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Abstract: Aluminum foam is expected to be one of the candidates for lightweight materials for
structural components as it is lightweight and has excellent shock absorption and sound absorption
properties. However, aluminum foam has low tensile and flexural strength due to its thin cell walls.
Therefore, aluminum foam is used by combining with dense materials. In particular, with the recent
trend toward multi-materials, research on the combination with lightweight resins is expected. In this
study, we attempted to join aluminum foam fabricated by the precursor method to a thermoplastic
resin polycarbonate (PCTA) plate by friction welding. It was found that the aluminum foam and
PCTA plate can be joined in about 1 min by friction welding, by rotating the aluminum foam at
2000 rpm and pressing 1 mm into the PCTA plate. In addition, in the friction welding of aluminum
foam and PCTA plate, it was found that the pores of the aluminum foam were maintained without
being collapsed. The anchoring effect is presumably caused by the penetration of PCTA softened by
the frictional heat generated by the friction welding into the pores. Furthermore, tensile tests of the
joined samples showed that fracture occurred either at the joining interface or at the base material
of the aluminum foam, and that the joining strength was equivalent to the tensile strength of the
aluminum foam itself.

Keywords: cellular materials; dissimilar joining; foam; resin; polymer–metal joints; solid-state welding

1. Introduction

Aluminum foam is expected to be one of the candidates for lightweight materials
for structural components as it is lightweight and has excellent shock absorption and
sound absorption properties [1–4]. However, aluminum foam has low tensile and flexural
strength due to its thin cell walls. Therefore, aluminum foam is used by combining with
dense materials, such as sandwich panels [4–8]. In particular, with the recent trend toward
multi-materials [9–13], research on the combination with lightweight resins is expected.

Generally, aluminum foam and dense materials are combined using adhesives. How-
ever, the use of general adhesives has problems with the spreading method and curing time.
Therefore, composites without using the adhesives have also been attempted. Kitazono
et al. [14] and Yuan et al. [15] applied liquid polyester resin and epoxy resin directly to the
pores on the surface of aluminum foam and solidified it to fabricate composites. Matsumoto
et al. [16] placed solid polyamide resin into the pores of the surface of the aluminum foam
and filled the pores by melting the polyamide resin with a selective laser. Ilinzeer et al. [17]
fabricated the sandwich structure by simultaneously fabricating carbon fiber-reinforced
plastic plates as the surface material and allowing the matrix resin to penetrate the pores of
the aluminum foam. Matsumoto et al. [18] attempted a friction stir incremental forming
process for joining polymethyl methacrylate plate and nickel foam. Fujioka et al. [19]
applied hot-pressing to join polycarbonate plates and aluminum foam. Kim et al. [20]
and Iwata et al. [21] fabricated a porous structure using additive manufacturing and other
methods to join polyamide-6 and carbon fiber-reinforced thermoplastic plates, and then
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hot-pressed to join them together. However, hot-pressing requires heating of the aluminum
foam, which poses problems of heating time and energy. Because there are few studies on
direct bonding, there is a need for an easier and more productive joining method. Hangai
et al. have attempted to join porous aluminum fabricated by the sintering and dissolution
process (SDP) [22–26] to polycarbonate (PCTA) and acrylic resin plates by friction weld-
ing [27–29]. Friction welding [30,31] is a simple and productive joining method, which is
one of the solid-state welding methods [32–35], allowing strong joining without melting
the material. The porous aluminum is rotated at a high rotating rate and pressed against
the PCTA plate to soften the PCTA by frictional heat, which allows the PCTA to penetrate
the pores, joining them by the anchor effect. Joining can be completed in about one minute,
making it easy and highly productive. Tensile tests of joined samples between porous
aluminum with 70% and 80% porosity and resin plates have shown that joining strength
comparable to the tensile strength of porous aluminum can be achieved.

In this study, we attempted to join aluminum foam made by the precursor method [36–38],
which is a practical method for fabricating aluminum foam, to a PCTA plate by friction
welding. Porous aluminum fabricated by SDP has small pores, each of which is connected
to the others. In contrast, the pores in aluminum foam are large and independent; that is,
the pore structures differ significantly from those of the porous aluminum fabricated by
SDP. We examined whether friction welding could be performed without pore fracture and
whether aluminum foam with large pores and independent pores could be joined to the
PCTA plate, by observing the joined samples with X-ray CT and performing tensile tests to
evaluate the joining strength.

