
metals

Article

Anisotropic Hardening Behaviour and Springback of
Advanced High-Strength Steels

Jaebong Jung 1, Sungwook Jun 1, Hyun-Seok Lee 2, Byung-Min Kim 1, Myoung-Gyu Lee 3 and
Ji Hoon Kim 1,*

1 School of Mechanical Engineering, Pusan National University, Busan 46241, Korea;
sylar999@pusan.ac.kr (J.J.); sungwook@pusan.ac.kr (S.J.); bmkim@pusan.ac.kr (B.-M.K.)

2 NARA Mold & Die Co., Ltd., Changwon 51555, Korea; hslee@naramnd.com
3 Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea;

myounglee@korea.ac.kr
* Correspondence: kimjh@pusan.ac.kr; Tel.: +82-51-510-3031

Received: 26 September 2017; Accepted: 12 October 2017; Published: 6 November 2017

Abstract: Advanced high-strength steels (AHSSs) exhibit large, and sometimes anisotropic,
springback recovery after forming. Accurate description of the anisotropic elasto-plastic behaviour
of sheet metals is critical for predicting their anisotropic springback behaviour. For some materials,
the initial anisotropy is maintained while hardening progresses. However, for other materials,
anisotropy changes with hardening. In this work, to account for the evolution of anisotropy of a
dual-phase steel, an elastoplastic material constitutive model is developed. In particular, the combined
isotropic–kinematic hardening model was modified. Tensile loading–unloading, uniaxial and biaxial
tension, and tension–compression tests were conducted along the rolling, diagonal, and transverse
directions to measure the anisotropic properties, and the parameters of the proposed constitutive
model were determined. For validation, the proposed model was applied to a U-bending process,
and the measured springback angles were compared to the predicted ones.
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1. Introduction

Weight reduction, in order to improve fuel efficiency and meet CO2 regulations for addressing
global warming while maintaining safety regulations, is an important issue in automotive
manufacturing [1,2]. In this work, we investigate the application of advanced high-strength steels
(AHSSs), with good strength and formability, in automotive parts. The demand for automotive parts
made of AHSSs is based on their excellent impact resistance, which is an asset for the reinforcement
of the car body structure, and which depends on their high strength [3–7]. However, along with
their high strength and low thickness, the AHSSs exhibit anisotropic properties and large springback
recovery after forming [8,9]. The higher their strength and the thinner the sheet metals, the greater the
tendency for anisotropy and springback to occur [10,11]. For some metals, the anisotropy of a material
follows a tendency determined at the initial yielding, which does not change as hardening progresses.
However, in several cases of materials in which the anisotropic tendency changes according to the
hardening progress, there is a restriction to express the phenomenon of anisotropic springback problem
with a yield function and the conventional hardening rules. Therefore, the accurate description of
the anisotropic elasto-plastic behaviour of sheet metals is critical for predicting their anisotropic
springback behaviour.

To predict springback accurately, it is important to use sophisticated elastic material
models [12–15]. A constant elastic modulus is widely used, but it is not suitable for representing
anisotropic and nonlinear unloading behaviour. Lems [16] investigated a change in the elastic modulus
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following the plastic strain at low temperature and its recovery. Morestin and Boivin [17] proved
that the variation in the elastic modulus following a plastic strain allows better numerical analysis
of the elasto-plastic phenomenon in the case of the springback problem. Steels, for example, have a
reduction of up to 20–30% of their initial elastic modulus (E0), while for aluminium alloys, in general,
the reduction is 20%. The chord modulus model [18] represents a changing elastic modulus behaviour
according to the hardening progress by reducing the elastic modulus with the increase in equivalent
plastic strain. This model can improve the accuracy in springback prediction, because it is effective
in expressing the reduction phenomenon and is computationally efficient. Its disadvantage is that
a nonlinear stress–strain response cannot be captured. As a result, the stress–strain description is
accurate only when fully loaded. In the quasi-plastic-elastic (QPE) model proposed by Sun and
Wagoner [19], the elastic modulus is maintained as the initial value until reaching a certain level
of stress based on the QPE rules, and then, the elastic modulus, according to the strain amount, is
nonlinearly reduced until reaching the next plastic behaviour.

