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Abstract: The focus of the present work is to develop a deep understanding of deformation of stacked
metal sheets with a series of different sequences by using shock wave loading. Here, experimental
and numerical investigations of deformation of a single metal sheet of 1.5-mm and the stack of three
metal sheets of 0.5-mm thickness of aluminum (Al), copper (Cu) and brass (Br) material were carried
out. In the shock wave experiments, helium was used as the driving gas to produce a strong shock
wave. Finite elements method (FEM) simulations on 3D-computational models were performed
with explicit dynamic analysis, and Johnson-Cook material model was used. The obtained results
from experiments of the outer diameter, thickness distribution, and dome height were analyzed
and compared with the numerical simulations, and both the results are in excellent agreement.
Moreover, for the same pressure load, due to lower inter-metallic friction in the stacked sheets
compared to a cohesive property of the single sheet, an excellent deformation of stacked metallic
sheets was observed. The results of this work indicated that the shock wave-forming process is
a feasible technique for mass production of stacked metallic sheets as well as fabricating a hierarchical
composite structure, which provides higher formability and smooth thickness distribution compared
to a single material.

Keywords: shock wave tube; finite element method; stacked metallic sheets

1. Introduction

High-speed forming is a widely investigated technique, which refers to a forming process whereby
the workpiece material experiences the high forming speed of up to several hundred meters per second.
In high-speed forming processes, such as explosive, gas detonation, electromagnetic, electrohydraulic
and shock tube forming, a plate is plastically deformed by means of high kinetic energy. These modern
techniques provide productive usage of material, energy sources and minimize the problem which
comes around in the formation of a sheet metal [1]. Shock waves are mechanical waves of finite
amplitudes and rise when a matter is subjected to a rapid compression [2]. Due to sudden changes
in velocity and pressure, the shock wave gained effective usage and application in an area such as
physics, chemistry, materials science, engineering, military technology, medicine, and several other
areas [3,4].

Shock waves produced by shock tube have a higher degree of formability for various materials,
which are capable of forming complex geometries, undercuts, and fine embossing without relief angle.
The process consists of clean combustion, having the advantages of easy automation and fewer safety
regulations. The cost for a small part or component is remarkably minimized due to reduced tooling
requirement compared to electromagnetic forming [5]. Recently, sheet metal forming has attracted
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great research attention in the stretching and bending of a thin sheet into the desired shape. Due to its
stiffness and good strength-to-weight ratios, it is widely used in trains, passenger cars, domestic planes,
aircraft, rockets and food and drinks cans [6].

In previous works, Kumar et al. [7] conducted experimental and numerical studies to understand
the effect of three different radii of plate curvature on shock tube for aluminum panels. A 3D
Digital Image Correlation technique (DIC) is used to obtain deflection, velocity and in-plane strains.
The result showed that the plane with maximum radius curvature had the least plastic deformation [7].
Ray et al. [8] investigated the microstructure, texture, and hardness of AA5086 aluminum for different
loading condition by three different sizes of specific diaphragms using shock wave tube for the
unidirectional manner and multi-step cross rolling process. Duan et al. [9] investigated the flow
structures, propagation and theoretical critical pressure for ignition of generated shock waves using
different dimensions of a tube and different pressures [9].

Reddy et al. [10] investigated the behavior of composite sandwich panels against different shock
loads to report the fabrication of sandwich panels using E-glass-epoxy composite face sheet and
aluminum foam. Also, failure behavior of aluminum foam and sandwich material were studied [10].
Ruan et al. [11] designed experimental equipment to examine the forming of magnesium alloy in
cold working using underwater shock waves. Their experimental results revealed the increase in
coefficient of extension and hardness of materials after receiving a shock wave [11]. Louar et al. [12]
studied the incident and reflected pressure time signal measurements for the different amount of C4
charges. Their investigations were focused on the use of one explosive drive shock tube (EDST) and
achieved results from a series of tests using EDST were discussed [12]. Nagaraja et al. [13] studied the
deformation of thin metallic plates/foils, which were subjected to shock wave loading in the newly
developed diaphragm-less shock tube. Aluminum, copper and brass plates of 60-mm diameter with
different thicknesses and pressures were tested [13].

Atrian et al. [14] research work was concerned with the experimental and finite element method
of deep drawing process steel and laminated brass sheets. Different tests were conducted with
an influence of some variables like stacking sequence of the layers, lubrication, blank-holder force
and the diameter of the composite blank on the load-displacement curve and the final shape of the
produced components. The results showed the investigation of stress and strain distributions for finite
element study and the experimental tests [14]. Andreotti et al. [15] studied the numerical approach for
the performance of a double diaphragm using shock tube and structural response. Justusson et al. [16]
and Aune et al. [17,18] investigated the use of shock tubes to deform the metal plates plastically.
Stoffel et al. [19,20] reported work on numerical simulation and experimental validation of plates
subjected to impulsive loading. In our previous work, we have studied DC04 metal forming using
gas detonation forming process experimentally and numerically. Wherein, investigation of detonation
pressure, deformed cup, thickness distribution, radial strain and damage in a cup were studied [21-23].