2. Materials and Methods
2.1. Aluminum Foam Fabrication Method

Aluminum foam samples were fabricated by the precursor method utilizing fric-
tion stir welding (FSW) [39–44]. First, two Al-Si-Cu ADC12 alloy die-casting plates
(210 mm × 80 mm × 3 mm) were prepared. FSW was performed with 1 wt.% of foam-
ing agent powder (TiH2, particle size less than 45 µm) and 5 wt.% of pore morphology
stabilizer powder (Al2O3, particle size about 1 µm) between two ADC12 plates. For details,
please refer to the literature [40,43]. Briefly, the tool was traversed at a tool rotating rate
of 1200 rpm, a tool traversing speed of 120 mm/min, and a tilt angle of 3 degrees to mix
and disperse the foaming agent powder and pore morphology stabilizer powder into the
ADC12 plates. Precursors of 15 mm × 15 mm × 6 mm were taken from ADC12 plates
after FSW and foamed in ambient air by optical heating using halogen lamps [45,46]. To
obtain a shape suitable for friction welding, the aluminum foam was pressed immediately
after foaming to prepare a flat aluminum foam (10 mm in thickness). The foamed alu-
minum can be formed into a flat shape without fracturing pores by pressing immediately
after foaming before the temperature of the foamed aluminum drops below the liquidus
temperature [47–49]. The surface of the pressed aluminum foam was milled to remove
1.2 mm–1.6 mm to expose the pores because the pressed aluminum foam had a dense skin
layer on the surface.

2.2. Joining Methods

Figure 1 shows a schematic diagram of the joining method. First, as shown in Figure 1a,
a rod made of SUS304 stainless steel with a diameter of 16 mm and a length of 100 mm
was attached with an adhesive to the surface with a skin layer on the opposite side of the
milled aluminum foam. Next, the attached SUS rod was fixed to the chuck of the milling
machine. A plate of polycarbonate (PCTA), a thermoplastic resin, 60 mm × 50 mm and
8 mm thick, was used as the resin to be joined to the aluminum foam. The PCTA plate
was fixed to the milling machine with tape. The aluminum foam rotated at 2000 rpm was
pressed on the PCTA plate from above, as shown in Figure 1b. Pressing was performed
manually. First, once the aluminum foam and PCTA plate were in contact, the foamed
aluminum was slowly pressed into the PCTA plate by 1 mm, and then the rotation was
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stopped to cool the sample. The pressing time t was about 50 s to 80 s. Seven trials were
performed. Additionally, to measure the temperature during joining, one trial was also
performed at 2000 rpm and one trial at 370 rpm. A video camera (Sony Corporation, Tokyo,
Japan) was used to record the joining process. The exact pressing time was estimated after
the joining was completed by reviewing the video camera images since the pressing was
performed manually.
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Figure 1. Friction welding of aluminum foam to PCTA plate. (a) Initial state. (b) During friction
welding.

2.3. X-ray CT Imaging Method

X-ray CT imaging of the joined samples was performed to observe whether the pores
in the aluminum foam were not fractured and whether PCTA had penetrated the pores.
The X-ray tube voltage and current were 80 kV and 30 µA, respectively, and cone-beam CT
was employed. The pixel equivalent length was 75–80 µm/pixel.

2.4. Tensile Test Methods

The joined samples were subjected to tensile test to evaluate the strength of them.
Tensile tests were performed using an Instron 5582 (Instron, Kawasaki, Japan). Figure 2
shows a schematic diagram of the tensile test. The SUS rod used for joining was attached
to the chuck at the top of the tensile testing machine. The PCTA plate was hooked to a jig
made of Al-Mg-Si alloy A6061, and a similar SUS rod attached to the bottom of the jig was
attached to the chuck at the bottom of the tensile testing machine for the tensile test. Tensile
stress was determined by dividing the tensile load obtained from the testing machine by
the area of aluminum foam on the joining surface obtained from X-ray CT images. The
tensile stress at fracture was defined as the joining strength σt.
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Figure 2. Tensile test of sample joined with aluminum foam and PCTA plate.
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Cross-section of the fracture surface after tensile test was observed using a digital
microscope (KEYENCE Corporation, Osaka, Japan).

