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Abstract: The hot forging process brings significant advantages in terms of improved mechanical
properties of the part compared with other processes, such as casting or machining. The metal flow
in the forging process leads to texture modifications and can be macroscopically visualized by the
so-called grain-flow orientation (GFO). This study showed the effect of GFO on fatigue life by using a
rotational flexing fatigue test. The tests that were performed using SAE 1045H steel material, at rolling
and transverse directions, showed the influence of GFO on the specimens’ mechanical properties
compared with the reference samples taken from the machined rolled bar. The experimental results
showed that the forged samples with the GFO in the main deformation direction presented a higher
fatigue life than the other tested configurations.
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1. Introduction

Forged mechanical components have greater strength than those produced by other
manufacturing processes, such as casting or machining [1,2], justified by the particular
grains’ orientations, clearly visible macroscopically as fibers. Several manufacturing pro-
cesses produce mechanical components, but forged products exhibit excellent mechanical
properties at a lower cost. Therefore, the hot forging process is widely used in manufactur-
ing components for automobile and truck parts, in addition to other industrial components.
However, appropriate parameters for the forging process and preform are needed to obtain
defect-free forging components [3,4].

A preform is an initial geometry similar to the final geometry that is transformed
into the part’s final configuration without causing material failure or degrading material
properties. It is necessary to optimize the preform to reduce the underfill defect with
minimum forging load and effective stress [5,6]. One problem that may occur is the wear
caused by a local bonding between the hot workpiece and the dies and a thermal softening
phenomenon of the dies [7]. The factors influencing die life are mechanical loading, thermal
fatigue, plastic deformation, and wear, among others. In the forging process, hot working
refines the grains, increasing strength and ductility, as forged components have a low
probability of having internal defects, unlike castings. Parameters such as internal defects
can influence fatigue design [7,8].

Fatigue life prediction is a complicated process. Cyclic loads (mechanical or thermal)
usually lead to cyclic residual stress reversals, which cause the accumulation of inelastic
strain. Inelastic strain energy is a factor that facilitates fatigue crack initiation and growth.
Micro-cracks may already be present depending on the surface finish, significantly reducing
fatigue life. Although many forgings are machined in critical areas to remove the forged
surface, some are not machined in all crucial regions after forging [9,10]. Surface roughness
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or decarburization has a more negligible effect on low-cycle fatigue due to plastic deforma-
tion. The reduction in fatigue life due to decarburization is closely related to its depth. It
has been suggested that controlled forging conditions produce surface finish quality similar
to hot-rolled surfaces [11,12].

The anisotropy induced by the forging process of the material is the leading cause of
the improvement in mechanical properties. The defects’ and inclusions’ orientations on the
material, in the deformation direction, are called fibering or the grain-flow orientation of the
component. To make the best use of the advantages of the grain-flow orientation imposed by
forging to the component, it is necessary to account for the correct orientation of the fibers by
the flow of the material in the tooling and the adequate planning of the forging stages [13,14].
Likewise, if the fiber orientation is not adequate, it may compromise the mechanical
properties of the component. As a result of the mechanical work, second-phase particles,
such as inclusions and segregations, as well as voids, tend to distribute and assume a shape
roughly analogous to the deformation of the part. If the particles and inclusions are ductile
and softer than the matrix, they acquire an elongated, ellipsoidal shape (e.g., MnS in steel).
If they are brittle, they break into fragments that develop in parallel to the main working
direction (e.g., Al2O3 in steel). If they are harder and more resistant than the matrix, they
do not deform (e.g., SiO2 in steel) [13,15]. To classify inclusions in steels, the ASTM E-45
and ASTM E-1122 standards are usually used as a reference. A classification of inclusions
is sought according to the following criteria: inclusion type, stringer formation, inclusion
diameter, and severity. Inclusions are significant contributors to fatigue and mechanical
anisotropy in steel. It is practically impossible or commercially unfeasible to avoid such
defects. The number of inclusions appears to be a determining factor in fatigue crack
growth. Its effect is manifested through anisotropy of crack growth rates with an increasing
number of inclusions, but, in this case, sulfides are more detrimental than oxides [16,17].

One of the effects of hot working is the change in shape and distribution of segrega-
tions in the steel. The reduction in the dimension normal to the direction of deformation
of the products (thickness in flat products and diameter in cylindrical products) causes
the reduction in the spaces between the arms of the dendrites originated in the solidifi-
cation process. This reduction is also favorable to homogenization by diffusion. For this
reason, the degree of reduction or deformation is essential in forming operations. The
deformation effect is most easily observed in the longitudinal section containing the most
significant deformation. The strong orientation of the micro-segregation regions originating
from solidification in the direction of the greatest elongation of the material has a fibrous
appearance that gives the material its fibrousness [9,13,18].