The springback predictions are also sensitive to yield functions for materials having highly
anisotropic properties [20–22]. The Yld2000-2d yield function [23] is widely used in sheet metal
forming simulations. The Bauschinger effect is usually described by introducing back stresses, as in
the Armstrong-Frederick hardening rule [24]. To account for the nonlinear hardening and changing
anisotropic tendency, variable parameters and tensors have been introduced into the back stress
evolution rule [25,26]. Recently, the homogeneous yield function-based anisotropic hardening (HAH)
model [27] was proposed, wherein the plastic behaviour of a metallic material subjected to multiple or
continuous strain path changes is described using a collapse of the yield function. A fluctuating term
of the HAH model, along with phenomenological or dislocation density-based hardening equations,
can depict an anisotropic hardening according to the change in various strain paths [28–30].

The dual-phase (DP) steels studied in this work are generally subjected to intercritical annealing
of cold rolled strips followed by quenching and as a result, they have a microstructure consisting of a
ferritic matrix and a martensitic islands [31]. The quenching converts the ferrite-mixed austenite phase
to martensite, leading to a ferrite–martensite two-phase system. The complex microstructure of DP
steels may cause complicated behaviour upon changes in loading paths.

In this work, to account for the evolution of anisotropy in a DP steel, an elastoplastic material
constitutive model is developed. In particular, the combined isotropic–kinematic hardening model
was modified. Tensile loading–unloading, uniaxial and biaxial tension, and tension–compression tests
were conducted along the rolling (RD), diagonal (DD), and transverse (TD) directions to measure
the anisotropic properties, and the parameters of the proposed constitutive model were determined.
For validation, the proposed model was applied to a U-bending process, and the measured and
predicted springback angles were compared.

2. Constitutive Equations

2.1. Elasticity

A stress-strain relationship of a material under a non-yielding condition may be expressed by the
generalised Hooke’s law [32]:

σ = Cεe (1)

where εe is elastic strain, σ is Cauchy stress, and C is the stiffness matrix. Under the plane stress
condition and with the isotropic elasticity, Equation (1) may be rewritten in the matrix form as [32]: σ11

σ22

σ12

 =
1

1− ν2

 E νE 0
νE E 0
0 0 G

(
1− ν2)


 εe

11
εe

22
εe

12

 (2)
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where E is the Young’s modulus, G is the shear modulus, and ν is the Poisson’s ratio. The Young’s
modulus can be express by various elastic material models, as shown in Figure 1. The constant
modulus model underestimates the elastic recovery, whereas the chord modulus model overestimates
it. The QPE model [19] can depict the elastic unloading behaviour by introducing a QPE function and
its nonlinear evolution. In the QPE model, the elastic modulus is given by:

E = E0 − E1

[
1− exp

(
−b

∫
||dε− dεp||

)]
(3)

where E0 is the initial elastic modulus and E1 and b are material parameters determined by
loading–unloading tests. dε and dεp are, respectively, increment of total strain and plastic strain.
In the QPE model, the QPE surface is defined where the constant elastic modulus is used:

f1 = φ1(σ−α∗)− R = 0 (4)

where f1, α∗, and R are the QPE function, its center, and the size of the QPE function, respectively.
The size of the QPE function is assumed constant in this work. In the QPE mode, the stress is located
outside of f1 and inside of f.
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Figure 1. Schematic comparison of the elastic material models during unloading.

2.2. Yield Criterion

The Yld2000-2d yield function [23], f, composed of two functions, φ′ and φ′′ , was used to account
for the anisotropic yielding

f (σ) =
φ′ + φ′′

2
= σm (5)

where σ is the stress, σ is the effective stress, and m is the yield function exponent. The details of the
yield function are given in Appendix A.

