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Abstract: In this research, some experimental steps were investigated to recover zinc contained in
crude zinc oxide (C.Z.O.). In the first stage, the C.Z.O. was treated in NH3–NH4Cl–H2O solution
to dissolve the metals. The optimized leaching conditions in batch experiments were obtained:
agitation speed 250 rpm, concentration of ammonia and ammonium chloride 2.5 mol/L and 5 mol/L,
respectively, time 30min, temperature 40 ◦C, and L/S = 6 mL/g. The extraction percentage of zinc was
over 81% under the optimized leaching conditions. The kinetic study indicates that zinc extraction
from the C.Z.O particles was very rapid. In the second stage, the solution from the leaching process
was purified by adding zinc dust to the solution. The Cu, Cd, Pb, Sb, and As could be reduced to
levels of 0.03, 0.09, 0.87, 0.22, and 0.12 mg/L after the purification process. Finally, the electrowinning
process was used to recover dissolved Zn from the final solution. The zinc content in the electrowon
zinc was more than 99.99%.
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1. Introduction

In 2013, more than 1.6 billion tons of crude steel was produced all over the world [1].
Approximately 0.08–0.12 tons of dust containing iron, zinc, cadmium, lead, fluoride, and chloride
is generated per 1 ton of steel produced. Cadmium, lead, fluoride, and chloride are hazardous
species [2]. A significant and ongoing mass of dust bearing zinc and other hazardous species is
therefore produced in the steelmaking industry. The zinc-bearing dust main originates from electric
arc, blast, and converter furnaces. Only 45–50% of the electric arc furnace dust is recycled, while the
rest is sent to landfills. A large number of hydrometallurgical processing studies of these dusts have
been undertaken by researchers. Because of the deportment of zinc to lowly soluble franklinite, the
zinc extractions of the approaches based on leaching were low [3–5]. The Waelz process is widely
used to dispose of furnace dusts when the zinc content is higher than approximately 15–20%. In the
21st century, the Waelz process is used more widely than ever before. In this process, zinc-bearing
dust is reductively heated in a rotary kiln to approximately 1200 ◦C [6–8]. Zinc, lead, chloride, and
fluoride are volatilized and collected as fine particles in the dust collection system. ZnO is the main
zinc-containing phase formed by the Waelz process. It represents one source of crude zinc oxide
(C.Z.O.). C.Z.O. ash materials from the Waelz process usually contain alkali metals, chlorides, and
fluorides [9]. Sulfuric acid leaching-electrowinning and the imperial smelting process are often used to
treat the crude zinc oxide [10]. Sulfuric acid leaching cannot selective extract zinc into a solution as iron
dissolves readily in acid, so iron removal can subsequently be difficult [11]. Furthermore, the presence

Metals 2019, 9, 83; doi:10.3390/met9010083 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
http://dx.doi.org/10.3390/met9010083
http://www.mdpi.com/journal/metals
http://www.mdpi.com/2075-4701/9/1/83?type=check_update&version=2


Metals 2019, 9, 83 2 of 11

of chlorides during zinc sulphate E.W. can lead to anodic chlorine evolution, which can cause worker
health problems, increase the corrosion rate of the anode, and reduce the quality of cathode zinc [12].
In addition, the stripping of cathode zinc is heavily compromised even when the concentration of
fluorides is several hundreds of ppb [13].

Ammonia, together with various ammonium salt solutions, are used to leach zinc oxide ores
and zinc secondary sources [14–17]. The zinc(II) ion forms strong ammonia complexes in lixivium,
while other metals, such as iron, remain in the residue. R. X. Wang et al. investigated the
NH3–NH4Cl–H2O system for the production of electrolytic zinc [18]. S. H. Yang et al. calculated the
thermodynamic data in the system of Zn–NH3–NH4Cl–H2O and plotted the solubility of ZnO in the
system [19,20].

Although there are many studies on the leaching of zinc from steel plant dust, studies on the
entire process, including leaching, purification, and electrowinning, are relatively few in number.
The flow sheet for extracting zinc from steel plant zinc-bearing dust is presented in Figure 1 [20].
The aim of this paper is to present the characterization of a C.Z.O. material, the leaching of this C.Z.O.
by NH3–NH4Cl–H2O solution, followed by solution purification and electrowinning.
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Figure 1. The principal flow sheet for extraction and recovery of high-purity zinc from steel plant
zinc-bearing dust.

