table at 25 ◦C.

Attributes Unit Value

Tensile strength MPa ≥205
Conditional yield strength MPa ≥170

Elongation % ≥7
Maximum shear stress MPa 115

The profile selected for the fixed-curvature experiment is a square tube aluminum
profile with a section size of 20 mm × 20 mm × 1 mm and a length of 1.5 m. The profile
selected for the variable-curvature experiment is a square tube aluminum profile with a
section size of 20 mm × 20 mm × 1 mm and a length of 3 m.

4.3. Experimental Evaluation Method

The roll-bending forming model is a data regression analysis task. Multiple fea-
tures affect the value of the curvature radius after the profile is formed, which con-
sists of continuous numerical data. The indicators commonly used for continuous
value evaluation are mean square error (MSE = 1

n ∑n
i=1
(

Ri − Pi)
2 ), mean absolute error

(MAE = 1
n ∑n

i=1|Ri − Pi|), and mean absolute percentage error (MAPE = 1
n ∑n

i=1

∣∣∣ Ri−Pi
Ri

∣∣∣ ∗ 100%).
The above three indicators are used for the evaluation of the fixed-curvature model, where P
is the model prediction result, R is the true value, and n is the number of evaluation samples.
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4.4. Fixed-Curvature Experiment

The basic data of the fixed curvature obtained by analyzing the measurement results
of the fixed-curvature experiment are shown in Table 5. Due to the confidentiality of the
data, only some features of some data are shown here. Some experimental profiles are
shown in Figure 9.

Table 5. Part of the dataset.

Roll Spacing
(mm)

Feed Rate
(mm/s)

Reduction
(mm)

Radius of Curvature
(mm)

465 14.65 3 166,111
465 14.65 6 24,901
465 14.65 9 8098
665 14.65 12 7688
665 14.65 15 5431
665 14.65 18 3241
465 10.65 12 7022
465 10.65 15 4899
465 10.65 18 2514
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This section demonstrates the two-dimensional relationship between the reduction
amount and the radius of curvature after springback under the condition of fixed roller
spacing and material feed rate. The distance between the rollers is fixed at 465 mm, and the
feed rate is fixed at 14.65 mm/s.

4.4.1. Analysis of Bayesian Optimization Effect

Figure 10 shows a fixed-curvature prediction model with stochastic hyperparameters
compared to true values and a fixed-curvature prediction model with Bayesian-optimized
hyperparameters compared to true values. The ordinate in Figure 10 is the radius of
curvature, of which the unit is m, and the abscissa is the reduction amount of the roll-
bending machine, of which the unit is mm. The actual experimental results show that the
Bayesian parameter tuning can optimize the model to a certain extent.

The performance of the model prediction results under the evaluation indicators is
described in Table 6. It is obvious that the adjustment of hyperparameters significantly
improves the prediction performance of the model.

Table 6. Prediction and evaluation index of the algorithm for the radius of curvature after springback
of fixed-curvature forming based on XGBoost.

MSE MAE MAPE

Initial hyperparameter combination 44.5 2.85 13.19
Optimal hyperparameter combination 28.7 2.28 12.69

Worst hyperparameter combination 256.23 7.94 35.53
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4.4.2. Comparative Analysis of the Results of XGBoost Algorithm and Other Algorithms

On the basis of obtaining XGBoost after adjusting the hyperparameters to the optimum,
a comparative experiment is also designed. The experiment constructs three algorithms of
polynomial regression, SVR (support vector regression) and neural network to predict the
radius after fixed-curvature springback. The comparison results are shown in Table 7.

Table 7. Prediction and evaluation indicators of other regression models and XGBoost models.

MSE MAE MAPE

Polynomial regression 93.44 7.79 191.37
SVR 80.45 7.07 88.29

Neural Networks 49.01 3.99 41.42
XGBoost 28.7 2.28 12.69

It can be seen from Table 7 that the prediction model of the curvature radius after
springback with fixed curvature based on XGBoost performs better than the other methods
in various evaluation indicators.

Figure 11 shows the comparison between the prediction results of the roll-bending
springback using the three algorithms of polynomial regression, SVR regression and neural
network and the prediction results of the XGBoost model. The abscissa in Figure 11 is the
reduction amount of the roll-bending machine, and the ordinate is the curvature radius of
the profile.

From the above experimental results, it can be proved that the prediction model based
on XGBoost proposed in Section 2 is more accurate than the other traditional methods.
Additionally, after Bayesian optimization, the generalization of the model is improved to a
certain extent, the ability of the model to resist overfitting is stronger, and the accuracy is
further improved.

