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Abstract: To conduct safety checks of corroded steel structures and formulate appropriate maintenance
strategies, the residual strength of steel structural members must be assessed with high accuracy.
Finite element method (FEM) analyses that precisely recreate the morphology of corroded surfaces
using solid elements are expected to accurately assess the strength; however, the cost of conducting
these calculations is extremely high. Therefore, a model that uses mean thickness as the thickness
of the shell element is widely used but this method has precision issues, particularly regarding
overestimation of risk. Thus, this study proposes a method of structural analysis in which the effective
thickness of a shell element is assessed using the convolutional neural network (CNN), a type of
deep learning performed on tensile structural members. An FEM model is then built based on
the shell element that uses this effective thickness. We cross-validated this method by adding a
feature extraction layer that reflects the domain knowledge, together with convolutional and pooling
layers that are commonly used for CNN and found that a high level of accuracy could be achieved.
Furthermore, regarding corroded steel plates and H-section steel, our method demonstrated results
that were extremely close to those of models that used solid elements.

Keywords: corrosion; residual strength; deep learning; convolutional neural network; CNN; finite
element analysis

1. Introduction

Corrosion of steel structures causes geometrical changes on the surface of structural members
because of corrosion defects [1,2], which in turn lowers their load-bearing capacity. In the field of
civil engineering, the corrosion of steel structures majorly contributes to deterioration of structural
performance, together with fatigue cracks [3,4]. This issue worsens with the aging and deterioration
of steel structures. Because corrosion occurs at a slower rate than fatigue cracks, few cases require
emergency responses including repair; however, this makes it difficult to determine the timing of
repair, and repairs tend to be postponed. The result is severe damage and accidents in some cases.

One example of the above is the 2016 Inubo Bridge case in Kochi Prefecture, where four-angled
supports of a truss failed because of their load-bearing capacity being lowered by corrosion, causing
the whole beam to become deformed (Figure 1). Corrosion was also a factor in the 2007 collapse of
the I-35W Mississippi River Bridge in the United States [5]. Such accidents resulting from corrosion
occur worldwide, and one of the causes for these accidents is an inability to accurately estimate
the decline in strength caused by corrosion. In other words, a method to accurately assess lowered
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strength is required to inspect the safety of steel structures and determine the necessity for repair
and/or reinforcement [6]. In much existing literature, the lowered strength is expressed by the term
residual strength, and it is used in this paper [7–9].
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Figure 1. Deformation of the Inubo Bridge. (Left: overall view of the bridge. Right: detail of the
broken structural member.).

The most anticipated method to improve the accuracy of residual strength evaluation is FEM analysis
that accurately recreates the morphology of the corroded surface using solid elements. For example, it
was showed that ANSYS (version 16.0, Canonsburg, PA, USA) solid elements can be used to accurately
express mechanical behavior [9,10]. However, because the calculation cost is extremely high, this is not
a realistic option for the analysis of civil engineering structures beyond experimental specimens. Thus,
shell elements are usually used to reduce the calculation cost [11]. The average thickness is usually used
to estimate the thickness of the shell element [12–14]; however, surface unevenness is known to have
an impact on strength; thus, using only average thicknesses is not necessarily appropriate. Effective
thickness as defined by Equation (1) is primarily considered appropriate to be used as the thickness of
the shell element:

Effective thickness =
Maximum tensile load

Width× Tensile strength of steel member with smooth surfaces
(1)

Thus, this study proposes a method that precisely estimates the effective thickness of the shell
element from measurements of surface morphology. Although several methods have been proposed
to obtain effective thickness from measurements of surface morphology [7,15,16], such thicknesses
were estimated by manually selecting features such as the average thickness and standard deviation of
thickness. Despite these features being important, the impact of surface morphology on strength is not
sufficiently simple to be predictable from only a limited number of features. In other words, selecting
or removing features manually is not desirable.