3. Results and Discussion
3.1. Joining Test Results

Figure 3 shows the foaming precursor and pressing process. First, the precursor was
placed under the halogen lamp on the right side, as shown in Figure 3a, and then heated
and foamed as shown in Figure 3b. The precursor foamed spherically when foamed. Once
the precursor was foamed, it was moved to the bottom of the pressing equipment on the
left side for pressing as shown in Figure 3c. Figure 3d shows the aluminum foam after
pressing. The foam was formed into a flat shape without fracture.
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Figure 3. Foaming precursor and pressing process. (a) Initial state before heating and foaming precur-
sor. (b) Foamed precursor. (c) Press forming of foamed aluminum. (d) Press-formed aluminum foam.

Figure 4 shows the joining of aluminum foam to a PCTA plate. Figure 4a shows the
initial state before joining. It was rotated and pressed into the PCTA plate. At the beginning
of pressing, the PCTA plate was scraped by aluminum foam as shown in Figure 4b, and a
small amount of cutting chips was observed. After a short time, the PCTA softened due
to the frictional heat between the aluminum foam and the PCTA plate, and burrs were
generated as shown in Figure 4c. At this time, the softened PCTA is expected to penetrate
the pores. After 1 mm was pressed in, the rotation was stopped as shown in Figure 4d.
After cooling, the joined sample was unfixed from the chuck of the milling machine to
remove. During removal, the aluminum foam and PCTA plate remained unseparated.
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Figure 5 shows the joining of aluminum foam to a PCTA plate at 370 rpm, a slower
rotating rate, for comparison. Figure 5a shows the beginning of pressing, corresponding
to Figure 4b when pressing at 2000 rpm. As in the case of 2000 rpm, the PCTA plate was
scraped by the aluminum foam and cutting chips were generated. Figure 5b shows the
sample immediately after the rotation was stopped after pressing in 1 mm. At 370 rpm, the
PCTA was not softened, and the PCTA plate was scraped by the aluminum foam and only
cutting chips were scattered around it. No joining was achieved, and the aluminum foam
and the PCTA plate were separated when removed from the milling machine.

Metals 2023, 13, x FOR PEER REVIEW 5 of 13 
 

 

due to the frictional heat between the aluminum foam and the PCTA plate, and burrs were 

generated as shown in Figure 4c. At this time, the softened PCTA is expected to penetrate 

the pores. After 1 mm was pressed in, the rotation was stopped as shown in Figure 4d. 

After cooling, the joined sample was unfixed from the chuck of the milling machine to 

remove. During removal, the aluminum foam and PCTA plate remained unseparated. 

 

Figure 4. Friction welding of aluminum foam to PCTA plate at 2000 rpm. (a) Initial state before 

joining. (b) Beginning of joining. (c) During joining. (d) After joining. 

Figure 5 shows the joining of aluminum foam to a PCTA plate at 370 rpm, a slower 

rotating rate, for comparison. Figure 5a shows the beginning of pressing, corresponding 

to Figure 4b when pressing at 2000 rpm. As in the case of 2000 rpm, the PCTA plate was 

scraped by the aluminum foam and cutting chips were generated. Figure 5b shows the 

sample immediately after the rotation was stopped after pressing in 1 mm. At 370 rpm, 

the PCTA was not softened, and the PCTA plate was scraped by the aluminum foam and 

only cutting chips were scattered around it. No joining was achieved, and the aluminum 

foam and the PCTA plate were separated when removed from the milling machine. 

 

Figure 5. Friction welding of aluminum foam to PCTA plate at 370 rpm. (a) Beginning of joining. (b) 

After joining. 

Figure 6 shows the temperature T of the PCTA plate during joining, as measured by 

a thermocouple. The results are also shown for a tool rotating rate of 370 rpm. As shown 

in Figure 7, the measurement was performed at the center of the SUS rod, 1 mm below the 

surface of the aluminum foam at the final pressing. As shown by the dotted lines in Figure 

6, the glass transition temperature of PCTA is 150 °C (catalog value [50]), which is well 

above the glass transition temperature at 2000 rpm. Consequently, PCTA was sufficiently 

softened and the softened PCTA penetrated into the pores, and joining was achieved. In 

contrast, at 370 rpm, PCTA only reached the vicinity of the glass transition temperature, 

indicating that PCTA did not soften sufficiently. As a result, only cutting chips were gen-

erated and no joining was achieved. Note that the solidus temperature of ADC12 alloy is 

Figure 5. Friction welding of aluminum foam to PCTA plate at 370 rpm. (a) Beginning of joining.
(b) After joining.