2. Experimental

2.1. Material

The chemical composition of C.Z.O. used for experiments is given in Table 1. The XRD pattern
and scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS) analysis of C.Z.O. are
presented in Figure 2, pattern (d) and Figure 3, pattern (a), respectively. The material was a fine powder
that was used without further treatment. The other chemicals used in the experiments were analytical
reagent grade. All solutions were prepared using deionized water. After leaching, the residue was
separated by vacuum filtration, washed with dilute ammoniacal solution, and dried at 60 ◦C.

Table 1. Chemical composition of C.Z.O. (%).

Zn F Mg Al Si P S Cl K Ca Ti

50.25 0.18 0.04 0.11 2.31 0.03 0.33 9.26 0.90 0.43 0.07
Pb Sn Cd Br O Cu Ni Fe Mn Cr

1.32 0.07 3.71 0.14 18.9 0.05 0.02 6.18 0.37 0.04



Metals 2019, 9, 83 3 of 11

Metals 2019, 9, x FOR PEER REVIEW  4 of 11 

 

 
Figure 2. X-ray powder diffraction patterns of crude zinc oxide (C.Z.O.): (a) concentration of 
ammonia and ammonium chloride 2.5 mol/L and 5 mol/L, respectively, liquid-to-solid ratio (L/S) 50 
mL/g , time 58 min, and solution temperature 40 °C; (b) concentration of ammonia and ammonium 
chloride 1.0 mol/L and 2.0 mol/L, respectively, L/S 50 mL/g, time 58 min, and solution temperature 40 
°C; (c) concentration of ammonia and ammonium chloride 2.5 mol/L and 5 mol/L, respectively, L/S 
50 mL/g , time 58 min, and solution temperature was 60 °C; (d) before leaching. 

3.3. Mineralogical Composition Analyses 

The data obtained from zinc-containing mineral phase analyses are presented in Table 2. The 
raw material and residue weight is 10 g and 5 g, respectively. The mineral phases containing zinc in 
the C.Z.O. consist of those with water-soluble zinc 5.6%, zinc oxide 39%, franklinite 4.5%, and zinc 
sulfide 0.12%. From the XRD analyses (Figure 2), it was shown that zinc can be readily extracted 
from Zn5(OH)8Cl2·H2O. The extraction percentage of zinc from the zinc oxideII was 84% as a small 
portion of ZnO was unleached. It was difficult to extract zinc from franklinite and zinc sulfide in the 
ammonia–ammonium chloride process. 

Table 2. Mineralogical composition of C.Z.O. %. 

Phase Water-Soluble ZincI Zinc OxideII FrankliniteIII Zinc Sulfide T Zinc 
➀ Zinc content % 5.6 39 4.5 0.12 49.22 
➁ Zinc content % 0.11 12.85 7 0.23 20.19 

Extraction percentage % 99 84 22 4 80 
➀ Before leached, ➁ After being leached twice, concentration of ammonia and ammonium chloride 
2.5 mol/L and 5 mol/L respectively, L/S 50 mL/g, reaction time 58 min and leaching temperature 40 
°C. I Includes ZnSO4 and ZnCl2, II includes Zn5(OH)8Cl2·H2O and ZnO, III Includes ZnFe2O4 and 
ZnSiO4. 

3.4. SEM Analyses 

SEM with EDS analysis was used to analyze the particle morphology and surface composition 
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Figure 2. X-ray powder diffraction patterns of crude zinc oxide (C.Z.O.): (a) concentration of ammonia
and ammonium chloride 2.5 mol/L and 5 mol/L, respectively, liquid-to-solid ratio (L/S) 50 mL/g ,
time 58 min, and solution temperature 40 ◦C; (b) concentration of ammonia and ammonium chloride
1.0 mol/L and 2.0 mol/L, respectively, L/S 50 mL/g, time 58 min, and solution temperature 40 ◦C;
(c) concentration of ammonia and ammonium chloride 2.5 mol/L and 5 mol/L, respectively, L/S
50 mL/g , time 58 min, and solution temperature was 60 ◦C; (d) before leaching.
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analyses of leach residue under the following conditions: concentrations of ammonia and ammonium
chloride 2.5 mol/L and 5 mol/L, respectively, L/S = 50 mL/g, temperature 40 ◦C, time 58 min.
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2.2. Experimental Setup and Procedure

Batch leaching, kinetic leaching, and purification were conducted using a magnetic stirring
apparatus and a stirring speed of 250 rpm. The setup was placed in a thermostatic water bath,
and the reaction temperature was maintained constantly within a temperature range of ±0.5 ◦C.
Batch leaching tests were performed in a 1 L beaker. Here, 500 mL of ammonia–ammonium chloride
solution was heated to the specified temperature; then, C.Z.O. was added. The factors studied were
the concentration of ammonia, concentration of ammonium chloride, liquid-to-solid ratio (L/S), and
temperature. Kinetic leaching tests were performed in a 2 L beaker. Samples of approximately
5 mL were taken from the solution at times of 1, 3, 8, 18, 28, 38, 48, and 58 min. Each sample was
filtered quickly.