Therefore, we develop a method to estimate effective thickness based on deep learning. Deep
learning is a type of machine learning that uses multilayered neural networks, which have attracted
attention in recent years and is characterized by its ability to automatically obtain many ideal features
during the learning process. We particularly used a convolutional neutral network (CNN), which
displays high performance in terms of image analysis, even for deep learning. Although the input
to the CNN was surface morphology converted to images, the output was an effective thickness as
defined in Equation (1). Thus, analyses can be performed without removing necessary features through
manual selection.

To train CNN and improve its performance, a large training dataset with paired input and teaching
output is necessary. However, performing loading tests sufficient to obtain enough data for deep
learning is impossible. Thus, we performed FEM analyses in which the surface morphology was
changed in multiple ways to accumulate data. If CNN is trained appropriately in this manner, the
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effective thickness of shell elements can be precisely estimated even when a new corrosion morphology,
i.e., one that was not used during learning, is given to CNN.

Because this approach improves the precision of each element in steel structural members with
corrosion, a FEM model with high precision can be designed for the overall structure. Figure 2 shows
the developing flow of the proposed FEM model using a steel plate as an example. First, a steel
structural member was divided into several elements (corroded steel fragments), and the surface
morphology of each of these corroded fragments was visualized. This image was then provided to
CNN to assess the effective thickness of the corroded steel fragment. Next, this effective thickness
was used to build a shell element model for analysis, shown on the right-hand side of Figure 2. As an
example of a corroded steel structural member, we analyzed corroded steel plates and H-section steel
under tension by converting to a shell element model with the method shown in Figure 2. The result
was compared with the solid element model to verify its validity.
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Figure 2. Developing of the FEM model proposed.

2. Accumulation of Learning Data through FEM Analysis

2.1. Verifying the Validity of the FEM Model

In this study, we performed CNN learning using the FEM analytical results with solid elements
for multiple numerically generated corroded steel fragments. To that end, it was first necessary to
confirm that the mechanical behavior of the corroded steel member was appropriately recreated using
FEM. Ideally, we should learn from the tensile test results of actual corroded steel fragments instead of
the FEM analytical result, but the number of learning data is too small; therefore, the FEM analysis
was used.

We used the commercially available FEM analytical package (Abaqus/Standard) to confirm that the
tensile test result acquired from two corroded steel beams could be precisely recreated using the FEM
analysis with the solid element C3D8 (i.e., 3D 8-node hexahedral elements) [17]. Specimen dimensions
in the experiment are illustrated in Figure 3, the measurement system for surface morphology is
illustrated in Figure 4, and the experimental conditions are illustrated in Figure 5. A total of 30
specimens were constructed from the obtained material, and results that compared its maximum load
are illustrated in Figure 6. A comparison between the sample after failure and the FEM-based Mises
stress distribution are illustrated in Figure 7, and the load-displacement curve is illustrated in Figure 8.
As seen in Figure 7, the average error was 4.7%, and only one specimen had an error exceeding 10%
wherein stresses at the point of failure are higher. In addition, the load-displacement curve in Figure 8
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accurately recreates the experimental results, and the failure mode of the corroded steel specimen is
well represented using the FEM model.Metals 2019, 9, x FOR PEER REVIEW 4 of 15 
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Figure 6. Comparison of tensile strength of Experimental and FEM results. The black line represents
the 1:1 line between the experimental and FEM results, while the red and blue dotted lines indicate 5%
and 10% overestimation/underestimation, respectively.
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2.2. Generation and Analysis of Corroded Steel Specimen Using a Spatial Autocorrelation Model

We artificially generated a FEM model for a corroded steel fragment using a spatial autocorrelation
model and performed CNN learning using these FEM analytical results. The spatial autocorrelation
model considers the correlation of the corrosion depth on a corroded surface created with a feature of
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unevenness comprising both depth and width. This model was formulated as in Equation (2), and the
corrosion distribution was derived from this Equation.

V′1
V′2
...

V′n

 =


1 e−βd21 . . . e−βdm1

e−βd12 1 . . . e−βdm2

...
...

. . .
...

e−βd1n e−βd2n . . . e−βdmn




V1

V2
...