The above studies suggest that the substantial progress has been made in the research area of
a shock wave, however, to the best of authors” knowledge, there has been no reported work on
stacked metallic sheets subjected to high-pressure wave using shock wave tube. In high-speed metal
forming, the very high pressure is applied on the workpiece. Therefore, in the case of the final
deformed shape is not complicated, the stack of workpieces can be deformed together. Moreover,
any combination of different materials can be formed simultaneously, to save time as well as energy.
However, to optimize such a forming process in industry, knowledge of material behavior under very
high pressure and deformation rates is required. Also, a comparison study of the mechanical behavior
of single and stacked metal sheets against high-pressure waves needed to investigate. In present
work, experimental and numerical investigations of deformation of a single metal sheet of 1.5-mm and
stacked metallic sheets with a thickness of 0.5-mm of aluminum (Al), copper (Cu) and brass (Br) with
different sequence are carried out. Moreover, dome height, outer diameter, and thickness distribution
results of deformed metallic sheets obtained from experiments and simulations are investigated and
discussed. Furthermore, during the deformation process, the strain and stress distribution in the sheets
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are studied. Finally, based on the numerical and experimental observation, some useful conclusions
are made, and extension of this work is proposed.

2. Methodologies

2.1. Experimental Setup

A schematic representation of a shock wave tube is shown in Figure 1. Shock tube consists of
a high-pressure chamber (HPC), which can be filled with different gases, and a low-pressure chamber
(LPC), which is separated from the HPC by a membrane. A plate specimen is clamped between two
rings, and a fixed die is located at the end of the tube. The workpiece is not fixed between these rings.
However, it is in the groove of the die. Therefore, it is free to move in the horizontal plane. During the
experiment, the inside pressure of the HPC increases and after the burst of the membrane, the shock
wave propagates into the LPC, and finally reaches to the plate specimen followed by a reflection.
Owing to wave impact and reflection, the plate starts to deform. The history of the pressure was
measured by piezoelectric sensors, which were located in a separate ring flange in front of the specimen
and specialized in recording fast changes of pressure. The type of sensor used was Kistler 603B (Kistler
Instrumente GmbH, Sindelfingen, Germany). Figure 1 illustrates the respective position of the sensors.
Depending on the type of gas in the HPC, the length of tube parts and type of the membrane material
and thickness, different evolutions of the pressure history can be generated. Here, the shock wave tube
consists of a 5.5 m long HPC section with internal diameter 80 mm and a 6.5 m long LPC section with
internal diameter 108 mm and a 15 mm thick wall for both the sections. One small hole was drilled
through a die, which was connected to a vacuum pump, to prevent the formation of air trap between
the sheet metal and the die. The stacked metal sheets were mounted in a specially designed holder
attached at the end of the shock tube.

Workpeice

Sensor 1

Die

<«— Vacuum pump

Diaphragm

Sensor 2

Low pressure

Driven section

Gas inlet

High pressure

Driver section

Figure 1. A schematic representation the experimental setup of the shock wave tube forming process.
Inset: The shock tube facility at the Institute of General Mechanics, RWTH Aachen University.

Figure 2 shows the dimensions of the die. The diameter of the circular metal blank was 138 mm,
and the inner diameter of the die was considered 90 mm. The stack of metal sheets placed with thin
papers in between them to minimize wrinkles due to a small gap between the die and the holder.
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Figure 2. Dimensions of the die.

The driven and driver section of the tube was evacuated and maintained at room temperature.
The driver section was filled with enough helium gas until it reaches to a critical pressure to burst
the membrane. To keep the pressure between 38—40 bar, the total thickness of the diaphragm used
was 600 um (three hostophan membranes with 200 pm thickness of each membrane). The maximum
loading pressure on a metallic plate was recorded approximately 37-39 bar. A shock wave formed
after the rupture of the diaphragm, wave traveled towards the end of a driven section within a very
short interval of time with a constant supersonic velocity, which hit the metal sheets and reflects it
back. The reflected wave with lower pressure than incident shock pressure, which moves back until it
reaches the contact surface separating the driver and driven gas [24]. The maximum pressure acting
on the metallic sheets was observed nearly 3/4th time of the initial pressure.

In the present work, a series of experiments were carried out for stacked metal sheets of Al, Cu,
and Br. For the thickness of 0.5-mm, stack of three metal sheets with 9 different combinations were
considered. The chemical compositions of Al, Cu, and Br are given in Table 1 and stacked of metallic
sheets with a different combination in Table 2.

Table 1. The chemical composition of Al, Cu and Br.

Composition wt%

Material
Cu Mg Mn Fe Si Ti Ni Pb 02 Zn
AA5754 - 32 02 03 0.06 0.01 - - - -
CuZn37 65.5 - - <0.1 - - <0.3 <0.1 - rest
OHFC Cu 99.99 - - - - - - - 0.001 -

Table 2. The stacked of metal sheets with a series sequences.

Sequences
2 3 4 5 6 7 8 9

top sheet Al Br Cu Al Cu Br Cu Br Al
middlesheet Cu Cu Cu Br Br Br Al Al Al
bottomsheet Br Al Cu Cu Al Br Br Cu Al

Metal Sheet

Figure 3 represents the simplest form of an ideal blast wave pressure profile, which is described as
the Friedlander waveform curve, and actual pressure-time history for a shock wave in the tube.

All experiments were conducted at the shock wave laboratory, Institute of General Mechanics,
RWTH Aachen University.
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Figure 3. (a) A schematic representation of an ideal blast wave pressure profile. (b) The actual
pressure-time history for a shock wave in the tube. Inset: Enlarge view of the time range between
Oand1s.