Figure 6 shows the temperature T of the PCTA plate during joining, as measured
by a thermocouple. The results are also shown for a tool rotating rate of 370 rpm. As
shown in Figure 7, the measurement was performed at the center of the SUS rod, 1 mm
below the surface of the aluminum foam at the final pressing. As shown by the dotted
lines in Figure 6, the glass transition temperature of PCTA is 150 ◦C (catalog value [50]),
which is well above the glass transition temperature at 2000 rpm. Consequently, PCTA was
sufficiently softened and the softened PCTA penetrated into the pores, and joining was
achieved. In contrast, at 370 rpm, PCTA only reached the vicinity of the glass transition
temperature, indicating that PCTA did not soften sufficiently. As a result, only cutting chips
were generated and no joining was achieved. Note that the solidus temperature of ADC12
alloy is 515 ◦C [51]; therefore, the friction welding applied in this study did not reach the
temperature at which ADC12 alloy softens.
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Figure 6. Temperature T of the PCTA plate during joining.

Figure 8 shows a typical example of a sample joined at a rotating rate of 2000 rpm and
a pressing time of 62 s. Figure 8a shows the joined sample viewed from the side. Although
the aluminum foam was not visible due to the burr of the PCTA, it was joined without
separation when removed from the milling machine. Figure 8b shows the joining sample
viewed from the back of PCTA. Aluminum foam is not visible, but it was observed that
PCTA has been stirred and whitened. Figure 8c is an X-ray CT image of the joined sample



Metals 2023, 13, 1366 6 of 12

viewed from the side, with the internal cross-section observed from the direction shown
in Figure 8a. The upper part is aluminum foam and the lower part is a PCTA plate. In
the aluminum foam, the white areas are aluminum and the black areas are pores. The
bright white area above the aluminum foam is part of a bonded SUS rod. PCTA is shown
in gray, the intermediate color between aluminum and pore. PCTA penetrates the pores of
aluminum foam as indicated by white arrows near the boundary between the aluminum
foam and PCTA plate. Figure 8d is an X-ray CT image near the interface between the
aluminum foam and PCTA plate, showing the internal cross-section from the direction of
Figure 8b. As in Figure 8c, many pores where PCTA penetrated were observed as indicated
by the white arrows, indicating that an anchoring effect was expected to exhibit. Also, if
the pores collapse, the surface pores are closed by the collapsed cell walls, but no such
pores are observed. The pores were maintained without collapsing by friction welding,
and PCTA penetrated those pores.
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3.2. Tensile Test Results of Joining Samples

Figure 9a–c show the joined sample shown in Figure 8 during the tensile test, and
Figure 9d shows its load-displacement curve. (a)–(c) in Figure 9d correspond to the images
during the tensile test shown in Figure 9a–c. The load increased linearly with increasing
displacement, leading directly to fracture. The fracture was observed in the vicinity of the
joined interface. Similar trends were observed for the other six joined samples and the one
sample joined for temperature measurements. In the preliminary experiments of this study,
the PCTA plate was 3 mm thick, not the 8 mm thick plate used in this study.
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fracture. (c) After fracture. (d) Load-displacement curve during tensile test.

However, as shown in Figure 10 during the tensile test of a sample joined to a
3 mm-thick PCTA plate, the PCTA plate deflected significantly during the tensile test,
and the strength of the joined sample could not be accurately measured. Therefore, PCTA
plates with a thickness of 8 mm were used to avoid as much deflection during the tensile
test as possible. However, a thin PCTA plate with a thickness of 3 mm can be joined
by friction welding in the same way as in the case of a PCTA plate with a thickness of
8 mm, indicating that friction welding can be applied regardless of the thickness of the
PCTA plate.
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Figure 11 shows the fracture surface after the tensile test of a sample shown in Figure 8
joined at a rotating rate of 2000 rpm and a pressing time of 62 s. Figure 11a shows the
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fracture surface of the aluminum foam side and Figure 11b shows the fracture surface of
the PCTA side. The fracture occurred near the joining interface, but the fracture surface on
the aluminum foam side was uneven, unlike the flat surface before joining. On the fracture
surface on the PCTA side, a part of aluminum foam was observed, and PCTA was observed
in its pores as indicated by the black arrows. It is assumed that PCTA penetrated the pores,
reinforcing the aluminum foam near the joining interface and exhibiting an anchoring
effect, resulting in fracture at the pore locations where PCTA did not penetrate. In the
fracture surface on the PCTA side, where no aluminum foam is observed, the surface of the
PCTA has unevenness that transfers the pore shape of the aluminum foam. This is due to
the softened PCTA penetrating the pores by friction welding and being pulled out during
the tensile test.
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Figure 11. Fracture surface after tensile test of a sample joined at a rotating rate of 2000 rpm and a
pressing time of 62 s. (a) Aluminum foam side. (b) PCTA side.