On the computational mechanics side, finite element models (FEMs) to simulate
technological processes are crucial to preventing projected parts problems, predicting grain
flow lines, and enhancing in-service performances. The evaluation of results through the
comparison between the FEM and experiments (particularly macrography for the current
topic) significantly aided predicting the magnitude of the grain flow density, providing
guidelines to enhance the quality of the forged material with directional fatigue resistance
and strength. With the improvement in accuracy to minimize the volume of material
required, it is necessary to control the precise volume of the preform, the direction of the
flux of material, and the filling of the flash area to compare with the main techniques and
the results with better mechanical and metallurgical properties.

This study aimed to quantitatively evaluate the influence of the hot-forged compo-
nent’s fiber/grain-flow orientation on the fatigue life property. The factor that motivated
this study was the lack of standards and appropriate literature that clearly address the
issue, while demonstrating practical values obtained in tests and not only qualitatively as
it is usually found. The study’s relevance is of most importance for the forging industry
because the safety of a manufactured mechanical component can be affected by an incorrect
grain-flow orientation.
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2. Materials and Methods
2.1. Determination of Fatigue Life

The material in the study was SAE 1045 steel, the chemical composition of which
included carbon (0.420–0.50%), iron (98.51–98.98%), manganese (0.60–0.90%), phosphorous
(≤0.040%), and sulfur (≤0.050%). The percentage of sulfur in the chemical composition
of steels plays a key role due to its presence in manganese sulfate (MnS) inclusions. Pre-
vious studies evaluating tension–compression, torsion, and rotational fatigue tests with
specimens varying the fiber orientation at 0◦, 22.5◦, 45◦, 67.5◦, and 90◦ relative to the
rolling direction showed a fatigue life reduction of 10.5% between 0◦ and 90◦ [14,19]. So,
anisotropy, measured through the Lankford coefficient (r), is a crucial factor [20,21]. Values
of r in effervescent steels vary between 0.8 and 1.2 [22]. In some interstitial free (IF) steels,
it can be as high as 2.2 [22]. Copper in austenitic stainless steel can originate r values as
low as 0.1. [22]. Determining fatigue strength limits by fatigue testing has become routine,
although they are lengthy tests. However, sometimes, a quick method of estimating the
fatigue strength limit for a given component is required at the preliminary design and
prototype stage. In experiments with many specimens, it was concluded that the fatigue
strength limit (S′e) could be related to the tensile strength (Sut) in steels according to [13,22]:

S′e = 0.504.Sut (1)

when Sut ≤ 1460 MPa; S′e = 740 MPa, when Sut > 1460 MPa. However, when the material’s
microstructure is known, it is possible to obtain a more approximate result from the
tabulated ratios S′e/Sut [22]. The stress amplitude is denoted as σa, which is the cyclic stress
amplitude that causes fatigue failure. The maximum and minimum stresses are symbolized
by σmax and σmin, respectively. Knowing σa =

σmax+σmin
2 , allows calculation of the number

of cycles to failure according to [22]:

N =
(σa

a

) 1
b (2)

where a and b are constants determined by:

a =
( f .Sut)

2

Se
(3)

b = − log(σ′ f/Se)

log(2.Ne)
(4)

To calculate the constants, it is necessary to determine the fraction f and the corrected
stress (σ′ f ) according to:

f =
σ′ f
Sut

(2.103)
b

(5)

σ′ f = Sut + 345 MPa for steels with hardness HB ≤ 200. (6)

2.1.1. Modifying Factors

The specimens used in the rotating beam tests to determine the strength limit were
carefully constructed and tested under controlled conditions. However, it is unrealistic
to expect that the values obtained in mechanical or structural components are identical
to those obtained in the laboratory due to the variables found in the materials, such as
composition, manufacturing, environment, and design [22].

With such reasoning, Martin [23], based on reference [22], identified factors that qualify
the effects of these variables that adjust the values of the strength limits through a correction
according to Equation (7):

Se = Ka.Kb.Kc.Kd.Ke.K f .S′e (7)
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where Ka is the surface condition modification factor, Kb is the size modification factor, Kc
is the load change factor, Kd is the temperature change factor, Ke is the reliability factor, and
K f is the change factor for varying effects, S′e is the strength limit of the rotating-beam-type
test specimen, and Se is the strength limit at the critical location of a part in geometry and
condition of use.