Purification tests were performed in a 1 L beaker. Here 500 mL of lixivium was heated to
the specified temperature; then, zinc powder was added. DC constant voltage power supply
(It6720, ITECH, Nanjing, China) was used in the electrowinning tests. Electrowinning tests were
performed in a 3 L custom-made rectangular (16 cm × 12 cm × 16 cm) container to minimize ammonia
volatilization. Here, 2500 mL of purified solution (Zn–NH3–NH4Cl–H2O) was heated to the specified
temperature; then, electrowinning commenced. The cathode and anode plate was a titanium and
graphite plate, respectively.

2.3. Analyses and Detection

The concentration of zinc in solution was determined by EDTA titration. The concentration
of copper, cadmium, lead, and antimony in solution was determined with a TAS-990 flame
atomic absorption spectrophotometer (Beijing Persee General instrument Co, Ltd., Beijing, China).
The concentration of arsenic in solution and impurities content in the cathode zinc were determined
by a SPECTRO BLUE SOP(ICP-OES) instrument (Thermo Electron Corporation, Waltham, MA, USA).
The chemical phase analyses results were provided by Changsha Research Institute of Mining and
Metallurgy based upon a selective leaching method metallurgy. XRD measurements of the residue
and C.Z.O. were carried out using a RIGAKU-TTRIII instrument (Rigaku corporation, Tokyo, Japan)
with a Cu/ka X-ray source at 40 kV and 250 mA. The surface morphology of the residue and C.Z.O.
was examined using a JEOL JSM-6360LV instrument (EDAX Inc., New York, NY, USA) operating at
20 kV. The elemental composition of the residue and C.Z.O. was examined using a Genesis 60S energy
dispersive spectroscopy system (EDS) (EDAX Inc., New York, NY, USA).

3. Results and Discussion

3.1. Characterizations of C.Z.O.

The chemical analyses of the samples are shown in Table 1. The sample contains an average of
50.25% zinc, 18.9% oxygen, 9.3% chlorine, 0.18% fluorine, 1.32% lead, 3.71% cadmium, and 6.18%
iron. The content of chlorine in the sample was very high. Chlorine would need to be removed as
it is a harmful impurity in zinc sulfate E.W., but it was not a problem in an ammonia–ammonium
chloride process.

3.2. XRD Analyses

The X-ray diffraction (XRD) pattern of the C.Z.O. is presented in Figure 2d. This revealed that the
zinc-containing phases in C.Z.O. were simonkolleite (Zn5(OH)8Cl2·H2O), zincite (ZnO), and franklinite
(ZnFe2O4). After being leached in different conditions (Figure 2a–c), the zinc-containing phases in
the leach residue were franklinite (ZnFe2O4), willemite (Zn2SiO4), and some residual zincite (ZnO).
Almost all of the zinc present in ZnO and that in Zn5(OH)8Cl2·H2O was dissolved.
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3.3. Mineralogical Composition Analyses

The data obtained from zinc-containing mineral phase analyses are presented in Table 2. The raw
material and residue weight is 10 g and 5 g, respectively. The mineral phases containing zinc in
the C.Z.O. consist of those with water-soluble zinc 5.6%, zinc oxide 39%, franklinite 4.5%, and zinc
sulfide 0.12%. From the XRD analyses (Figure 2), it was shown that zinc can be readily extracted
from Zn5(OH)8Cl2·H2O. The extraction percentage of zinc from the zinc oxideII was 84% as a small
portion of ZnO was unleached. It was difficult to extract zinc from franklinite and zinc sulfide in the
ammonia–ammonium chloride process.

Table 2. Mineralogical composition of C.Z.O. %.

Phase Water-Soluble
Zinc I Zinc Oxide II Franklinite III Zinc Sulfide T Zinc

1© Zinc content % 5.6 39 4.5 0.12 49.22
2© Zinc content % 0.11 12.85 7 0.23 20.19

Extraction
percentage % 99 84 22 4 80

1© Before leached, 2© After being leached twice, concentration of ammonia and ammonium chloride 2.5 mol/L and
5 mol/L respectively, L/S 50 mL/g, reaction time 58 min and leaching temperature 40 ◦C. I Includes ZnSO4 and
ZnCl2, II includes Zn5(OH)8Cl2·H2O and ZnO, III Includes ZnFe2O4 and ZnSiO4.

