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Abstract: Experimental simulations of steelmaking with different amounts of aluminum were
achieved in the tube furnace at 1873 K and field scanning electron microscopy and energy
dispersive X-ray spectroscopy (FE-SEM and EDX) were employed to explore the characteristics
of the inclusions in Ti-bearing steel during the calcium treatment process. It was found that
morphologies, chemical compositions, and the size distribution of the inclusions were obviously
different before and after calcium treatment. The calcium addition need be carefully considered
regarding the mass fraction of aluminum with the purpose of modifying the solid inclusions to
liquid phases. The thermodynamic analysis of inclusion formation in the Al–Ti–Ca–O system at
1873 K was conducted, as well as transformation behaviors of inclusions including all types of solid
inclusions and liquid phases during solidification. The thermodynamic equilibrium calculations are
in good agreement with experimental data, which can be used to estimate inclusion formation in
Ti-bearing steel.
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1. Introduction

The quality of steel products can be effectively increased after being treated with the element
titanium [1–4]. Titanium oxides and titanium carbides can be generated during the deoxidation process,
which can promote the mechanical properties around the region of welded steels by improving the
nucleation ratio of intragranular bainite [5–9]. However, TiOx inclusions have a high probability
of being agglomerate and subsequently form clusters, which results in the serious clogging issue
of submerged entry nozzle and, consequently, lower the productivity of the continuous casting
process as well [9–11]. Owing to the importance of Ti-containing inclusions, scholars have conducted
a number of studies on inclusion control in Ti-bearing Al-killed steel, such as on thermodynamic
computation and analysis [12–22], size distribution statistics [23–26], precipitation mechanisms [10,11,
16,20], reaction kinetics, and evolution trajectory [14], mostly within the alumina and titanate system.
In other words, it is usually difficult to keep the Al–Ti–O system inclusions as liquid phases during the
production process at the present period.

It is generally the technique of calcium treatment that has been introduced to get liquid phases of
calcium aluminate at casting temperature, which relieves the nozzle clogging issue during continuous
process of steels, especially of grades of Al-killed steel, and also has benefits for the mechanical
performance of final steel products [27–37]. However, the research involving the calcium treatment
process of Ti-bearing Al-killed steel have been limited, until now [38–42]. In addition, the types of
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inclusions at the solidification temperature are directly related to the properties of the inclusions in the
final product.

In this work, the laboratory-scale melts, with different mass fractions of calcium and aluminum,
were prepared in order to clarify the influence of aluminum element on inclusion properties during
the calcium treatment process of Ti-bearing Al-killed steels. Then, FE-SEM and EDX were employed
to observe and analyze morphologies, chemical compositions, and number and size of inclusions in
steel cylinder sampled from high-temperature melts before and after calcium treatment. In addition,
equilibrium phases of inclusions at smelting temperature were calculated, and the transformation
behaviors of inclusions during the process of solidification were estimated by the commercial software
FactSage. Present works will lay the experimental and thermodynamic foundation on expanding
the combined treatment of titanium and calcium to industrial-scale production, and suggest an
alternative way to eliminate the nozzle clogging issue during the continuous casting process of
Ti-bearing Al-killed steel.

2. Experimental Methods

Three sets of experiments were conducted in the furnace according to the schematic diagram
shown in Figure 1. A 350 gram plate of iron was loaded in the Al2O3 crucible surrounded by the
graphite crucible, and then the graphite crucible was placed into the furnace which was heated to 1873 K
in the protective atmosphere of high-purity argon gas with a constant flow rate. Thereafter, the furnace
temperature was maintained for 0.5 h after the raw materials were completely melted at 1873 K to reach
the full homogenization of solutes. At the time node of before and after deoxidant (Al and Ti) addition,
the activity of dissolve oxygen was determined by the oxygen probe with a resolution of ±10−6.
The cylinder steel sample was extracted by the quartz tube with the inner diameter of 3 millimeters,
and then immediately quenched into water at ambient temperature. At last, Ca treatment was carried
out by adding Ca–Fe alloy. Another steel sample was obtained in the above way just 10 min after Ca
treatment. The experimental details are shown in Figure 2, and the compositions of the raw materials
in the work involving ARMCO iron, Ca–Fe alloy, and Al wire are listed in Table 1.
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Table 1. The compositions of experimental materials (mass %).