The specimen of the rotating beam test was polished in the axial direction. The surface
condition modification factor (Ka) depends on the surface condition of the component and
should be calculated according to [22]:

Ka = aSut
b (8)

where exponents a and b are found in Table 1.

Table 1. Parameters of the surface condition modification factor Ka (adapted from [22]).

Surface Finish Coefficient a (MPa) Exponent b

Corrected 1.58 −0.085

Machined or cold drawn 4.51 −0.265

Hot rolled 57.7 −0.718

Forged 272.0 −0.995

The currently proposed model for the size change factor (Kb) in the case of bending
and torsion loading can be expressed by [22]:

Kb = (d/7.62)−0.107 = 1.64.d−0.107 (2.79 ≤ d ≤ 51 mm) (9)

Kb = 1.51.d−0.157 (51 ≤ d ≤ 254 mm) (10)

where d is the diameter of the specimen. For axial loading, this effect is negligible; thus,
Kb = 1. The average values of the loading type modification factor (Kc) were set to Kc = 1
(bending), Kc = 0385 (axial load), and Kc = 0.59 (torsion), per [22].

Temperature has a significant influence on the mechanical behavior of steel. Most
structural steels become brittle at low temperatures (below the transition temperature),
which can present a severe problem. At high temperatures (above the ambient temperature),
there are decreases in mechanical strength and resistance to corrosion, and the higher the
temperature, the more significant the reduction. In addition, metallurgical phenomena can
occur at high temperatures, such as temper embrittlement, which can compromise the use
of the part. In addition to what was previously discussed, when the structural component
is used above room temperature, one should also consider the temperature influence on the
fatigue limit [23]. The temperature modification factor (Kd) is obtained from the following:

Kd = 0.975 + 0.432
(

10−3
)

Tf − 0.115
(

10−5
)

Tf
2 + 0.104

(
10−8

)
Tf

3 − 0.595
(

10−12
)

Tf
4 (11)

Here, temperatures may range from 21 ≤ Tf ≤ 538 ◦C. The reliability factor (Ke) is of
paramount importance due to the dispersion of the results. Data presented [22] showed
that the standard deviation associated with the fatigue limit of steels is around 8%. Thus,
the reliability factor (Ke) can be directly obtained from Table 2.

The miscellaneous effects modification factor (K f ) should consider all other factors that
may influence fatigue, such as metallurgical aspects associated with fatigue, which were
not considered in the previous correction factors. Thus, the presence of residual stresses
(arising, for example, from steel shot blasting, etc.), the presence of an electrodeposited layer
on the surface of the structural component, the possibility of corrosion, the frequency (when
this influences fatigue, as in the case of corrosion), among others, are herein considered [22].
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Table 2. The reliability factor (Ke) [22].

Reliability (%) Reliability Factor Ke

50 1.000

90 0.897

95 0.868

99 0.814

99.9 0.753

99.99 0.702

99.999 0.659

99.9999 0.620

2.1.2. Stress Concentrator and Notch Sensitivity

As already described, any metallic material may present several irregularities or
discontinuities, such as holes, indentations, or notches. They cause an increase in the
theoretical stresses in the vicinity of the discontinuity. A stress concentration factor was
then defined: Kt, used with the nominal stress to obtain the resulting maximum stress. This
stress is described by the following equation [11,22]:

σmax = K f σ0 (12)

where K f is the reduced value of Kt and σ0 is the nominal or engineering stress. To calculate
K f , Neuber’s equation is used:

K f =
Kt

1 + 2(Kt−1)
Kt

√
a√
r

(13)

Finally,
√

a is the Heywood parameter for steels, given in Table 3, and r is the radius
of the round specimen.

Table 3. Heywood parameter for steels [22].

Attribute
√

a (
√

mm), Sut (MPa)

Cross Hole 174/Sut

Shoulder 139/Sut

Split 104/Sut

To determine Kt, one should the use the classical graph, “Factor determination for
a round shaft under bending”, from the classical work of Budynas et al. [22], not here
depicted due to copyright constraints.

3. Experimental Campaign

The experiments in this study were developed to verify the influence of the grain-flow
orientation on fatigue life and its impact on the anisotropic properties of a mechanical
component. To this end, steel specimens were made, and their fiber was oriented by
machining and hot forging. Subsequently, they were subjected to flexo-rotational fatigue
tests in a piece of specific equipment to determine their fatigue life.