2.3. Hardening Law

The back stress, α, is introduced to account for the Bauschinger effect in the Armstrong-Frederick
hardening model [24]:

f (σ−α)− σm
iso = 0 (6)

where the yield function size of the isotropic hardening law of Voce type [33], σiso, is given by:

σiso = σ0 + Q(1− exp(−bε)) (7)

where σ0, Q, and b are material parameters. The yield function is an m-th order homogeneous function,
whose size is decided by the equivalent plastic strain ε. Yielding occurs when the yield function equals
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its size. In the Armstrong–Frederick hardening model, the increment in the back stress is composed of
two terms:

dα = dα1 − dα2 = C
(σ−α)

σiso
dε− γαdε (8)

where C and γ are material parameters. The second term of the furthest right side of Equation (8)
is called a recall term, which is introduced by expressing the transient behaviour of the gradually
disappearing memory of the material when subjected to a rapid change in the stress. The hardening
rate increases if C of the first term increases and non-linear hardening appears when γ increases under
a reverse loading condition.

Chung et al. [25] proposed a back stress evolution rule, where C and γ are functions of the
equivalent plastic strain, for expressing general hardening behaviour. In this paper, C and γ were
expressed as:

C(ε) = C1 + C2 exp(−C3ε) (9)

γ(ε) = γ1 + γ2 exp(−γ3ε) (10)

where C1, C2, C3, γ1, γ2, and γ3 are material parameters.
To account for the anisotropic evolution of back stress [26], the back stress evolution rule was

modified as:

dα = dα1 − dα2 = Γ1C
(σ−α)

σiso
dε− Γ2γαdε (11)

where Γ1 and Γ2 are 3 × 3 diagonal tensors given by:

Γ1 =

 1 0 0
0 Γ1,22 0
0 0 Γ1,12

 (12)

Γ2 =

 1 0 0
0 Γ2,22 0
0 0 Γ2,12

 (13)

This model is denoted as ‘the hardening model with anisotropic evolution’. If the back stress
evolves isotropically (Γ1,22 = Γ1,12 = Γ2,22 = Γ2,12 = 1), it is denoted as ‘the hardening model with the
isotropic evolution’.

3. Experiments

A dual-phase steel with tensile strength of 980 MPa and thickness of 1.1 mm (DP980) was used
for the mechanical and U-bending tests. The uniaxial tension, uniaxial tensile loading–unloading,
and biaxial tension tests were conducted to determine the material parameters of the QPE model and
the Yld2000-2d yield function. The hardening parameters of the isotropic and anisotropic evolution
models were obtained from the tension–compression tests. The U-bending test was conducted to
evaluate the effect of the anisotropic evolution on springback.

3.1. Uniaxial Tensile and Loading–Unloading Tests

The uniaxial tensile and loading–unloading tests were carried out using a universal testing
machine. The ASTM E8 standard size specimens were manufactured by wire electrodischarge
machining. The effect of the coupon manufacturing methods on tensile properties were discussed
elsewhere [34]. The uniaxial tensile tests were conducted for the RD, DD, and TD, as shown in
Figure 2a. The loading–unloading tests were conducted for pre-strains of 3, 5, and 7% in the RD, as
shown in Figure 2b. The material properties were obtained following the standard test methods ASTM
E8 (Standard Test Method for Tension Testing of Metallic Materials) and E517 (Standard Test Method
for Plastic Strain Ratio r for Sheet Metal), as listed in Table 1.
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Figure 2. Engineering stress–strain curves of (a) uniaxial tensile and (b) loading–unloading tests.

Table 1. Uniaxial tensile properties of DP980.

Direction Young’s Modulus [GPa] Yield Strength [MPa] r-Value Tensile Strength [MPa] Elonagtion [%]

RD 202.2 618.1 0.757 1014.1 15.6
DD 206.1 610.7 0.851 1015.6 16.4
TD 208.8 626.7 0.856 1021.9 14.0

The parameters of the QPE model were derived from the loading–unloading data, as listed in
Table 2.