Type Fe C Ti Mn Si Ca Al P S Others

Ca–Fe alloy 69.82 - - - - 30.10 - - - 0.08
Ti–Fe alloy 26.513 0.130 69.594 0.241 0.030 - 3.192 0.025 0.011 0.284

Al wire - - - - - - 99.99 - - 0.01
Pure iron 99.944 0.002 - 0.03 0.01 - 0.001 0.007 0.007 0.043

The obtained steel samples were machined to two cylinders. One was adopted to analyze
the chemical compositions by inductively coupled plasma-optical emission spectroscopy (ICP-OES)
(Thermo Fisher Scientific ICAP6300, Waltham, MA, USA) with the resolution of ±5 × 10−7. The total
oxygen levels (T.[O]) of the steel samples were measured by inert gas fusion-infrared absorptiometry
with the resolution of ±10−6. The chemical compositions of all steel samples are given in Table 2.
Another was polished for monitoring the inclusion properties, such as morphologies, size, and chemical
compositions by scanning electron microscopy and energy dispersive spectroscopy (Zeiss Ultra-Plus,
ZEISS, Jena, Germany). The size distribution of precipitates was surveyed in the observed regions of
19.86 mm2, magnified 500× in the cross-section.

Table 2. The compositions of the obtained sample (mass %).

No. [Al] [Ca] [Ti] a[O] T.[O]

1-A 0.0042 - 0.0105 0.0005 0.0053
1-B 0.0036 0.0005 0.0094 - 0.0049
2-A 0.0053 - 0.0118 0.0006 0.0045
2-B 0.0051 0.0038 0.0115 - 0.0038
3-A 0.0430 - 0.0112 0.0002 0.0038
3-B 0.0413 0.0025 0.0106 - 0.0032

3. Results and Discussion

3.1. Chemical Composition, Size Distribution, and Morphologies of Inclusions

Titanium in the steel production process shows many valence states, such as Ti2+, Ti3+,
and Ti4+ [43–45]. In addition, the types of titanium oxides are determined by combining the partial
pressure of oxygen with mass fraction of titanium in steel [46]. Although a number of Ti-containing
oxides (TiO, TiO2, Ti3O5, Ti2O3, etc.) can exist as products of deoxidation reactions by titanium,
when mass % Ti was between 0.0004 to 0.36, Ti3O5 was the only stable equilibrium oxide in steel,
as demonstrated by the electron backscatter diffraction technique [43–46]. Based on the compositions
of steel in the current research, the isothermal section of the Al2O3–Ti3O5–CaO ternary phase diagram
at 1873 K with p(O2) = 10−14 atm (computed by FactSage 7.0, THERMFACT LTD, Quebec, Canada),
as shown in Figure 3, was introduced to analyze the composition of inclusions. It can be easily seen
from Figure 3 that solid phases (CaO, Ti3O5, Al2O3, perovskite, calcium aluminates, and titanium
aluminates) coexist with liquid phases in the two- or three-phase zones. It is noticeable that two liquid
phases emerge at 1873 K, which are locate in the regions with a small amount of CaO and Ti3O5.