2.2. Material and Modeling

A numerical simulation is a powerful tool for analysis of sheet forming process. It is based on the
solution of dynamic equilibrium equations. Numerical simulations were performed by using an explicit
time integration in LS-DYNA (Livermore Software Technology Corporation (LSTC), San Francisco,
CA, USA) solver [25]. As the goal of this work was to study the deformation process of sheet metal,
we were not interested in shock wave propagation in a shock tube. This process has made more
comprehensible by directly applying the shock wave pressure as a pressure load in the finite element
(FE) model as shown in Figure 4.

40—

30—
B}
S L
g
2
220~
&

10+

0 L | L |
0 0.2 0.4 0.6 0.8
Time [s]

Figure 4. Pressure-time load curve used for simulation.

The full model was considered for finite element simulation to study the deep deformation of
the stacked metallic sheets with different combinations and single metal plate. The model includes
the die, holder and metal sheets as a workpiece. Figure 5 shows the half section view with stacked
metal sheets. The die and holders components were represented as the solid elements and assigned
them with rigid material (MAT_20) model. Belytschko-Tsay shell with five integration points [25]
were used to create the mesh on the metal plate. The boundary nodes of the workpieces are kept free
to move in the horizontal plane to mimic the clamping in the experiments. We conducted simulations
for a different number of elements from very coarse to very fine model (~41125, ~62154, ~80158,
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~111665), wherein the coarse mesh has maximum stress near the critical areas like die curvature and
center area of the plate, due to which formability of sheets was not smooth. As the number of elements
increases, internal energy also increases. Therefore, to minimize the critical stress, metal sheet was
divided into four different element sizes, near the center area with 0.15 mm, in the middle area of sheet
with 0.35 mm, die curvature with 0.23 mm and outer area of the sheet with 0.86 mm. Thus, a total
number of elements on a single metal sheet was 111665, and for the three metal sheets, the total number
of elements were 334995. The die and holders were fixed, and a segment-based surface-to-surface
contact formulation was used to define between them [25]. The mechanical properties of the Al, Cu,
and Br are given in Table 3 [26].

Element sizes
0.86 mm
0.23 mm
0.35 mm

0.15 mm
26.5 mm

90 mm

Figure 5. (a) Half section view of the 3D FE model. (b) Mesh density of workpiece.

Table 3. Mechanical properties of Al, Cu, Br [26].

Property Aluminum Copper  Brass
Young’s Modulus (MPa) 68,900 116,000 110,000
Shear Modulus (MPa) 26,000 48,000 41,000
Density (kg/m3) 2700 8980 8520
Poisson’s Ratio 0.33 0.34 0.31

The Johnson-Cook phenomenological material model (MAT_015) [27] was used as a material
model for the metal sheets. The model is able to predict the mechanical behavior of the material
under different loading conditions. In this model, strain hardening, strain rate sensitivity and thermal
softening are considered as the three key characteristics of the material. These three effects are
combined in a multiplication manner, such that the Johnson-Cook constitutive stress reads

oy = <A+BEF’"><1+Cln§Z)(1— [%}m) )

where A is the elastic limit strength and fixes the stress value at which the plastic behavior starts,
B and n are the work hardening parameters and influence the slope of the flow stress in the plastic
domain. The parameter n usually assumes values between 0 (for the perfectly plastic model) and 1
(for a bilinear model). C is the strain rate sensitivity coefficient, and m describes the thermal softening.
¢ represents the strain rate for the quasi-reference loading.

The expression of a first set bracket in Equation (1) represents the stress as a function of strain.
Where, parameters A, B and n can be determined using static tensile test. The expression of second
bracket set represents an effect of strain rate hardening with the parameter C. The last set of expression
represents the temperature sensitivity. The required material parameters for the simulations are
given in Table 4 [27-30]. Hence the different static (SF) and dynamic friction (DF) coefficients were
considered between the workpiece, holder and die. From the literature, the considered friction
parameters were Al-die (SF = 0.421, DF = 0.33), Al-Al (SF = 0.405, DF = 0.418), Br-die (SF = 0.2, DF =0.3),
Br-Br (SF = DF = 0.5), Cu-Cu (SF = 1.0, DF = 1.1), Cu-die (SF = 0.53, DF = 0.36), Al-Cu (SF = 0.35,
DF = 0.25) and Al-Br and Br-Cu (SF = 0.5, DF0.5) [31-38]. For these simulations, no significant
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variations were observed in the deformation of workpiece with the variation of static and dynamic
friction coefficient values.

Table 4. Values for the Johnson-Cook material model parameters for Al, Cu, and Br [27-30].

Property Aluminum Copper Brass
Yield Stress, A (MPa) 67.4 90 80
Strength Coefficient, B (MPa) 471 292 505
Deformation Hardening, n 0.424 0.31 0.605
Strain Rate Coefficient, C 0.003 0.025 0.29
Temperature Exponent, m 2.519 1.09 1.68
Strain Rate, ¢ (1/s) 1 1 1

3. Results and Discussion

3.1. Dome Height and Outer Diameter

A series of shock wave experiments for metal deformation was carried out using a shock wave
tube. Wherein, Al, Cu, and Br for single 1.5 mm thickness and stacked metal sheets with 0.5 mm
thickness for different combinations with 138 mm outer diameter were included. The pressure of
shock wave front acting on the workpiece was approximately 37-39 bar (3.7-3.9 MPa). The blank sits
perfectly into a die, with a depth size 26.5 mm. Since the process takes place in a very short interval of
time with very high pressure, a wrinkle can be formed on the skirt of the workpiece due to a small
tolerance (or gap). To minimize the wrinkles, we placed a thin plastic sheet in between the plate in the
experiments as well as in the simulations. Figure 6 represents the qualitative comparison of deformed
metal sheets in the experiment and the numerical simulation of single Al with 1.5 mm thickness, three
stacked metal sheets of Al and Al-Cu-Br combination of 0.5-mm thickness. Numerical simulations
studies show remarkable similarity with the experimental results, and nearly no wrinkles were
observed on numerical simulations as well as experiments, on the skirts of the deformed plate.