Vn

 (2)

where Vi’ is the corrosion depth at the ith measurement point, Vi is the independent corrosion depth at
the ith measurement point, β is the distance attenuation coefficient, and dij is the distance between
point i and point j. We considered the examination by Okumura et al. [18] and randomly chose β

between 0.28 and 0.4 for each specimen. For the independent corrosion depth, we used randomly
generated numbers according to the Poisson distribution, and the initial thickness was randomly
determined to have a range of 8–25 mm. As above, all the values of the right side are determined,
and the left side is obtained by the calculation of Equation (2). Additionally, to recreate pitting, we
created elliptical regions of damage, each of which had a random radius between 5 mm and 15 mm.
The thickness was generated using a 2-mm mesh. It has been confirmed in [15–17] that the mechanical
behavior can be reproduced by such expression of the mm order.

Figure 9 shows an example FEM model of a corroded steel fragment generated in this manner. We
randomly determined the height and width of the fragment in the range of 126–254 mm and generated
a total of 10,000 fragments. However, because the mesh size was set at 2 mm, the length was set in
multiples of 2 mm to prevent meshes with sizes between these intervals.
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Figure 9. FEM models for corroded steel fragments prepared based on the spatial autocorrelation
model. For each case, the front and back surfaces are shown.

The relation between true stress and true strain for the material was found to be trilinear (Figure 10),
with Young’s modulus E of 2.05 × 105 MPa, Poisson’s ratio ν of 0.3, yield stress σy of 245 MPa, and
ultimate strength σu of 400 MPa. We performed a tensile analysis on the corroded steel fragments
generated in this manner and obtained their effective thickness according to Equation (1). These results
were used for the deep learning described in the next section.
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Figure 10. Stress–strain curve used for the analysis.

3. Building a Model to Assess Effective Thickness Using Deep Learning

3.1. Outline of CNN

We created a method to assess effective thickness using CNN, which is a type of deep learning.
CNN models the receptive field in the human field of vision and is known to have a high level of
performance in the field of image recognition. We present the outline of CNN below considering the
convenience of readers; more detail regarding the approach can be found in previous studies [19,20].

CNN differs from the conventional neural network and is characterized by two special layers:
the convolutional layer and the pooling layer. Figure 11 shows a typical CNN structure. First, an
image is added to the input layer, followed by repeated calculations in the convolutional and pooling
layers. In the fully connected layer, a weighted connection calculation similar to a conventional neural
network is performed. The classification result is outputted in the output layer.

Metals 2019, 9, x FOR PEER REVIEW 7 of 15 

 

 

Figure 10. Stress–strain curve used for the analysis. 

3. Building a Model to Assess Effective Thickness Using Deep Learning 

3.1. Outline of CNN 

We created a method to assess effective thickness using CNN, which is a type of deep learning. 
CNN models the receptive field in the human field of vision and is known to have a high level of 
performance in the field of image recognition. We present the outline of CNN below considering the 
convenience of readers; more detail regarding the approach can be found in previous studies [19,20]. 

CNN differs from the conventional neural network and is characterized by two special layers: 
the convolutional layer and the pooling layer. Figure 11 shows a typical CNN structure. First, an 
image is added to the input layer, followed by repeated calculations in the convolutional and pooling 
layers. In the fully connected layer, a weighted connection calculation similar to a conventional neural 
network is performed. The classification result is outputted in the output layer. 

 
Figure 11. Basic structure of CNN (C = convolutional layer, P = pooling layer, and F = fully connected 
layer). 

3.1.1. The Convolutional Layer 

The convolutional layer runs an operation in which filters are convoluted for the provided input; 
thus, this layer identifies localized characteristics. Assuming that the size of images inputted to the 
convolutional layer is W × H × K, the size of the filter is given by w × h × K × L. W is the image width, 
H is the image height, K is the number of channels of the image inputted to the convolutional layer, 
w is the width of the filter, h is the height of the filter, and L is the number of filters. 