The chemical elements, as well as mole ratios in each observed precipitate, were determined
by SEM-EDS (Zeiss Ultra-Plus, ZEISS, Jena, Germany), and then the data were converted to mass
fraction of CaO, Ti3O5, and Al2O3. As presented in Figure 4, each plot in the phase diagram represents
an individual inclusion to assess inclusion behavior and transformation, and the thick red lines are
liquiduses at 1873 K. As shown in Figure 4a, the inclusions in No.1 melt after Ti addition are mainly
spherical titanium aluminates. There is no significant change in the morphologies of the inclusions after
calcium treatment. Only a small amount of compositional changes occur in these inclusions which are
still in liquid phases. By contrast, a mass of irregular inclusions of Al–Ti–Ca–O system are generated
in No. 2 melt as result of the increased mass fraction of 40 ppm [Ca] by calcium treatment. As the mass
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fraction of CaO in these inclusions is significantly increased, the locations of inclusion compositions
in the isothermal section diagram are beyond the liquid region. From the view of the phase types,
they mostly locate in perovskite and (CaO)3·(TiOx)2. When the mass fraction of [Al] was increased
from 40 ppm to 400 ppm, almost no liquid inclusions are found in No. 3 melt. Compared with No. 1
and No. 2 melts, the locations of inclusion compositions in No. 3 melt are outside of the liquidus in the
isothermal section before calcium treatment, and bring on the corresponding irregular appearance.
However, inclusions are evolved to calcium aluminates of liquid state after calcium treatment.
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Figure 5 gives the size distributions of inclusions in the melts. The results indicate that more than
half of the inclusions in sample 1-A are larger than 5 µm, and about 20% of the inclusions are smaller
than 2 µm. There is no significant change in the size of inclusions after calcium treatment. There is just
a little increase in the proportions of the larger inclusions (>10 µm) in sample 1-B. This may be due to
collision and aggregation of the inclusions. The situation of No. 2 melt before calcium treatment is
nearly identical to the former one. Nevertheless, the number of inclusions that are smaller than 5 µm
in sample 2-B is more than 65%. This illustrates that the solid inclusions of Al2O3–CaO–TiOx system
trend to be fine and well-dispersed in the melts of Ti-bearing steel as treated by calcium. Apparently,
the inclusions in sample 3-A also have a relatively small size. After calcium treatment, the proportion
of the smaller inclusion in sample 3-B is obviously decreased and the numbers of inclusions are present
as liquid state, combined with the results in Figure 4.
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3.2. Thermodynamic Analysis of Al–Ti–Ca–O System

A series of generating reactions of inclusions, as listed in Table 2, were considered to understand
the transformation process of Al–Ti–Ca–O system. The intermediate products, titanium oxides,
CaO and calcium titanates in Table 3, could be firstly generated according to the very negative Gibbs
energies of reactions between titanium/calcium and oxygen at 1873 K. As 12CaO·7Al2O3 is the only
compound located inner of the liquidus in the phase diagrams of Al2O3–TiOx and Al2O3–CaO–TiOx

systems at 1873 K, it is introduced as liquid calcium aluminate to calculate the equilibrium state with
solid inclusions.

Table 3. Standard Gibbs energies of inclusions formation.

No. Reactions
∆Gθ = A + B × T /J·mol−1

References
A B

1 Al2O3 = 2[Al] + 3[O] 867,500 −222.5 [27]
2 CaO = [Ca] + [O] 138,227 63.0 [47]
3 Al2TiO5 = [Ti] + 2[Al] + 5[O] 1,435,000 −40.5 [23]
4 CaO·6Al2O3 = CaO(s) + 6Al2O3(s) 16,380 37.58 [48]
5 CaO·2Al2O3 = CaO(s) + 2Al2O3(s) 15,650 25.82 [48]
6 CaO·Al2O3 = CaO(s) + Al2O3(s) 17,910 17.38 [48]
7 12CaO·7Al2O3 = 12CaO(s) + 7Al2O3(s) −618,000 612.1 [49]
8 Ti2O3 =2[Ti] + 3[O] 822,000 −247.7 [50]
9 Ti3O5 =3[Ti] + 5[O] 1,307,000 −381.8 [50]

10 TiO2 = [Ti] + 2[O] −675,600 234 [51]
11 3CaO·Ti2O3 = 3CaO(s) + Ti2O3(s) 192,745 (1873K) [52]
12 3CaO·2TiO2 = 3CaO(s) + 2TiO2(s) 148,365 24.14 [52]
13 CaO·TiO2 = CaO(s) + TiO2(s) 74,392 10.13 [53]