Table 2. Parameters of the QPE model.

E0 [GPa] E1 [GPa] b R [MPa]

205.8 105.7 345 300

3.2. Biaxial Tensile Test

The balanced biaxial (BB) tensile test was carried out using a biaxial tensile tester [35] with a
cruciform specimen, as shown in Figure 3. A constant loading rate of 9.8 kN/min was used. The plastic
strain ratio in balanced biaxial tension rb was obtained. The results of the balanced biaxial tension are
shown in Figure 4 and listed in Table 3.
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Figure 3. Biaxial tensile test: (a) biaxial tensile tester; (b) cruciform specimen.
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Table 3. Balanced biaxial tensile properties of DP980.

Elastic Modulus [GPa] Yield Strength [MPa] rb

297.0 601.9 0.915

The Yld2000-2d parameters were obtained using the data in Tables 1 and 3, as listed in Table 4.
The variation of the yield strength and the comparison of the initial yield criteria of the von-Mises and
Yld2000-2d yield functions are shown in Figure 5.

Table 4. Parameters of the anisotropic Yld2000-2d yield function.

m α1 α2 α3 α4 α5 α6 α7 α8

6 0.978 0.978 1.049 1.008 1.026 1.044 0.998 1.023
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3.3. Tension-Compression Test

In order to investigate the anisotropic evolution of hardening, tension–compression tests were
carried out in the three material directions using a tension–compression tester, as shown in Figure 6.
In the tension-compression test, the sheet specimen is placed between the comb-shaped anti-buckling
fixtures. Buckling of the sheet metals, which may occur during compression, is suppressed by the
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hydraulic force acting perpendicular to the sheet plane through the comb-shaped fixtures. Details of
the tension-compression test can be found elsewhere [36]. In the tension-compression tests, the tension
by a strain of 7% was followed by the compression to a strain of −7%. The true stress-accumulated
plastic strain curves can be divided into three stages, as shown in Figure 7. In stage A, where hardening
hardly progresses, the anisotropic tendency of yielding matches the initial yield strength trend in
Figure 5a. The curves of RD and TD become similar in stage B, and the flow stress of RD becomes
larger than that of TD in stage C where the initial anisotropic tendency is reversed. The change in
anisotropic tendency is illustrated in Figure 8.
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The hardening model parameters were obtained from the tension–compression data by
optimisation using the fminsearch function of the MATLAB program, as listed in Table 5. The MATLAB
function finds parameters that minimise the error function value using the Nelder–Mead method [37].
After calculating a residual by performing a finite element (FE) analysis using an estimated
value, the fminsearch function calculates the updated parameter values and repeats the FE analysis.
This process is repeated until no further reduction in residual is achieved. In the case of the hardening
model with isotropic hardening, it was optimised only for the rolling direction data.

Table 5. Parameters of hardening models with isotropic and anisotropic evolution.

Hardening Model with Isotropic Evolution

σ0 [MPa] Q [MPa] b C1 [MPa] C1 [MPa] C1 γ1 γ2 γ3
583.9 409.7 3.861 17,896 26,144 9.537 34.74 80.27 6.551

Hardening Model with Anisotropic Evolution

σ0 [MPa] Q [MPa] b C1 [MPa] C1 [MPa] C1 γ1 γ2 γ3
583.9 409.7 3.861 17,896 26,144 9.537 34.74 80.27 6.551
Γ1,22 Γ1,12 Γ2,22 Γ2,12
0.948 0.975 1.014 0.940

In Figure 9, the tension-compression curves in the three material directions were compared.
In the case of the isotropic evolution, it follows the initial trend of anisotropy determined by the yield
function. However, in the case of the anisotropic evolution, the anisotropic tendency is changed during
reverse loading. The errors of fit of the tension–compression curves predicted by the isotropic and
anisotropic evolution models are compared in Figure 10. The error of fit in the RD value is similar
because the parameters of the isotropic model were obtained from the RD data. However, the errors in
the DD and TD are smaller for the anisotropic models.
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4. Application

U-bending tests were conducted using specimens with size of 300 × 30 × 1.1 mm3 for the three
material directions. The experiments were performed using a servo-press. The dimensions of the test
are shown in Figure 11a. The holding force was linearly increased from 5.65 kN to 7.92 kN from the
beginning to the end of the punch stroke. The specimens before and after forming and springback are
shown in Figure 12a.
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Figure 12. (a) Specimens of the U-bending test and (b) measures of springback (ρ, θ1, and θ2).