If the pixel value of the input image is expressed using xijk with the index (i, j) (i = 0, …, W-1, j = 
0, …, H−1, k = 1, …, K) and the pixel value of the filter using hpqkl (l = 1, …, L) with the index (p, q) (p = 
0, …, w−1, q = 0, …, h−1), the convolution operation is expressed with Equation (3): 

1 1

, ,
1 0 0

K w h

ijl i p j q k pqkl l
k p q

u x h b
− −

+ +
= = =

= +  (3) 

where uijl is the pixel number of the output image and bl is bias. 

σu

σy

1

E/100

E

St
re

ss

Strain

1

… … ………

…
… ……

…

C P FC and P
are repeated

F is
repeated

Figure 11. Basic structure of CNN (C = convolutional layer, P = pooling layer, and F = fully connected layer).

3.1.1. The Convolutional Layer

The convolutional layer runs an operation in which filters are convoluted for the provided input;
thus, this layer identifies localized characteristics. Assuming that the size of images inputted to the
convolutional layer is W × H × K, the size of the filter is given by w × h × K × L. W is the image width,
H is the image height, K is the number of channels of the image inputted to the convolutional layer, w
is the width of the filter, h is the height of the filter, and L is the number of filters.

If the pixel value of the input image is expressed using xijk with the index (i, j) (i = 0, . . . , W − 1, j
= 0, . . . , H − 1, k = 1, . . . , K) and the pixel value of the filter using hpqkl (l = 1, . . . , L) with the index
(p, q) (p = 0, . . . , w − 1, q = 0, . . . , h − 1), the convolution operation is expressed with Equation (3):

ui jl =
K∑

k=1

w−1∑
p=0

h−1∑
q=0

xi+p, j+q,khpqkl + bl (3)

where uijl is the pixel number of the output image and bl is bias.
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Next, we applied the activation function f to uijl obtained with Equation (3) as shown in Equation (4):

zi jl = f (ui jl) (4)

Activation function, such as the sigmoid function, tanh, a normalized linear function called ReLU
(Rectified Linear Unit), and softsign functions have all been proposed previously; in this research, we
used ReLU, which has been reported to be the best-suited [19]. ReLU is expressed using Equation (5):

f (u) = max(u, 0) (5)

Output images obtained from these analyses are used as the input for the next layer.

3.1.2. The Pooling Layer

The pooling layer is usually placed immediately after the convolutional layer and by lowering
the positional sensitivity of the filter response obtained in the convolutional layer, invariance against
microscopic horizontal changes can be achieved. The pooling layer obtains a representative value for a
part of the group of pixels in the input image and uses this value as the pixel value for the new output
image. In image analysis, considering the maximum pooling that uses the maximum value as the
representative value is common. We used this approach in the present study.

3.1.3. The Fully Connected Layer and the Output Layer

The provided input image is one-dimensionally operated in the fully connected layer and all
input and output units are connected. This point is the difference between the convolutional layer and
the pooling layer wherein only specified nodes are connected. In the final output layer, the effective
thickness is output as a continuous value, and learning is performed such that the sum of the squared
errors for the output and the target output (output provided as the teacher) would be minimum values.
In this manner, an ideal weight can be obtained.

3.2. Generation of Input Image for CNN and Learning

In the previous section, we discussed the outline of CNN and introduced the advantage of superior
image recognition. To use this advantage, the morphology of the corroded surface was imaged and
used as the input for CNN. The generated image was a 3-channel RGB color image, where the R, G,
and B channels were given front surface thickness reduction, back surface thickness reduction, and an
initial thickness, normalized to 25 mm, which is the possible maximum initial thickness of the model
stipulated in Section 2.2. Considering that the thickness was generated with a 2-mm mesh, e.g., if the
width was x mm, the pixel number in the width was set as x/2 + 1.