The phase equilibrium calculations are based on the minimum ∆G theory, since the elements
(such as Ca, Ti, Al, etc.) involved in the present research are of low concentration in molten steel.
Therefore, the molten steel can be assumed to be an ideal solution and to follow Henry’s law.
The component activity coefficient was calculated by using 1% (mass) extremely dilute solution
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as the standard state. The activity coefficient between the contents of all elements and the interaction
coefficient (shown in Table 4) was expressed by Wagner’s formula, as shown in Formula (1).

log fi =
n

∑
j=2

ej
i [%j] +

n

∑
j=2

rj
i [%j] +

n

∑
j=2

n

∑
k=2

rj,k
i [%j][%k] (1)

Table 4. The interaction coefficients of Fe–Al–Ti–Ca–O system molten steel at 1873 K [54–69].

i j k ej
i rj

i r(j,K)
i

i j k ej
i rj

i r(j,K)
i

O

Al
Ca

−3.9 −0.01
0

Al

Al O 0.043 −0.001 −0.028
Ti - Ca O −0.047 0 0
O 47.45 Ti - 0.004 - -

Ca
Al −310 −17,984

0
O

Al −1.98 39.82
−0.028

O 519,903 Ca 0

Ti O −0.34 0.031 0.026

Ca

Al - −0.072 0.0007 -

O
Al −0.20 0

47.45 Ca O −0.002 - −90,227
Ca 520,000 Ti - −0.13 - -

Ti
Al - 0.0037 - - O Ca −580 650,129 −90,056

Ti O 0.042 −0.001 0.20 -
O Ti −3.4 −0.0355 0.20

According to the activity of all elements and the free energy change for stable oxides’ region
transformation, the phase diagrams can be calculated, and the details of the calculation methods are
mentioned in other work and my former work [70,71]. The phase diagrams involving Al–Ti–Ca–O
system at 1873 K were worked out to estimate potential oxides in molten steel, and are shown in
Figure 6. It can be seen from Figure 6a that CaO and CT (3CaO·2TiO2, 3CaO·Ti2O3, CaO·TiO2) are
the main inclusions in the molten steel, as the mass fraction of calcium and titanium increase from
10−5% to 10−2%, and 10−4% to 1%, respectively. When 0.005% aluminum is added into the Ca–Ti–O
system as shown in Figure 6b, LCA (liquid calcium aluminate) precipitates, which squeezes the region
of CT. It is obvious that aluminum content in steel has an important influence on stable phases of
inclusions. As the mass fraction of aluminum increases to 0.05%, SCA (solid calcium aluminate) is
present, which results in the further reduction of CT region, as shown in Figure 6c. It is noticeable
that the stability region of liquid calcium aluminate is located in a common calcium content range.
As the compositions of the steel samples in the current work (based on the content of the calcium and
titanium) and experimental results introduced from Seo and Zheng [38,39] were marked in the phase
diagrams, a good consistency in the above data is conspicuous, as shown in Figure 6b,c. Consequently,
the calculated phase diagrams of Al–Ca–Ti–O system are reliable for effectively estimating the evolution
behavior of inclusions at steelmaking temperature.

Metals 2018, 8, x FOR PEER REVIEW  6 of 11 

 

,

2 2 2 2

log % % % [% ]
n n n n

j j j k
i i i i

j j j k

f e j r j r j k
= = = =

     = + +         (1) 

Table 4. The interaction coefficients of Fe–Al–Ti–Ca–O system molten steel at 1873 K [54–69]. 