(a) Al: 1.5 mm single plate

(b) Al: 0.5 mm stacked plates

(€¢) Al-Cu-Br: 0.5 stacked plates

Figure 6. Qualitative comparison of the deformed metal between the experiments and the numerical
simulations for (a) 1.5 mm single plate of Al, (b) 0.5 mm stacked plates of Al and (c) 0.5 mm stacked
plates of Al-Cu-Br.
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Figure 7 shows a comparison of dome height of the deformed metal sheets of 1.5-mm thickness in
the experiments and numerical simulations. To take into account the variation in the results, we have
performed a minimum of four experimental tests for every analysis. Here, the average mean value
of four tests is plotted with standard error deviation bar. The numerical simulation results were
in excellent agreement with the experiments. Figure 8 represents a comparison of dome height of
the deformed metal sheets of 0.5-mm thicknesses with different sequences in the experiments and
numerical simulations. The arrangement of samples was in the form of top-middle-bottom, wherein
shock front first hits the top plate, and the bottom plate at the end.

From Figures 7 and 8, the average mean value of experiments and simulations of a single Al sheet
of 1.5 mm thickness was nearly 15.7 mm, whereas stacked three metal sheets of 0.5-mm thickness of
the same material was nearly 22 mm. However, Cu and Br workpieces showed no significant change in
deformation with single 1.5 and stacked 0.5 mm plates. In case of stacked metal sheets with a different
combination, the dome height varies in the same range between 13 and 15 mm in the simulations as
well as in experiments, which implies that in any combination we get nearly the same dome height of
deformed metal sheets. Therefore, with the combination of different materials as well as an increase in
a number of stacked plates, the combined formability of stacked plates also increases.

16 — [ experiments:1.5 mm thickness single plate
B® simulation: 1.5 mm thickness single plate

— 12
g
g
=
2P
EREIS
5}
=)
o
o)

4

0

Al: 1.5 Cu: 15 Br: 1.5

Figure 7. Comparison of dome height of the deformed metal sheets of 0.5-mm thicknesses with
different sequences in the experiments and numerical simulations.

25

B simulation: 0.5 mm thickness stacked sheets
[ experiment: 0.5 mm thickness stacked sheets

Dome height [mm]

Figure 8. Comparison of dome height of a deformed metal in the experiment and numerical simulation
for 0.5 mm thickness sheets.
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Figure 9 represents the qualitative and quantitative comparison of deformed specimen diameters
in the experiment, and numerical simulations for single Al with 1.5 mm thickness, stacked three sheets
of Al with 0.5 mm thickness and the stack of Al-Cu-Br metal sheets. Figure 10 shows the bar graph of
the diameter of deformed workpieces. The experimental results are in good agreement with numerical
simulations. For a single and stacked metal plates with a diameter of 138 mm in an undeformed state,
the obtained outer diameter after deformation was in the range of 135-136.5 mm, which was nearly
same for all.

Yy
N
. A
N
Y _

134.78 mm

N

135.98 mm 135.07 mm

le
<

-y
Y
A
Y

le
<

135.61 mm

134.62 mm 134.5 mm

(a) Al: 1.5 mm (b) Al: 0.5 mm (¢) Al-Cu-Br: 0.5 mm

Figure 9. Diameter comparison of the deformed sheets between the experiments and numerical
simulations for (a) 1.5 mm single plate of Al, (b) 0.5 mm stacked plates of Al and (c) 0.5 mm stacked
plates of Al-Cu-Br.

140
B8 simulation: 1.5 mm and 0.5 mm thickness sheets
B [ experiment: 1.5 mm and 0.5 mm thickness sheets
136 - ==
E L
El
5 132 -
5]
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Figure 10. Diameter comparison of numerically- and experimentally-deformed single and stacked
metal sheets.

3.2. Thickness Distribution

The thickness and the strain distribution are mainly dependent on a peak pressure load acting
on a metal sheet. Moreover, the loading rate in the numerical model is very sensitive, even a little
change in a load can affect the extreme change in model results. Therefore, we used the precisely same
experimental loading curve in numerical simulations using well calibrated measuring devices [21-23].
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One of the goals of this work was to study the thickness distribution in the numerical simulations
and experiments.

3.2.1. A Single Metal Sheet

Figure 11a illustrates the quantitative representation of the thickness distribution for simulation
and experimental results of a single Al, Cu and Br metal sheets. The comparison between the
experiments and simulations studies of thickness distribution shows that the variation patterns
and thickness values were well in agreement. The minimum thickness obtained from the simulation of
Al, Cu, and Br were 1.41 mm,1.44 mm and 1.48 mm, respectively. The minimum thickness for Al was
at the center part of the plate area, however, in cases of Cu and Br minimum thicknesses were near
the area of die curvature. The experimental minimum thickness values as well as their positions were
nearly as like numerical simulations. Due to the circumferential stresses, the thickness was increased
towards the outer area of the plate (radial pulling), where it was placed between a holder and djie.