The image of a case with notable pitting (Figure 9a) is shown on the left-hand side of Figure 12.
The pit near the center of the front surface (top image in Figure 9a) led to high thickness reduction at
the center, increasing the R channel value and creating a red circle at the center of the left image in
Figure 12. In contrast, the image of a case with average corrosion (Figure 9b), shown on the right side
of Figure 12, has similar pixel numbers throughout the image because there is no location with notable
thickness reduction as in Figure 9a.

3.3. Proposed Feature Extraction Layer

In Section 3.1, we explained the outline of CNN and basic layers. In this study, we set a layer that
extracts characteristics that are considered effective to improve precision based on domain knowledge
along with these basic layers. In particular, the length, width, average thickness, standard deviation of
thickness, minimum thickness, and average thickness of the minimum cross-section of the steel plate
were calculated. Information pertaining to the length and width of the steel fragment are lost during
the deformation of the image to 256 × 256 pixels and were thus secured at this point. The average
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thickness, standard deviation of thickness, minimum thickness, and average thickness of the minimum
cross-section are insufficient indexes in terms of precision to evaluate the effective thickness alone but
were thought effective when assessing the effective thickness in combination with other indexes.Metals 2019, 9, x FOR PEER REVIEW 9 of 15 
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3.4. CNN Learning and Verification of the Model Precision

In this section, we create CNN with the image created in Section 3.2 as input and the effective
thickness obtained from the load-bearing capacity determined in the FEM analysis in Section 2 as output.
Figure 13 shows the schematic. First, as shown in the frame entitled “Training Datasets” in Figure 13,
many images and the related data of the effective thickness are used as the learning data. Next, based
on these data, CNN learning is performed. This allows for the effective thickness for the new image
(the top of the “Analysis Stage”) not used for the training stage to be obtained with good precision.
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Figure 14 shows the structure of CNN created for this study. The number of filters, size, and
output images for each layer are shown in Table 1. The feature extraction layer calculates six features
discussed in Section 3.3 from input images. This is then followed by deformation of input images to
256 × 256 pixels in the image resize layer. Similar to the basic CNN, the convolutional layer and the
pooling layer are repeated, and in the fully connected layer, six features identified in the feature extraction
layer are connected. However, in between the top layers, the convolutional layers are mainly used
without the pooling layer in between. If the pooling layer is used when the number of convolutions by
the convolutional layers is small, information on small unevenness is lost, thereby reducing the precision.
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Conventional CNN used for the classification often used a method in which nodes were prepared
for the number of classes in the output layer, and classes were determined based on the SoftMax
function. However, in this study, because the objective was regression (predicting the continuous
value: effective thickness) instead of classification, the final layer was one node and the effective
thickness appeared.

To verify the precision of regression, we performed K-fold cross-validation. K-fold cross-validation
classifies samples into K group, and uses samples in the K − 1 group for learning. This learning result is
used to analyze the remaining group. This is repeated K times. In this research, K was 10. The number
of steel fragments analyzed was 10,000 as discussed in Section 2.2. The result is summarized in
Figure 15. The horizontal axis shows the effective thickness calculated using Equation (1), whereas the
vertical axis shows effective thickness assessed with CNN. The average error was 2.8%. The figure also
shows that the effective thickness of the corroded steel fragment can be assessed with good precision.
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Table 1. Filter and output image size for each layer.

Layer Name The Number of Filters Size or Dropout Rate Output Size

Input image - - Original image size
Feature extraction layer - - Original image size

Image resize layer - - 256 × 256 × 3
Convolutional layer 1 32 11 × 11 246 × 246 × 32
Convolutional layer 2 32 7 × 7 240 × 240 × 32
Convolutional layer 3 32 3 × 3 238 × 238 × 32

Pooling layer 1 - 2 × 2 119 × 119 × 32
Dropout 1 - 0.2 119 × 119 × 32

Convolutional layer 4 64 7 × 7 113 × 113 × 64
Convolutional layer 5 64 3 × 3 111 × 111 × 64

Pooling layer 2 - 2 × 2 55 × 55 × 64
Dropout 2 - 0.2 -

Convolutional layer 6 128 5 × 5 53 × 53 × 128
Pooling layer 3 - 2 × 2 26 × 26 × 128

Convolutional layer 4 256 3 × 3 24 × 24 × 256
Pooling layer 4 - 2 × 2 12 × 12 × 256

Fully connected layer 1 - - 200
Fully connected layer 2 - - 40

Dropout 3 - 0.2 -
Fully connected layer 3 - - 20

Dropout 4 - 0.2 -
output - - 1
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Figure 15. Verification of the precision in the effective thickness assessment.

