

Article

Recovery of Platinum from Spent Petroleum Catalysts: Optimization Using Response Surface Methodology

Yunji Ding ¹, Huandong Zheng ¹, Jiayi Li ¹, Shengen Zhang ¹, *, Bo Liu ¹, Christian Ekberg ² and Zhuming Jian ³

- ¹ Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China; dingyunji@163.com (Y.D.); zhenghuandongUSTB@163.com (H.Z.); ljy10278600@163.com (J.L.); liubo@ustb.edu.cn (B.L.)
- ² Nuclear Chemistry and Industrial Material Recycling, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden; che@chalmers.se
- ³ Yunlong Country Platinum Cui Precious Metals Technology Co., Ltd., Dali 672711, China; jianzhuming@163.com
- * Correspondence:zhangshengen@mater.ustb.edu.cn; Tel.: +86-010-6233-3375

Received: 14 February 2019; Accepted: 14 March 2019; Published: date

1. Changes of spent catalysts at different calcination temperatures

Figure S2. Color changes of spent catalysts at different calcination temperatures.

2. Thermomechanical analysis of PtO2 decomposition

 $PtO_2 = Pt + O_2(g)$

The Gibbs free energy was calculated by HSC 6.0, as shown below.

Table S1. The Gibbs free energy of the decomposition of PtO₂.

T/°C	100	200	300	400	500	600	700	800	900	1000
ΔG(kJ/mol)	16.156	11.948	7.779	3.653	-0.074	-3.435	-6.729	-9.964	-13.148	-16.288

Figure S3. The relationship between Gibbs free energy of the decomposition of PtO₂ and temperature.

3. DTG curve of spent catalysts

Figure S1. The DTG curve of spent petrochemical catalysts.

4. Shrinking-core models

(1) Surface chemical control model

Figure S4. Plots of 1-(1-x)^{1/3} vs. time under different leaching temperatures.

(2) Ash layer diffusion model

Figure S5. Plots of $1-3(1-x)^{2/3}+2(1-x)$ vs. time under different leaching temperatures.

Figure S6. The color changes in ethyl acetate phase with different usage of Fe.

5. The XRF analysis of spent catalysts (before calcination).

Elements	Al ₂ O ₃	Fe ₂ O ₃	MoO ₃	Cl	SiO ₂	SnO ₂	P_2O_5	CaO
Content (%)	89.965	2.86	1.74	1.27	0.965	0.585	0.395	0.40
Elements	Na ₂ O	NiO	Eu ₂ O ₃	ZrO_2	TiO ₂	CeO ₂		
Content (%)	0.39	0.33	0.28	0.26	0.16	0.059		

 Table S2. The XRF analysis of spent catalysts in form of oxides.

6. The information of leaching solution before reduction

Initial C/I makes (a/ml)	Lettel concentration of e(IIt) (mol/I)	V	c(Pt)
Initial 5/L ratio (g/mi)	Initial concentration of c(H ⁺) (mol/L)	(ml)	(mg/L)
	1	405	300.5
1.5	2	339	319.7
1:5	4	377	287.6
	6	312	351.5
	1	771	158.3
1.10	2	692	166.2
1.10	4	604	184.1
	6	618	202.4
	1	1510	25.0
1.20	2	1232	87.71
1:20	4	1452	86.68
	6	1281	95.34

Table S3. The volume of leaching solution and concentration of Pt.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).