3.4. SEM Analyses

SEM with EDS analysis was used to analyze the particle morphology and surface composition of
the C.Z.O. and leach residue. The results are presented in Figure 3. The SEM analyses showed that
the spherical structure of the C.Z.O. was destroyed both at the surface and inside the particles. It was
assumed that the leaching reaction took place via three steps: ammonia and chloride adsorption to the
surface and inside, reaction on the surface and inside the particle, and desorption of the soluble zinc
species. The concentration of zinc in the residue from EDS analyses was high, which is consistent with
the interaction of the X-rays with unleached ZnO. The surface of the residue particles contained a large
amount of iron and silicon. Combined with XRD analysis, the main phases were zinc ferrite and zinc
silicate. There may also have been small amounts of amorphous silicon oxide. Zinc oxide was mixed
with these minerals or was wrapped.

3.5. Kinetics

The kinetics experiment of zinc leaching from C.Z.O. is presented in Figures 4 and 5. The initial
total concentration of ammonia (ammonia/ammonium chloride = 1/2) and solution temperature
varied between 3–7.5 mol/L and 30–60 ◦C, respectively. The main chemical reactions during the
leaching process are expressed in Equations (1)–(4) as follows:

Zn5(OH)8Cl2·H2O + 5nNH4
+ = 5Zn(NH3)n2+ + 2Cl− + (5n − 8)H+ + 9H2O(n = 1-4) (1)

Zn5(OH)8Cl2·H2O + (5m − 2)Cl− = 5ZnClm2−m + 8OH− + H2O(m = 1-4) (2)

ZnO + pNH4
4+ = Zn(NH3)p

2+ + (p-2)H+ + H2O(p = 1-4) (3)

ZnO + qCl− + 2H+ = ZnClq2−q + H2O(q = 1-4) (4)

It is clear that the leaching of zinc from the C.Z.O. particles was very rapid. The time required to
obtain 73% extraction of zinc was less than 1 min. Reasons for the rapid leaching rate were the small
particle diameter (<10 µm) and clear access of the lixiviant to the reacting surfaces, both external and
internal to the particle (SEM). Combining the mineralogical composition and XRD analyses, it was clear
that the dissolution of Zn5(OH)8Cl2·H2O and ZnO were both very rapid. The extraction percentage
of zinc subsequently increased slowly at times longer than 1 min. Zinc oxide was mixed with these
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minerals or was wrapped to make that mass transfer greatly hindered. Zinc oxide in residue was
difficult to be dissolved due to kinetics reasons. Figure 4 displays the effect of temperature on zinc
extraction kinetics. The mass of the solid, the volume of solution, and the total ammonia concentration
were kept constant at 20 g, 1000 mL, and 7.5 mol/L, respectively. Increasing the temperature from
30 to 60 ◦C had a greater effect on the extraction percentage of zinc. The extraction percentage of zinc
increased from 80.1% to 88.5% as ZnO dissolution increased. The rate of zinc extraction also increased
with the temperature increasing from 30 to 60 ◦C.
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ammonia and ammonium chloride 2.5 mol/L and 5 mol/L, respectively).

The effect of the total concentration of ammonia is presented in Figure 5. Increasing the
concentration of total ammonia from 3 to 7.5mol/L had a small effect on the extraction of zinc.
The extraction increased from 78.6% to 81.6% when the concentration of total ammonia increased from
3 to 7.5 mol/L. This was because all of the concentrations of total ammonia were at a sufficiently high
level given that the L/S ratio in the kinetics experiments was much higher than for batch experiments.
The initial rate of zinc extraction also increased when the total concentration of ammonia increased
from 3 to 7.5 mol/L.
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3.6. Batch Experiment

The results of batch leaching of zinc from C.Z.O. are presented in Figures 6–9. The initial total
concentration of ammonia, L/S, and solution temperature varied from 3–7.5 mol/L, 4–8 mL/g, and
30–60 ◦C, respectively.
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The effect of L/S is presented in Figure 6. Increasing L/S from 4 to 5 had a noticeable effect on the
extraction of zinc. However, when the L/S was greater than or equal to 5, the effect was diminished.
The extraction of zinc increased from 79.9% to 81.5% when L/S increased from 5 to 7 mL/g, but the
concentration of zinc in solution decreased from 80.4 to 52.4 g/L.