1.52 T T T T T T T

g
B
3

=
Thickness [mm]
S

® 1.5- (Al) experiments
— 1.5- (Al) simulation 7
e — "o o = 1.5- (Br) experiments
— 1.5- (Br) simulation
14 ¢ 1.5- (Cu) experiments
— 1.5- (Cu) simulation
| | | | L | L
0 10 20 30 40 50 60 70
Initial radius of workpiece [mm]

Al: 1.5 mm Br: 1.5 mm Cu: 1.5 mm

()

+6.102 +2.530 +3.850

© +5.344 +2.181 +3.352
+4.586 +1.832 +2.854

+3.828 +1.483 +2.356

% thickness 32?19 % thickness ié%gj % thickness i} ggg
reduction +1.553 reduction +0.435 reduction +0.862

+7.948 +0.086 +0.364

+0.036 -0.262 -0.133

-0.721 ~0.611 -0.631

Figure 11. (a) Thickness variation in the 1.5 mm single deformed plate with respect to the initial radius
of the workpiece. (b) Experimental and (c) numerical half section view of thickness distribution.

3.2.2. Stacked Metal Sheets

Figure 12 represents the thickness distribution for the 0.5 mm stacked metal sheets of the
same material, and Figure 13 represents the thickness distribution for three different combinations.
The minimum thickness was observed at the center of the sheets. From the simulations, it was in the
range between 0.469 and 0.475 mm for all the combinations of stacked metallic sheets. The smooth
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thickness distribution was observed, however, at the die curvature area nearly 5-6 % reduction in
thickness was observed. The experimental results followed the same trend of distribution as like
simulation. In the experiments, in the center area of the sheets, the minimum thickness was between
0.464 and 0.477 mm for all combination of metal sheets. In the simulations, due to radial pulling,
increase in thickness was observed near the outer area of the sheets; however, that increase was
not significant.

0.50

0.48

Thickness [mm]

® 0.5- (Al) experiments
— 0.5- (Al) simulation
046 = m  0.5- (Br) experiments —
—— 0.5- (Br) simulation

¢ 0.5- (Cu) experiments

—— 0.5- (Cu) simulation ~

= | | | | L | 1
O‘440 10 20 30 40 50 60 70
Initial radius of workpiece [mm]

Figure 12. Thickness variation of the deformed 0.5 mm stacked metal sheets of Al, Cu and Br materials
with respect to the initial radius of the workpiece.

I I
0.50 - ¥ 1= =
()
i T 1 by |
— ° T J
g 048 * —
[}
@ g
E @ 0.5- (Al-Br-Cu) experiments
0.46 - — 0.5- (Al-Br-Cu) simulation ||
0.5- (Br-Cu-Al) experiments
— 0.5- (Br-Cu-Al) simulation
r & 0.5- (Cu-Al-Br) experiments |
0.5- (Cu-Al-Br) simulation
| | | | |
044 0 15 30 45 60
Initial radius of workpiece [mm]
Al-Br-Cu: 0.5 mm Br-Cu-Al: 0.5 mm Cu-AL-Br: 0.5 mm
’ - -

+8.449

+8.563 +7.335

Won +7.527 +6.402

(© 1 +6.490 +5.470
_ e +5.454 2537

% thickness 3432 Y% thickness [] T ‘3“3‘%8 % thickness 32%
reduction _:122222 reduction +2.344 reduction +1.739

00 +1307 +0.306

A +0270 0125

' -0.765 -0.105

Figure 13. (a) Thickness variation of the deformed 0.5 mm stacked metal sheets with respect to the
initial radius of workpiece. Snapshots of half sectional views of deformed stacked metal sheets in (b)
experiments and (c) numerical simulations.
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It can be seen that simulations nearly verified experimental results. In case of stacked metallic
sheets, thickness distribution was smoother compared to a single 1.5 mm thickness sheet. Due to
different combinations of metal sheets and four experiments for every combination, the experimental
measurement of thickness showed high variation.

3.3. Strain Distribution

Figure 14 shows strain distribution in numerical simulations. It represents the sequence of
different snapshots at a different interval of the time during the deformation process. At time t = 1.5 ms,
the maximum strain of 0.1313 at the area of a die curvature and the minimum strain of 0.0145 at the
outer area of the sheet were observed for a single Al metal sheet of thickness 1.5 mm (see Figure 14a).
Moreover, for Al stacked metal sheets of 0.5 mm thickness, the maximum strain of 0.1288 at the center
part of the sheets and the minimum strain of 0.0143 at the outer area of the plate were observed
(see Figure 14b). Furthermore, in case of stacked metal sheets of Al-Br-Cu combination, for Al and
Cu (top and bottom sheet), the maximum strain was at the center area as well as near the area of die
curvature, and the minimum strain was at the center area of the sheets (see Figure 14c).

Strain [-]

7.292 x 10!

(a) Al: 1.5 mm thickness single plate 1313 x 10"
5.834x 107
4.375x 107

1.167 x 107!
- i 2917 x 1072

1.021 x 10"
t=0.1 ms t=0.6 ms t=1.5ms 1.458 x 102

8.750 x 10!

0.000 x 10°
Strain [-]

1.288 x 107!

1.145x 10"

1.002 x 10!