4.5. Variable-Curvature Experiment

Each profile is divided into 160 forming segments, and each forming segment contains
four main features: the reduction of the current forming segment, the mechanical curvature
radius, the curvature radius during fixed-curvature forming, and the actual curvature
radius after forming. Each segment corresponds to a dictionary structure, which records
the characteristics of the current segment, and 160 shaped segment dictionaries form a
sequence for a single sample input. The output is the actual bend radius value for the
160 formed segments. Some experimental profiles are shown in Figure 12.
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4.5.1. Analysis of the Impact of Related Effect on the Results

The fixed-curvature model is not suitable for solving the prediction problem of
variable-curvature roll bending, because the fixed-curvature model cannot take into account
the related effects of the variable-curvature roll-bending process. To verify this theory,
the fixed-curvature model is used to predict a part of the variable-curvature roll-forming
experiments, and the results are shown in Figure 13.
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The abscissa in Figure 13 is the 160 discrete segments that are separated into one
roll-bending experimental profile, and the ordinate is the curvature radius corresponding
to each segment. It is obvious from Figure 13 that the overall error of the prediction results
of the variable-curvature experiment by the fixed-curvature model is relatively large. The
variable-curvature model of CRF + NN (conditional random field + neural network) is
basically consistent with the real curve, the prediction error is small, and the accuracy high.

It can be proved from the experiment that the fixed-curvature model lacks the ability to
explore the correlation effects before and after the variable-curvature roll forming and is not
suitable for solving the variable-curvature forming problem. The variable-curvature model
constructed in Chapter 3 has a high prediction accuracy, can explore the correlation before
and after, and makes a more accurate prediction of the curvature radius after variable-
curvature forming.

4.5.2. Comparative Analysis of Artificial Neural Network Error Compensation Results and
Experimental Results

As mentioned above in the introduction to conditional random fields, the prediction
results of conditional random fields are discrete values. The radius of curvature of the
profile is divided into 100 categories, and the integers 1–100 represent the radius of curva-
ture of the current forming section respectively, which results in only 100 integer values of
1–100 appearing in the prediction result. To make the result closer to reality, an artificial
neural network is used to further rectify the results, mapping them to continuous values.
Figure 14 shows the comparison of the prediction results when the artificial neural network
is added to correct the results and the prediction results that are not added.

In Figure 14, the abscissa is the 160 discrete segments that are discretely divided into
one roll-bending test profile, and the ordinate is the curvature radius corresponding to each
segment. It can be clearly seen from Figure 14 that a single conditional random field model
has the ability to explore the influence relationship before and after the forming section
of the profile, so as to predict the basic trend of the curvature radius of the profile, but
there will be more continuous identical curvatures in the output results. This is because the
conditional random field’s predictions of outcomes are discrete values, which can cause
the predictions obtained using only the conditional random fields to deviate significantly
from the true results. Adding artificial neural networks to map discrete results can make
up for the shortcomings of the conditional random field model itself, making the overall
prediction result smoother and closer to the real value. The performance results of the two
methods under each evaluation index are shown in Table 8.
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Table 8. Prediction and evaluation results of curvature radius after springback in variable-curvature
roll bending based on conditional random field.

MSE MAE MAPE

CRF 3.42 2.12 24.30
CRF + NN 1.40 0.66 13.72

It can also be clearly seen from Table 8 that the performance of the model with the
error correction network is improved under each evaluation index, which proves that the
model is more reliable.

The experimental results can prove that the curvature prediction model based on the
conditional random field proposed in Section 3 has the ability to learn the correlation and
influence relationship of different forming conditions before and after, and can perform
precise prediction of the formed radius of curvature.

5. Conclusions

(1) Based on XGBoost, a curvature prediction model of fixed-curvature roll bending after
springback was proposed, which could achieve an accurate prediction of the curva-
ture of formed profiles, and the coupling effect of process parameters and material
performance parameters on the roll-bending process was explored. Combined with
the Bayesian optimization algorithm, the hyperparameters of the fixed-curvature
prediction model were optimized. Table 6 shows the comparison between MSE,
MAE, and MAPE for the predictions from Bayesian-optimized hyperparameters and
unoptimized hyperparameters. The MSE, MAE and MAPE corresponding to the
prediction results of the best hyperparameter combination were 28.7, 2.28 and 12.69,
respectively. The MSE, MAE, and MAPE corresponding to the prediction results of the
worst hyperparameter combination were 256.23, 7.94, and 35.53, respectively. It was
proved that Bayesian optimization improves the prediction accuracy. Table 7 shows
the comparison between the MSE, MAE and MAPE of the XGBoost model and other
models for the fixed-curvature springback prediction results, and the MSE, MAE and
MAPE prediction results of the XGBoost model were 28.7, 2.28 and 12.69, respectively.
The best performance of the other models was exhibited by the neural network model,
which had an MSE, MAE, and MAPE of 49.01, 3.99, and 41.42, respectively. The
superiority of the proposed model was proved.

(2) Based on the prediction results of a fixed curvature, a variable-curvature prediction
model based on the conditional random field was established, the state transition
law of variable-curvature forming was explored, and the accurate prediction of the
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curvature of the variable-curvature rolling profile was realized. By adding an error
compensation network after the result of the conditional random field, the discrete
sequence was mapped to the continuous sequence. Table 8 shows the comparison
between the MSE, MAE, and MAPE of the prediction results of the two variable-
curvature springback prediction models. The MSE, MAE, and MAPE prediction
results of the model without an error compensation network are 3.42, 2.12, and 24.30,
respectively. The MAE, MSE, and MAPE prediction results of the model with an error
compensation network are 1.40, 0.66, and 13.72, respectively. The improvement of
model accuracy by adding the error compensation network was shown. A variable-
curvature prediction model that can accurately predict the curvature after forming
was obtained.
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