The effect of total concentration of ammonia is presented in Figure 7. Total concentration of
ammonia had a noticeable effect on the extraction of zinc. The maximum extraction of zinc, ~80%, was
reached in the solution with 7.5 mol/L total ammonia. When the concentration of ammonium chloride
was more than 5 mol/L, ammonium chloride crystals were readily formed.

The effect of solution temperature is presented in Figure 8. The extraction of zinc increased
from 76.8% to 82.9% when temperature increased from 30 to 60 ◦C. When the temperature reached
50 ◦C, ammonia volatilized from the solution, producing a very strong, pungent odor in the laboratory.
Therefore, the temperature of experiments had to be lower than 50 ◦C.

The effect of leaching time is presented in Figure 9. The results show that leaching zinc into the
solution was a very fast process. The dissolution of zinc at 40 ◦C reached equilibrium within the first
30 min.

3.7. Purification of Lixivium

Prior to this work, significant work on purification and electrowinning had been done by our
team [20].

The optimum condition determined in batch experiments for zinc extraction from C.Z.O. was
determined to be: L/S = 6, stirred at 250 rpm for 30 min, 7.5 mol/L total concentration of ammonia,
and 40 ◦C. The zinc and main impurity content in lixivium in the optimum condition is presented in
Table 3.

Table 3. Zinc and main impurity content in lixivium (mg/L).

Zn 5 Cu Cd Pb Sb As

69.2 34.3 53.7 637 5.6 0.17
5: g/L.

3.7.1. Removal of Sb and As

Hydrogen peroxide addition was used to enable the removal of Sb and As. An addition of
2 mL/L of H2O2(30%) to the leaching process occurred after 15 min. Ferrous iron, Sb, and As in the
solution were oxidized to enable co-precipitation of ferric iron with the oxidized Sb and As species.
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The experimental results indicate that the contents of Sb and As in the lixivium were reduced to
0.22 mg/L and 0.12 mg/L or less, respectively.

3.7.2. Removal of Cu, Cd, and Pb

Cementation of Cu, Cd, and Pb using a two-stage countercurrent cementation process using zinc
powder was carried out. The total dosage of zinc powder in this two-stage countercurrent cementation
process was 1.6 g/L. Cu, Cd, and Pb were easily removed under the conditions of 40 ◦C and stirred at
250 rpm for 30 min for both cementation stages. The content of the lixivium after removal of Sb, As,
Cu, Cd, and Pb is presented in Table 4.

Table 4. Zinc and main impurity content in the lixivium after purification (mg/L).

Zn (g/L) Cu Cd Pb Sb As

69.4 0.03 0.09 0.82 0.22 0.12
69.2 0.02 0.08 0.87 0.21 0.12
69.6 0.03 0.04 0.76 0.19 0.1

3.8. Electrowinning

The lixivium after purification was used for electrowinning. The condition for electrowinning
was as follows: zinc concentration more than 30 g/L, electrode space 3.5 cm, current density 400 A/m2,
and temperature 40 ◦C. The zinc and main impurity content in the cathode zinc is shown in Table 5.
The zinc content in the electrowon zinc was more than 99.99%, and the contents of impurities, such as
Cu, Cd, Fe, Sb, and As, were all lower than 0.0007%, while lead was lower than 0.008%. The electrowon
zinc product is shown in Figure 10.

Table 5. Zinc (%) and main impurity contents (×103 %) in cathode zinc.

Zn 5 Cu Cd Pb Sb As Fe

99.9930 0.1 - 6.0 0.5 - 0.5
99.9907 0.2 - 8.0 0.4 - 0.7
99.9916 0.4 - 7.0 0.6 - 0.4

5: below detection limits.
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4. Conclusions

The chemical and mineralogical properties of C.Z.O. indicate that it was composed of
approximately 50.25% zinc, in which 78% of the total zinc was ZnO and Zn5(OH)8Cl2·H2O. SEM,
EDS, XRD, and mineralogical composition analyses results showed that the leaching reaction takes
in three steps: adsorption to the surface and inside, reaction on the surface and inside of the
particle, and desorption. Zinc existing in ZnO and Zn5(OH)8Cl2·H2O was easily extracted with
the NH3–NH4Cl–H2O system, and dissolution speed was very rapid. The percentage extraction
of zinc was over 81% in batch experiments. The Sb and As could be reduced to 0.22 mg/L and
0.12 mg/L by addition of H2O2 in the leaching process. The Cu, Cd, and Pb could be removed
effectively by a two-stage countercurrent cementation process using zinc powder. The zinc content in
the electrowinning zinc was more than 99.99%.
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