8.590 x 107

7.158 x 102

(b) Al: 0.5 mm thickness 3 plates
5.727x 107
4295 x 107

2.863x 1072

t=0.1 ms t=0.6 ms t=1.5ms 1.432 x 102
0.000 x 10°

(¢) Al-Br-Cu: 0.5 mm thickness 3 plates Strain [-]

8.328 x 1072
7.403 x 1072

6.478 x 1072
5.552 x 107
4.627 x 1072
\ 2.776 x 1072

3.701 x 102
1.851 x 107
9.254x 107
0.000 x 10°

t=0.1 ms t=0.6 ms t=1.5ms

\ v v

Top plate (Al) Middle plate (Br) Bottom plate (Cu)

Figure 14. Effective strain distribution of (a) a single metal sheet of Al, (b) three stacked sheets of Al
and (c) combination of Al-Br-Cu in numerical simulations.
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Due to the maximum deformation of the stacked metal sheets of Al at the center area, the dome
height was higher compared to a single Al sheet. Therefore, the variation of the strain from the edge to
center in case of stacked sheets shows nearly smoother than a single sheet. Finally, the combination
shows the combined variation of strain distribution of a single and stacked sheets.

3.4. Stress Distribution

Figure 15 represents a comparison of stress distribution of deformed metal sheets using numerical
simulations. In case of a single Al sheet with a thickness of 1.5 mm and at the time ¢ = 1.5 ms,
the maximum stress of 0.2 GPa was observed near the area of die curvature, and the minimum stress of
0.088 GPa was observed towards the outer area of the sheet. Whereas, for Al stacked sheets of 0.5 mm
thickness, the maximum stress of 0.2 GPa was observed at the area of the die curvature as well as at
the center area of the sheets. For the combined Al-Cu-Br stacked sheets, stress behavior of the top and
bottom sheets were nearly similar to Al stacked metallic sheets; however, the middle sheet showed the
maximum stress at the center area (see Figure 15c).

t=0.2 ms t=0.6 ms t=15ms

(a) Al: 1.5 mm thickness single plate

- 6 g Stress [Gpa]

-1

(b) Al: 0.5 mm thickness 3 plates %(7)(7)2 ;( %81
1.556 x 10!

1.333x 107!

1.111 x 107!

8.889 x 1072

6.667 x 1072

4.444 x 1072

(c) Al-Br-Cu: 0.5 thickness 3 plates 2.222x 1072
e e 0.000 x 10°

00

Al: top plate Br: middle plate Cu: bottom plate

Figure 15. Comparison of von Mises stress distribution for a deformed metal using numerical
simulations. (a) Al 1.5 mm thickness a single sheet, (b) Al 0.5 mm thickness stacked sheets and
(c) Al-Br-Cu 0.5 mm thickness stacked sheets.

4. Conclusions and Future Work

The deformation of a single sheet and stacked sheets of aluminum, copper and brass materials
using high-speed forming shock tube experiments was investigated. Moreover, the deformation
of metal sheets was studied using finite element simulations. The dome height, outer diameter,
and distributions of thickness, strain, and stress were investigated using numerical simulations and
compared with experimental results.

The stacked metal sheets of aluminum of 0.5-mm thickness have excellent formability and
smoothness in thickness, strain and stress distributions compared to a single sheet of 1.5-mm thickness.
This is due to the fact that the stacked metallic sheets have low intermetallic friction compared to
a cohesive property of a single sheet. Moreover, the stacked metal sheets of copper and brass of 0.5-mm
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thickness have excellent smoothness in thickness, strain and stress distributions compared to a single
sheet of 1.5-mm thickness. For example, the average mean value of experiments and simulations
a single Al sheet of 1.5-mm thickness was nearly 15.7 mm, whereas for 0.5 mm thickness stacked three
metal sheets of the same material was nearly 22 mm. Moreover, for the stacked metal sheets with
different combinations of Al, Cu and Br show dome height deformation in the range between 13 and 15
mm by simulation as well as experiments, which implies that combined deformation is an average of
formabilities of involved materials. Furthermore, it is concluded that there was no thickness reduction,
strain or stress concentration at the die curvature (which lead to failure with further loading) in case of
stacked metallic sheets.

In summary, the results obtained here clearly indicate that the shock wave-forming process is
a feasible technique for mass production of stacked metal sheets as well as fabricating a hierarchical
composite structure, which provides higher formability and smooth thickness distribution compared
to a single material. The obtained numerical simulations studies showed remarkable similarity with
the experimental results in case of deformation, final depth height, diameter, thickness, strain and
stress distribution.

Due to a multilayered brick-and-mortar architecture of natural nacre material, it has extraordinary
mechanical properties, e. g., high stiffness, and toughness. Inspired by this composite material, we
propose that the stacked metal sheets of different stiffnesses glued together to form a composite
material, which will have a high value of stiffness and fracture toughness. Figure 16 shows the
proposed composite model. From the present work, it is clear that it is possible to conduct high-speed
forming experiments as well as numerical simulations on the proposed composite material to study its
mechanical properties and behavior.

Shock wave

O Al
. Br
. Cu

Figure 16. Schematic illustrations of nacre-like composite.

Author Contributions: Conceptualization, S.P.P. and B.M.; Methodology, S.P.P.,, R M. and N.S.; Software, R.M.;
Validation, S.PP. and N.S.; Data Analysis, S.P.P.,, RM. and N.S.; Investigation, S.PP,, RM., N.S. and B.M.;
Writing-Original Draft Preparation, S.P.P. and R.M.; Writing—-Review & Editing, S.P.P. and N.S.