Simulations of the U-bending process were carried out using the commercial finite element
software Abaqus/Standard, as shown in Figure 11b. Four-node shell elements with reduced integration
(S4R) were used with an element size of 0.5 mm. The number of integration points through the thickness
was seven. The coefficient of friction was assumed as 0.12. The deformation of the tools may affect
the U-bending test results significantly [38]. However, for simplicity, the punch, die, and holder were
assumed as rigid bodies in this work.

The measured and calculated shapes of the specimens after springback are compared for the
three material directions in Figure 13. The predicted shapes showed good agreements with the
measurements in RD, while there are some differences in DD and TD. The predictions with the
isotropic and anisotropic evolution showed little differences for RD because the material parameters
of the isotropic evolution model were fitted for RD. However, the predictions with the isotropic and
anisotropic evolution showed differences in TD, although the amount of the difference is small.

In order to evaluate the springback quantitatively, three measures of springback (ρ, θ1, and θ2),
defined in Figure 12b, were taken from the specimen geometry, as shown in Figure 14. The predictions
with the isotropic and anisotropic evolution showed little differences in the U-bending shape of the
RD and DD specimens. For the TD specimens, the predictions with the anisotropic evolution showed
better agreements with the measurements. This is because the anisotropic hardening evolution rule
reduces the error when representing the stress-strain behaviour in directions other than RD. In the
case of the isotropic evolution model, the initial yielding anisotropic tendency of the yield function
is maintained in the springback result of U-bending. However, the initial anisotropic tendency was
changed during deformation, as shown in Figure 8. In the case of the anisotropic evolution model,
the evolving anisotropy tendency is represented, which is more similar to the measurements.
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Figure 13. Intermediate shape after the springback for verification of difference between hardening
models with isotropic and anisotropic evolution.
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Figure 14. Comparison of the measured and calculated springback measures: (a) curvature ρ;
(b) springback angle θ1; (c) springback angle θ2.

5. Conclusions

To account for the evolution of anisotropy of a dual-phase steel, an elastoplastic material
constitutive model is developed by modifying the combined isotropic-kinematic hardening model.
The tensile loading–unloading, uniaxial and biaxial tension, and tension–compression tests were
conducted along the rolling, diagonal, and transverse directions to measure the anisotropic properties,
and the parameters of the proposed constitutive model were determined. For validation, the proposed
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model was applied to a U-bending process, and the measured and predicted springback angles were
compared. The following conclusions were drawn:

• The dual-phase steel studied in this work exhibited a change in the anisotropic properties
during deformation.

• The hardening model with the anisotropic evolution successfully captured the evolution of the
angular variation of anisotropic properties.

• Using the hardening model with anisotropic evolution, it was possible to accurately predict the
springback in different directions.
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Appendix A

The Yld2000-2d yield function [6] has eight parameters (α1–8) that require eight mechanical
properties (σ0, σ45, σ90, σb, r0, r45, r90, rb). The m value is suggested as six for BCC and eight for FCC
metal. In Equation (4), the yield function is given by a combination of two functions:

φ′ =
∣∣X′1 − X′2

∣∣m (A1)

φ′′ =
∣∣2X′′2 + X′′1

∣∣m +
∣∣2X′′1 + X′′2

∣∣m (A2)

where the X′i and X′′i are principal values of the tensor X′ and X′′ , respectively, which are expressed by
the product of the anisotropic components (Cij or Lij) and stress components (sij or σij).
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