Specimens were developed in three different fiber configurations. These three fiber
configurations were differentiated into:

• Configuration A (Figure 1): simulated a forged component with its proper orientation
because its fibers were arranged along the longitudinal direction of the specimen, that
is, at 0◦ from the rolling direction;
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• Configuration B (Figure 2): simulated a forged component with its orientation nonad-
equate because its fibers were arranged along the cross direction of the specimen, that
is, at 90◦ from the rolling direction;

• Configuration C (Figure 3): simulated an unwrought component machined straight
from the bar, so its rolling fibers were in the longitudinal direction, that is, 0◦ from the
rolling direction but cut.
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As noted, the specimens were produced from SAE 1045H material with diameters
∅39.69 and ∅69.85 according to the manufacturing flow indicated in Table 4.
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Table 4. Flow of operations for manufacturing specimens.

Configuration
Flow of Operations

Cutting the
Blanks

Blank
Machining

Forging of
Workpieces

Machining of
CPs

A X
(Ø 39.69) - X

(Ø 39.69) X

B X
(Ø 69.85)

X
(Ø 39.69)

X
(Ø 39.69) X

C X
(Ø 69.85) - - X

3.1. Sample Fabrication Process

To achieve the desired fiber orientation in the specimens, the manufacturing process
followed the flowcharts shown and Figures 4 and 5.
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Figure 5. Blank machining process.

Figures 6 and 7 demonstrate the positioning of the blank within the tooling, the flow of
the material filling the tool, and the intended fiber orientation. These images were obtained
through a simulation of the forging process in Qform software (QuantorForm Ltd., Fujairah,
United Arab Emirates) using the data from Table 5. This simulation was used only to check
if the amount of material was adequate for the actual forging process and the expected
fiber development for the specimen. Temperature boundary conditions at the tools were
set to mimic the real manufacturing conditions, i.e., 250 ◦C.
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Table 5. Input data for forging simulation. â (â—Qform).

Input Data

Material SAE 1045 H

Friction factor 0.35

Heating temperature 1200 ◦C

Colling time air 3 s

Contact time with die 5 s

Equipment Mechanical press—10 MN

The typical extrusion forging process was performed in a mechanical press, where
first the blanks were heated in an induction furnace between 1150/1200 ◦C, as shown in
Figure 8, and then forged in a 9800 kN mechanical press, as shown in Figures 9 and 10,
in a tool made of AISI H13 material previously heated between 200 and 250 ◦C. Figure 11
shows the layout of the forging tool.
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Figure 11. Forging tool sketch.

Figure 12 demonstrates the specimen design with the geometry after the forging
operation. The tolerances applied were determined according to DIN EN 10243 [24].

To finish the manufacturing process, samples were machined in a CNC lathe to ensure
dimensional repeatability between the specimens, as illustrated in Figure 13. The machined
specimens were then polished at the transition radius region of the flange with the stem so
that the roughness did not interfere with the fatigue test results. Then, the specimens were
drilled in the flange region for subsequent attachment to the fatigue test equipment, as
illustrated in Figure 14. The tolerances applied for machined specimens were determined
according to ISO 2768.
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3.2. Metallographic Testing

A sample of each configuration was metallographically analyzed to confirm the ori-
entation of the fibers generated in the specimens. To this end, the specimens were cut
lengthwise, sanded, and attacked in a 30% sulfuric acid (H2SO4) solution heated between
80 ◦C and 90 ◦C as recommended by ABNT NBR 8108. Blue tracing paint was applied over
the attacked surface to make the fiber lines visible. Figures 15–17 show the fibers revealed
on the specimens of the three proposed configurations.
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3.3. Fatigue Test

To evaluate the components’ fatigue life, a rotational flexural fatigue tester or rotating
beam was used, which caused the maximum stress in the region of the beam due to the
moment caused by the load coupled to the end of the specimens (Figures 18 and 19). A
load of 500 ± 50 N was applied to the specimens coupled at 80 mm from the clamping
system with a constant frequency of 8.33 Hz. The equipment recorded the number of cycles
applied to the specimen until it ruptured.
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3.4. Theoretical Fatigue Life Calculation

To verify the suitability of the samples’ dimensions and testing time, the number of
theoretical cycles to failure was calculated according to the following sequence in Chart 1.
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𝑆′𝑒 = 352.8 MPa; 𝑆𝑒 = 200.68 MPa; 
𝐾𝑡 = 1.4; 

𝑎 = 0.198 (according to Table 3 -
Attribute = shoulder)