Funding: This research received no external funding.

Acknowledgments: We thank Mario Hackbarth and Fabian Obstoj (Institute of General Mechanics, RWTH
Aachen University) for the technical support during the experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Meyers, M.A. Dynamic Behaviour of Materials; John Wiley and Sons, Inc.: New York, NY, USA, 1994.

2. Anderson, ].D. Modern Compressible Flow, with Historical Prospective; McGraw-Hill: New York, NY, USA, 1990.
3. Assehton, R. History of Explosives; Institute of Makers of Explosives: New York, NY, USA, 1940.

4. Jagadeesh, G.; Takayama, K. Novel applications of shock waves in biological sciences. J. Indian Inst. Sci.

2002, 82, 49-57.
5. Mynors, D.; Zhang, B. Applications and capabilities of explosive forming. J. Mater. Process. Technol. 2002,
125, 1-25. [CrossRef]


http://dx.doi.org/10.1016/S0924-0136(02)00413-2

Metals 2018, 8, 679 15 of 16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Bruschi, S.; Altan, T.; Banabic, D.; Bariani, P,; Brosius, A.; Cao, J.; Ghiotti, A.; Khraisheh, M.; Merklein, M.;
Tekkaya, A. Testing and modelling of material behaviour and formability in sheet metal forming. CIRP Ann.
Manuf. Technol. 2014, 63, 727-749. [CrossRef]

Kumar, P; LeBlanc, ].; Stargel, D.S.; Shukla, A. Effect of plate curvature on blast response of aluminum panels.
Int. . Impact Eng. 2012, 46, 75-85. [CrossRef]

Ray, N.; Jagadeesh, G.; Suwas, S. Response of shock wave deformation in AA5086 aluminum alloy.
Mater. Sci. Eng. A 2015, 622, 219-227. [CrossRef]

Duan, Q.; Xiao, H.; Gao, W.; Shen, X.; Wang, Q.; Sun, J. Experimental investigation on shock waves generated
by pressurized gas release through a tube. J. Loss Prev. Process Ind. 2015, 36, 39-44. [CrossRef]

Reddy, C.J.; Madhu, V. Dynamic behaviour of foams and sandwich panels under shock wave loading.
J. Loss Prev. Process Ind. 2017, 173, 1627-1634. [CrossRef]

Ruan, L.; Ezaki, S.; Masahiro, F.; Shen, S.; Kawamura, Y. Forming of magnesium alloy by underwater
shock wave. |. Magnes. Alloys 2016, 4, 27-29. [CrossRef]

Louar, M.; Belkassem, B.; Ousji, H.; Spranghers, K.; Kakogiannis, D.; Pyl, L.; Vantomme, J. Explosive driven
shock tube loading of aluminium plates: Experimental study. Int. J. Impact Eng. 2015, 86, 111-123. [CrossRef]
Nagaraja, S.; Prasad, J.; Jagadeesh, G. Theoretical-experimental study of shock wave-assisted metal forming
process using a diaphragmless shock tube. Proc. Inst. Mech. Eng. Part G |. Aerosp. Eng. 2012, 226, 1534-1543.
[CrossRef]

Atrian, A.; Fereshteh-Saniee, F. Deep drawing process of steel/brass laminated sheets. Compos. Part B Eng.
2013, 47, 75-81. [CrossRef]

Andreotti, R.; Colombo, M.; Guardone, A.; Martinelli, P.; Riganti, G.; di Prisco, M. Performance of a shock
tube facility for impact response of structures. Int. ]. Non-Linear Mech. 2015, 72, 53-66. [CrossRef]
Justusson, B.; Pankow, M.; Heinrich, C.; Rudolph, M.; Waas, A. Use of a shock tube to determine the bi-axial
yield of an aluminum alloy under high rates. Int. J. Impact Eng. 2013, 58, 55-65. [CrossRef]

Aune, V.; Fagerholt, E.; Langseth, M.; Borvik, T. A shock tube facility to generate blast loading on structures.
Int. J. Prot. Struct. 2016, 7, 340-366. [CrossRef]

Aune, V,; Valsamos, G.; Casadei, F.; Langseth, M.; Borvik, T. On the dynamic response of blast-loaded steel
plates with and without pre-formed holes. Int. J. Impact Eng. 2017, 108, 27—46. [CrossRef]

Stoffel, M.; Schmidt, R.; Weichert, D. Shock wave-loaded plates. Int. J. Solids Struct. 2001, 38, 7659-7680.
[CrossRef]

Stoffel, M. An experimental method to validate viscoplastic constitutive equations in the dynamic response
of plates. Mech. Mater. 2005, 37, 1210-1222. [CrossRef]

Patil, S.P.; Popli, M.; Jenkouk, V.; Markert, B. Numerical modelling of the gas detonation process of sheet
metal forming. J. Phys. Conf. Ser. 2016, 734, 032099. [CrossRef]

Jenkouk, V,; Patil, S.; Markert, B. Joining of tubes by gas detonation forming. J. Phys. Conf. Ser. 2016,
734, 032101; IOP Publishing. [CrossRef]

Patil, S.P.; Prajapati, K.G.; Jenkouk, V.,; Olivier, H.; Markert, B. Experimental and numerical studies of sheet
metal forming with damage using gas detonation process. Metals 2017, 7, 556. [CrossRef]

Ben-Dor, G.; Igra, O.; Elperin, T. (Eds.) Handbook of Shock Waves, Three Volume Set; Academic Press:
San Diego, CA, USA, 2001.