i j k j
ie  

j
ir  (j,K)

ir  i j k j
ie  

j
ir  (j,K)

ir  

O 

Al 
Ca 

−3.9 −0.01 
0 

Al 

Al O 0.043 −0.001 −0.028 
Ti - Ca O −0.047 0 0 
O 47.45 Ti - 0.004 - - 

Ca 
Al 

−310 −17,984 
0 

O 
Al 

−1.98 39.82 
−0.028 

O 519,903 Ca 0 
Ti O −0.34 0.031 0.026 

Ca 

Al - −0.072 0.0007 - 

O 
Al 

−0.20 0 
47.45 Ca O −0.002 - −90,227 

Ca 520,000 Ti - −0.13 - - 

Ti 
Al - 0.0037 - - O Ca −580 650,129 −90,056 
Ti O 0.042 −0.001 0.20 

- 
O Ti −3.4 −0.0355 0.20 

According to the activity of all elements and the free energy change for stable oxides’ region 
transformation, the phase diagrams can be calculated, and the details of the calculation methods are 
mentioned in other work and my former work [70,71]. The phase diagrams involving Al–Ti–Ca–O 
system at 1873 K were worked out to estimate potential oxides in molten steel, and are shown in 
Figure 6. It can be seen from Figure 6a that CaO and CT (3CaO·2TiO2, 3CaO·Ti2O3, CaO·TiO2) are the 
main inclusions in the molten steel, as the mass fraction of calcium and titanium increase from 10−5% 
to 10−2%, and 10−4% to 1%, respectively. When 0.005% aluminum is added into the Ca–Ti–O system 
as shown in Figure 6b, LCA (liquid calcium aluminate) precipitates, which squeezes the region of 
CT. It is obvious that aluminum content in steel has an important influence on stable phases of 
inclusions. As the mass fraction of aluminum increases to 0.05%, SCA (solid calcium aluminate) is 
present, which results in the further reduction of CT region, as shown in Figure 6c. It is noticeable 
that the stability region of liquid calcium aluminate is located in a common calcium content range. 
As the compositions of the steel samples in the current work (based on the content of the calcium 
and titanium) and experimental results introduced from Seo and Zheng [38,39] were marked in the 
phase diagrams, a good consistency in the above data is conspicuous, as shown in Figure 6b,c. 
Consequently, the calculated phase diagrams of Al–Ca–Ti–O system are reliable for effectively 
estimating the evolution behavior of inclusions at steelmaking temperature.  

  
Figure 6. Cont.



Metals 2019, 9, 104 7 of 11

Metals 2018, 8, x FOR PEER REVIEW  7 of 11 

 

 

Figure 6. Calculated diagrams of stable oxides in the Al–Ca–Ti–O system at 1873 K (a) [Al] = 0, (b) 
[Al] = 0.005%, (c) [Al] = 0.05%. 

Some transformation behaviors of precipitates are overlooked in this work, due to the extreme 
cooling speed during the sampling process. For this reason, the phase transformation of inclusions 
during solidification of melts was computed by FactSage 7.0 as the FSstel, FactPS, and FToxid 
databases were employed, and the relevant results are present in Figure 7. The mass fraction of 
aluminum and calcium varies in the Fe–Al–Ca–0.01Ti–0.005O systems when temperature decreases 
from 1873 K to 1473 K. It can be seen from Figure 7a that liquid inclusions are present in the steel at a 
wide temperature range, from 1873 K to about 1623 K, when the mass fractions of aluminum and 
calcium are both small, around 0.005%, and the transformation process follows liquid inclusions → 
Al2O3 → 2CaO·Ti2O3 → Ti2O3 during solidification. Nevertheless, the liquid inclusions only exist 
around 1873 K as the mass fraction of calcium increases to 0.003% and the formation of solid calcium 
titanates is favorable, as shown in Figure 7b. As the mass fraction of aluminum increases to 0.03%, 
while that of calcium is 0.005%, only alumina and calcium aluminates precipitate at 1873 K and no 
other inclusions are formed during the cooling process, as shown in Figure 7c. However, the liquid 
phase appears again at a higher temperature as the mass fraction of calcium increases 0.003% in 
Figure 7d. The liquid inclusions are modified into solid calcium aluminates during the solidification 
process. When the mass fraction of calcium increases further to 0.007%, the main stable phases 
become CaO and solid calcium titanates in steel, replacing the calcium aluminates as shown in 
Figure 7e.  