4. FEM Modeling of Corroded Structural Members

We created total a 400 sets, including 100 sets each of the FEM model with solid elements for
the corroded steel plate and H-section steel, and that with shell elements, which uses the effective
thickness assessment model created in the previous section, for the steel plate and H-section steel
beam, and compared their tensile load-bearing capacity. Each FEM model was built based on the
spatial autocorrelation model of Equation (2). Dimensions were as follows: for both the steel plate
and H-section steel, the longitudinal length was between 120 mm to 1500 mm. Steel plate width was
randomly determined between 128 mm and 256 mm, and flange and wave widths of the H-section
steel were randomly determined between 128 mm and 300 mm. Please note that the minimum size is
set to 128 mm to avoid being outside the learning range of the deep learning model built in Section 3.
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If it is necessary to reflect the size smaller than the learned range in the FEM model, it is necessary
to expand the learning range of the deep learning model in Section 3. The present mesh generation
method automatically generated the mesh so that the length of each element would be as close to
200 mm as possible. Figure 16 shows an example of the corroded steel plate and Figure 17 shows an
example of the corroded H-section steel. Each Figure shows the solid element model on the top and
the shell element model on the bottom.
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Figure 18 shows the comparison of load-bearing capacity. It also shows the result of a model
analysis that used shell element with the average thickness, which is the conventional method. Table 2
shows the relative error in each load-bearing capacity. Similar to the calculation used for the effective
thickness, the average thickness was calculated with 2-mm mesh. As shown in Figure 18 and Table 2,
the shell element model with the effective thickness clearly has higher precision when compared to the
one with the average thickness.

Table 2. Mean relative error in load-bearing capacity between the effective thickness model, average
thickness model, and solid element model.

Model Type Effective Thickness Model Average Thickness Model

Steel plate model 3.3% 22.0%
H-section steel model 4.2% 16.8%
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Figure 18. Comparison of load-bearing capacity for the shell element model with the effective thickness,
the shell element model with average thickness, and solid element model.

Furthermore, when the average thickness was used, the strength of the shell element model
tended to be higher than the strength of the solid element model. This is considered to be because of
the stress concentration caused by uneven surface morphology cannot be accurately assessed when
using the average thickness. This means overestimation of risk in the actual site, indicating that the
present method is a superior method than ones that use the average thickness.

In addition, analytical time of the shell element model is notably shorter than that of the solid
element model. For example, with the model in Figure 16, the analytical time for the solid element
model was 1.04 × 105 s, while the shell element model took 1.40 s. In all models, analytical time
was 1/10,000 or less of that of the solid element model. In other words, we successfully reduced the
calculation cost by a large margin while ensuring precision.

5. Conclusions

In this study, we appropriately evaluated the residual strength of corroded structural members
under tension by assessing the effective thickness from the surface morphology using CNN and
creating a FEM model that uses this effective thickness as the shell element thickness. In particular,
when compared to a model that uses the average thickness, not only did the precision significantly
improve but the tendency to overestimate the strength (i.e., dangerous side) also improved.

In the future, a model that can assess shearing and buckling together with tension needs to be
created. By applying the present method, creating such a model is possible, and a study is under way.
In this manner, the buckling of a steel pier due to corrosion can be evaluated [21].

Additionally, we predicted the residual strength by visualizing the damage to corroded structural
members and using it as an input to CNN. Application of CNN is not limited to corroded structural
members. In other words, the present result indicates that the mechanical behavior of other structures
can be predicted by visualization, and we will continue to apply the present method to analyze a wider
range of structures.
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