Hallquist, J.O. LS-DYNA Theory Manual; Livermore Software Technology Corporation: Livermore, CA,
USA, 2006.

Lampman, S. ASM Handbook; ASM International: Materials Park, OH, USA, 1990.

Johnson, G.R.; Cook, WH. A constitutive model and data for metals subjected to large strains,
high strain rates and high temperatures. In Proceedings of the 7th International Symposium on Ballistics,
Hague, The Netherlands, 19-21 April 1983; Volume 21, pp. 541-547.

Smerd, R.; Winkler, S.; Salisbury, C.; Worswick, M.; Lloyd, D.; Finn, M. High strain rate tensile testing of
automotive aluminum alloy sheet. Int. J. Impact Eng. 2005, 32, 541-560. [CrossRef]

Ding, H.; Shen, N.; Shin, Y.C. Modeling of grain refinement in aluminum and copper subjected to cutting.
Comput. Mater. Sci. 2011, 50, 3016-3025. [CrossRef]

Peroni, L.; Scapin, M.; Fichera, C.; Manes, A.; Giglio, M. Mechanical properties at high strain-rate of lead
core and brass jacket of a NATO 7.62 mm ball bullet. In EP] Web of Conferences; EDP Sciences: Les Ulis,
France, 2012; Volume 26.


http://dx.doi.org/10.1016/j.cirp.2014.05.005
http://dx.doi.org/10.1016/j.ijimpeng.2012.02.004
http://dx.doi.org/10.1016/j.msea.2014.10.010
http://dx.doi.org/10.1016/j.jlp.2015.05.007
http://dx.doi.org/10.1016/j.proeng.2016.12.260
http://dx.doi.org/10.1016/j.jma.2015.12.003
http://dx.doi.org/10.1016/j.ijimpeng.2015.07.013
http://dx.doi.org/10.1177/0954410011424808
http://dx.doi.org/10.1016/j.compositesb.2012.10.023
http://dx.doi.org/10.1016/j.ijnonlinmec.2015.02.010
http://dx.doi.org/10.1016/j.ijimpeng.2013.01.012
http://dx.doi.org/10.1177/2041419616666236
http://dx.doi.org/10.1016/j.ijimpeng.2017.04.001
http://dx.doi.org/10.1016/S0020-7683(01)00038-5
http://dx.doi.org/10.1016/j.mechmat.2005.06.001
http://dx.doi.org/10.1088/1742-6596/734/3/032099
http://dx.doi.org/10.1088/1742-6596/734/3/032101
http://dx.doi.org/10.3390/met7120556
http://dx.doi.org/10.1016/j.ijimpeng.2005.04.013
http://dx.doi.org/10.1016/j.commatsci.2011.05.020

Metals 2018, 8, 679 16 of 16

31.

32.

33.

34.

35.
36.
37.

38.

Espinosa, H.D.; Patanella, A.J.; Fischer, M. Dynamic friction measurements at sliding velocities representative
of high-speed machining processes. J. Tribol. 2000, 122, 834-848. [CrossRef]

Hassan, M.A.; Ahmed, K.I.E.; Takakura, N. A developed process for deep drawing of metal foil square cups.
J. Mater. Process. Technol. 2012, 212, 295-307. [CrossRef]

Mori, L.E; Krishnan, N.; Cao, J.; Espinosa, H.D. Study of the Size Effects and Friction Conditions in
Microextrusion—Part II: Size effect in dynamic friction for brass-steel pairs. J. Manuf. Sci. Eng. 2007,
129, 677-689. [CrossRef]

Dhaiban, A.A.; Soliman, M.E.S.; El-Sebaie, M.G. Finite element modeling and experimental results of brass
elliptic cups using a new deep drawing process through conical dies. . Mater. Process. Technol. 2014,
214, 828-838. [CrossRef]

Liu, T. Sliding friction of copper. Wear 1964, 7, 163-174. [CrossRef]

Handbook ASM. Friction, Lubrication, and Wear Technology; ASM International: Materials Park, OH, USA, 1994.
Fu, M.\W,; Yang, B.; Chan, W.L. Experimental and simulation studies of micro blanking and deep drawing
compound process using copper sheet. |. Mater. Process. Technol. 2013, 213, 101-110. [CrossRef]
Chowdhury, M.A.; Nuruzzaman, D.M.; Mia, A.H.; Rahaman, M.L. Friction coefficient of different material
pairs under different normal loads and sliding velocities. Tribol. Ind. 2012, 34, 18-23.

® © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1115/1.1310331
http://dx.doi.org/10.1016/j.jmatprotec.2011.09.015
http://dx.doi.org/10.1115/1.2738131
http://dx.doi.org/10.1016/j.jmatprotec.2013.11.025
http://dx.doi.org/10.1016/0043-1648(64)90051-1
http://dx.doi.org/10.1016/j.jmatprotec.2012.08.007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodologies
	Experimental Setup
	Material and Modeling

	Results and Discussion
	Dome Height and Outer Diameter
	Thickness Distribution
	A Single Metal Sheet
	Stacked Metal Sheets

	Strain Distribution
	Stress Distribution

	Conclusions and Future Work
	References