Figure 12 shows a digital microscope observation of the interface between the alu-
minum foam and PCTA at the cross-section of the fracture surface on the PCTA side shown
in Figure 11b. The lower part is PCTA and the upper part is the aluminum foam remaining
on the PCTA side of the fracture surface. The first layer of pores is filled with PCTA, and
PCTA is observed filling the interior of the pores and tightly attached to the cell walls as
shown by black arrows. Similar results were observed in other areas. Note that bubbles
were observed in a part of PCTA, which were probably generated by the vaporization of
PCTA due to frictional heat. Therefore, it is necessary to consider temperature control in
future studies.
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Figure 13 shows the relationship between joining strength σt and indentation time t.
A sample joined for temperature measurement (t = 53 s) was also included. Five tensile
tests were also conducted on the aluminum foam itself, and the minimum and average
tensile strengths are also shown as dotted lines. The tensile strength of aluminum foam is
significantly affected by the internal pore structures. Especially since the aluminum foam in
this study is formed thinly, the variation is noticeable. The tensile strength of the aluminum
foam in this study ranged from 1.36 MPa to 4.64 MPa, with an average value of 2.74 MPa.
This indicates that the joined samples in this study have a joining strength comparable
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to the tensile strength of foamed aluminum. Namely, it was shown that friction welding
can join aluminum foam and PCTA plate with a pressing time of about one minute and
that joining strength equivalent to the tensile strength of the aluminum foam itself can
be obtained.
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Figure 13. Relationship between joining strength σt and indentation time t.

In this study, since the pressing was performed manually, the pressing time was
estimated after the joining was completed by reviewing the video camera images. To
obtain an exact relationship between indentation time and joining strength, it is necessary
to automate the indentation operation to achieve accurate indentation time and constant
indentation speed, which is a future research topic. Note that at the joining time t = 69 s
and, although the joining strength is higher than the minimum tensile strength of the
aluminum foam, it is slightly lower than that of the other samples. The fracture surfaces
are shown in Figure 14a,b. The fracture surface on the PCTA side had little aluminum foam
on it, indicating that fracture at the interface was dominant. Figure 14c shows an X-ray CT
image in the vicinity of the joining interface. Compared to the joined sample exhibiting
high joining strength shown in Figure 8d, there are fewer pores where the PCTA penetrated.
Although it remains to be clarified why the amount of PCTA penetration is sometimes
high and sometimes low, it is considered to be related to the porosity, pore size, and pore
arrangement in the vicinity of the joining interface. However, it was found that if PCTA
can penetrate the pores, the anchoring effect allows the joining strength to be as high as
that of the aluminum foam itself.
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Figure 14. Fracture surface after tensile test and X-ray CT image of a sample joined at a rotating rate
of 2000 rpm and a pressing time of 69 s. (a) Aluminum foam side. (b) PCTA side. (c) X-ray CT image
of a sample near the interface between the aluminum foam and PCTA plate.
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4. Conclusions

In this study, we attempted to join aluminum foam fabricated by the precursor
method to a thermoplastic resin PCTA plate by friction welding. The results obtained
are shown below.

(1) By rotating the aluminum foam at 2000 rpm and pressing 1 mm into the PCTA plate,
it was found that the aluminum foam and PCTA plate can be joined in about 1 min by
friction welding.

(2) In the friction welding of aluminum foam and PCTA plate, it was found that the pores
of the aluminum foam were maintained without being collapsed. The anchoring
effect is presumably caused by the penetration of PCTA softened by the frictional heat
generated by the friction welding into the pores.

(3) Tensile tests of the joined samples showed that fracture occurred either at the joining
interface or at the base material of the aluminum foam and that the joining strength
was equivalent to the tensile strength of the aluminum foam itself.
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