  

Figure 6. Calculated diagrams of stable oxides in the Al–Ca–Ti–O system at 1873 K (a) [Al] = 0, (b) [Al]
= 0.005%, (c) [Al] = 0.05%.

Some transformation behaviors of precipitates are overlooked in this work, due to the extreme
cooling speed during the sampling process. For this reason, the phase transformation of inclusions
during solidification of melts was computed by FactSage 7.0 as the FSstel, FactPS, and FToxid databases
were employed, and the relevant results are present in Figure 7. The mass fraction of aluminum and
calcium varies in the Fe–Al–Ca–0.01Ti–0.005O systems when temperature decreases from 1873 K to
1473 K. It can be seen from Figure 7a that liquid inclusions are present in the steel at a wide temperature
range, from 1873 K to about 1623 K, when the mass fractions of aluminum and calcium are both small,
around 0.005%, and the transformation process follows liquid inclusions→ Al2O3 → 2CaO·Ti2O3

→ Ti2O3 during solidification. Nevertheless, the liquid inclusions only exist around 1873 K as the
mass fraction of calcium increases to 0.003% and the formation of solid calcium titanates is favorable,
as shown in Figure 7b. As the mass fraction of aluminum increases to 0.03%, while that of calcium is
0.005%, only alumina and calcium aluminates precipitate at 1873 K and no other inclusions are formed
during the cooling process, as shown in Figure 7c. However, the liquid phase appears again at a higher
temperature as the mass fraction of calcium increases 0.003% in Figure 7d. The liquid inclusions are
modified into solid calcium aluminates during the solidification process. When the mass fraction of
calcium increases further to 0.007%, the main stable phases become CaO and solid calcium titanates in
steel, replacing the calcium aluminates as shown in Figure 7e.

From the found inclusions of Al–Ti–Ca–O system and the above thermodynamic analysis, it
is suggested that the calcium treatment technique associated with the right aluminum addition is
available to get the liquid phase inclusions at the casting temperature. The calcium addition needs to
be reconsidered as the amount of aluminum varies in the steelmaking process.
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Figure 7. Transformation of inclusions during solidification as different compositions of steel.
(a) [Al] = 0.005%, [Ca] = 0.0005%; (b) [Al] = 0.005%, [Ca] = 0.003%; (c) [Al] = 0.03%, [Ca] = 0.0005%;
(d) [Al] = 0.03%, [Ca] = 0.003%; (e) [Al] = 0.03%, [Ca] = 0.007%.

4. Conclusions

The characteristics and transformation behaviors of the inclusions in Ti-containing steel after
calcium addition with different aluminum amount have been discussed by physical simulations and
thermodynamic analysis at 1873 K (1600 ◦C), as well as during solidification. The main results are
summarized as follows.

The morphologies, chemical compositions, and size distribution of the inclusions are dramatically
different before and after calcium treatment, and the calcium addition should be reconsidered
according to the mass fraction of aluminum in order to get liquid phase inclusions. The generation
of liquid inclusions is more favorable as less calcium addition is needed at the lower amount of
aluminum, and as more calcium is appropriate for a higher amount of aluminum. That is, 0.0005%
calcium for 0.0036% aluminum, and 0.0025% calcium for 0.0413% aluminum in this study. The
inappropriate calcium treatment level can induce the generating trend of solid inclusions in melts.
The inclusion-oriented diagrams of Al–Ti–Ca–O system in melts at 1873 K, and the transformation
behaviors of inclusions during solidification of steel, were systemically computed involving all types of
solid inclusions and liquid phases. The thermodynamic equilibrium calculations are in good agreement
with experimental data, and the liquid inclusions can exist during the whole cooling process, as formed
at steelmaking temperature.
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