𝐾𝑓 = 1.332;  𝜎′𝑓 = 1045 MPa;

𝑏 = -0.1137 
f = 0.6289; a = 966 MPa

Calculation of Modifying Factors:

𝑎 = 4.51 (As per Table 1)

𝑏 = - 0.265 (As per Table 1)

𝐾𝑎 = 𝑎𝑆𝑢𝑡
𝑏 =  0.795; 𝐾𝑏 = ( Τ𝑑

7,62)−0.107 =
1.64. 𝑑−0,107 = 0.950

𝐾𝑐 = 1 (bending); 𝐾𝑑 = 1  (room temperature); 

𝐾𝑒 = 0.753  (Table 2); 𝐾𝑓 = 1 (estimated)

𝑆𝑢𝑡= 700 MPa and 𝑆𝑦= 574 Mpa

Loading Type: Bending Surface Finish: Machined Desired Reliability: 99,9%

Specimen and test data:

L = 80 mm d = 12 mm D = 50 r = 5 Load = 500 N

Chart 1. Theoretical fatigue life calculation.

Additionally, to determine stress values, a simple linear elastic, isotropic simulation
resorting to eight-node first-order solid elements (incompatible modes) was performed
using Abaqus Software 2021 (Dassault systems, Vélizy-Villacoublay, France), Figure 20.
Applying the loads and boundary conditions of the fatigue test yielded stress values
of σmax = 238.8 MPa and σmin = −233.1 MPa. Finally, from Equation (2), and based
on the numerical predictions for stress amplitude, the foreseeable number of cycles was
determined as N = 13,576.
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4. Results
4.1. Fatigue Test Results

Table 6 and Figures 21 and 22 show the results obtained after the rupture of the
specimens submitted to fatigue tests.
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Table 6. Fatigue test results.

Fiber
Configuration Workpiece No. Cycles Average Standard

Deviation

A

1 21,000

24,400 5176
2 20,000

3 23,000

4 33,000

5 25,000

B

6 17,500

10,500 7357
7 5500

8 2500

9 8000

10 19,000

C

11 9500

11,400 6076
12 2500

13 19,000

14 12,000

15 14,000
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4.2. Discussion

The fatigue strength of a component has many associated variables (see Equation
(7)), making the determination of exact values a challenging task, which explains the high
standard deviation values shown in Table 6 and Figures 21 and 22. Even so, the tests allowed
us to demonstrate how the changes in the manufacturing process variables predicted
changes in mechanical and metallurgical characteristics, influencing the component’s
fatigue life.

The results showed that specimens of configuration A achieved a much longer fatigue
life than configurations B and C, actually doubling it. The results indicated a similar fatigue
life behavior between configurations B and C. It is important to emphasize that this similar
behavior between these two configurations is valid for this case analyzed and may not
represent expected behavior for other specimen geometries.

As expected, the specimens submitted to the tests fractured in the same position
for both configurations while showing similarities in their morphology—typical of an
alternating loading—as illustrated in Figure 23.
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5. Conclusions

The tests performed on the specimens proved that the fiber orientation in the longitu-
dinal direction of loading has a fatigue life 2.3 times higher than that obtained in the tests
in the transverse direction.

In addition to experiments, theoretical fatigue life calculations made from finite el-
ement stress analyses are essential to verify adequacy of some parameters: specimen
geometry, loads, and test times. The initial estimate based on calculations helps reduce the
possibility of errors and unnecessary costs and allows for comparison with the physical
tests.

It is known that high safety coefficients are applied in structural calculations of compo-
nents that guarantee, in theory, the desired life for a component. It is also known that this
implies increased costs, such as an increase in the amount of material used in manufacturing
or an addition of subsequent processes, such as heat treatments.

In the hot forging process, a higher strength is observed due to the heterogeneity of
its structure resulting from the grain-flow orientation coinciding with the anisotropy of
the material (macrograph of configuration A). Considering the fatigue life of this forged
part and the theoretical calculation of the life cycle until failure, configuration A of the part
herein studied (longitudinal direction of the fibers) outperformed configurations B and C by
approximately 2.3 times regarding the number of cycles. The optimization of technologies
such as computer simulation (Figure 7) and parameter evaluation using finite elements can
help compare distinct fiber directions, as shown in Figure 15, where a higher density of
directed fibers can be observed, with longer fatigue life and less macro-segregation effect.

Optimizing the geometry of forged components, considering their fiber orientation,
can reduce the amount of material used in their manufacture and thus promote considerable
cost reduction and guide the design of the component.
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